1 Buckets

Cherkassky, Goldberg, and Silverstein. SODA 97.

review shortest path algorithm.

In shortest paths, often have edge lengths small integers (say max C).
Observe heap behavior:

e heap min increasing (monotone property)
e max C distinct values
o (because don’t insert k + C until delete k).

Idea: lots of things have same value. Keep in buckets.
How to exploit?

e standard heaps of buckets. O(mlogC) (slow) or O(m + nlog C) with Fib
(messy).

e Dial’s algorithm: O(m + nC).
space?

e use array of size C'+ 1

e wrap around

2-level buckets.
Tries.

e depth k tree over array of size A

e depth £

e expansion factor A = (C + 1)Y/* (power of 2 simplifies)

e insert: O(k) (also find, delete-non-min, decrease-key)

e delete-min: O(kA) = O(kC/*) to find next element

e Shortest paths: O(km + knC/*)

e Balance: nC'* =m so C = (m/n)* so k = log(C)/log(m/n)
e Runtime: mlog,,,(C)

e Space: kn = nlog,,,, C

Problems: space and time
Idea: be lazy!

e unique array on each level active

e keep other stuff piled up in list

2

expand to buckets when reach

each item descends one level per touch, never ascends

charge to insert, pay for other ops by pushing items down

In delete, need to traverse exactly one level to find next nonempty item
(may also do pushdowns, but those are paid for)

space to linear

New time analysis:

— O(k) insert
— O(CY*) delete
— O(1) decrease key

paths runtime: O(m + n(k + C*/*)) = O(m + n(log C)/ loglog C)

Further improvement: heap on top (HOT) queues get O(m 4 n(log C)/3)
time

Implementation experiments—good model for project

VEB

Van Emde Boas, “Design and Implementation of an efficient priority queue”
Math Syst. Th. 10 (1977)
Thorup, “On RAM priority queues” SODA 1996.

Idea

idea: in bucket heaps, problem of finding next empty bucket was heap
problem. Recurse!

b-bit words
log b running times
thorup paper improves to loglogn

consequence for sorting.

Algorithm.

need constant time hash table. non-trivial complexity theory, but can
manage with randomization or slight time loss.

queue () on b bits is struct

— (. min is current min, not stored recursively

— Array Q.low][] of /u queues on low order bits in bucket
— @.high, vEB queue on high order bits of elements other than current
min in queue

e Insert x:

— if z < Q. min, swap

— now insert z in recursive structs

— expand = = (xp, ;) high and low half words

— If Q.low[xp] nonempty, then insert x; in it

— else, make new queue holding z; at Q.low[zy], and insert in Q.high

— note two inserts, but one to an empty queue, so constant time
e Delete-min:

— need to replace Q. min

— Look in @Q.high.min. if null, queue is empty.

— else, gives first nonempty bucket xj,

— Delete min from Q.low[z}] to finish finding Q. min

— If results in empty queue, Delete-min from Q.high to remove that
bucket from consideration

— Note two delete mins, but second only happens when first was con-
stant time.

