
1 Buckets 

Cherkassky, Goldberg, and Silverstein. SODA 97.

review shortest path algorithm.

In shortest paths, often have edge lengths small integers (say max C).

Observe heap behavior:


•	 heap min increasing (monotone property)


max C distinct values
• 

•	 (because don’t insert k + C until delete k). 

Idea: lots of things have same value. Keep in buckets. 
How to exploit? 

•	 standard heaps of buckets. O(m log C) (slow) or O(m + n log C) with Fib 
(messy). 

• Dial’s algorithm: O(m + nC). 

space? 

•	 use array of size C + 1 

•	 wrap around 

2­level buckets. 
Tries. 

•	 depth k tree over array of size Δ 

•	 depth k 

•	 expansion factor Δ = (C + 1)1/k (power of 2 simplifies) 

•	 insert: O(k) (also find, delete­non­min, decrease­key) 

•	 delete­min: O(kΔ) = O(kC1/k) to find next element 

•	 Shortest paths: O(km + knC1/k) 

•	 Balance: nC1/k = m so C = (m/n)k so k = log(C)/ log(m/n) 

•	 Runtime: m logm/n(C) 

•	 Space: kn = n logm/n C 

Problems: space and time 
Idea: be lazy! 

•	 unique array on each level active 

•	 keep other stuff piled up in list 

1 



2 

•	 expand to buckets when reach 

•	 each item descends one level per touch, never ascends 

•	 charge to insert, pay for other ops by pushing items down 

•	 In delete, need to traverse exactly one level to find next nonempty item 

•	 (may also do pushdowns, but those are paid for) 

•	 space to linear 

•	 New time analysis: 

–	 O(k) insert 

–	 O(C1/k) delete 

–	 O(1) decrease key 

•	 paths runtime: O(m + n(k + C1/k)) = O(m + n(log C)/ log log C) 

•	 Further improvement: heap on top (HOT) queues get O(m +n(log C)1/3) 
time 

•	 Implementation experiments—good model for project 

VEB 

Van Emde Boas, “Design and Implementation of an efficient priority queue”

Math Syst. Th. 10 (1977)

Thorup, “On RAM priority queues” SODA 1996.

Idea


•	 idea: in bucket heaps, problem of finding next empty bucket was heap 
problem. Recurse! 

b­bit words • 

•	 log b running times 

•	 thorup paper improves to log log n 

• consequence for sorting. 

Algorithm. 

•	 need constant time hash table. non­trivial complexity theory, but can 
manage with randomization or slight time loss. 

•	 queue Q on b bits is struct 

–	 Q. min is current min, not stored recursively 

2 



–	 Array Q.low[] of 
√

u queues on low order bits in bucket 

–	 Q.high, vEB queue on high order bits of elements other than current 
min in queue 

Insert x:• 

–	 if x < Q. min, swap 

–	 now insert x in recursive structs 

–	 expand x = (xh, xl) high and low half words 

–	 If Q.low[xh] nonempty, then insert xl in it 

–	 else, make new queue holding xl at Q.low[xh], and insert xh in Q.high 

–	 note two inserts, but one to an empty queue, so constant time 

Delete­min: • 

–	 need to replace Q. min 

–	 Look in Q.high. min. if null, queue is empty. 

–	 else, gives first nonempty bucket xh 

–	 Delete min from Q.low[xh] to finish finding Q. min 

–	 If results in empty queue, Delete­min from Q.high to remove that 
bucket from consideration 

–	 Note two delete mins, but second only happens when first was con­
stant time. 

3 


