1

Online algorithms

Motivation:

till now, our algorithms start with input, work with it

(exception: data structures—come back later)

now, suppose input arrives a little at a time, need instant response
eg stock market, paging

question: what is a “good” algorithm.

depends on what we measure.

if knew whole input o in advance, easy to optimize Cyrn(0)

ski rental problem: rent 1, buy T. don’t know how often.

notice that on some inputs, can’t do welll (stock market that only goes
down, thrashing in paging)

problem isn’t to decide fast, rather what to decide.

Definition: competitive ratio

compare to full knowledge optimum

k-competitive if for all sequences etc. Ca(0) < kCurrn(0)
sometimes, to ignore edge effects, C4(0) < kCprrn (o) + O(1).
idea: “regret ratio”

analyze ski rental

we think of competitve analysis as a (zero sum) game between algorithm
and adversary. want to find best strategy for algorithm.

supposed to be competitive against all sequences. So, can imagine that
adversary is adapting to algorithm’s choices (to get worst sequence)

Graham’s Rule

Define P||max C; to minimize load.
NP-complete to solve exactly!
Always assign to least loaded machine:

any alg has 2 lower bounds: average load and maximum job size.

Suppose M; has max load L, let p; be biggest job.

e claim every machine has L — p; (else wouldn’t have assigned last job to
M,

e thus total load at least > p; = m(L — p;) + p;
e thus OPT > L —p; +p;/m
e but OPT> p;, so (2—1/m)OPT > L
More recent algs do somewhat better:
e keep some machines small

e algorithms not too bad, proofs awful!

1.1 Move to front

Allowed to move up accessed item; other transposes cost 1.
Potential function: number of inversions.

e amortized cost

e suppose search for item z; at j in opt, at k in MTF

e suppose v items precede xj but not z;

e then kK — v — 1 precede in BOTH
esok—v—1<j—1sok—v<j

e MTF creates k — v — 1 new inversions and kills v old ones,
e so amortized cost is k+ (k—v—1) —v <2(k —v) < 2j

e now do opt’s move.

e moving x; towards front only decreases inversions (already at front in
MTF)

e other transposes increase potential but are paid for.

2 Paging problem
e define
e LRU, FIFO, LIFO, Flush when full, Least freq use
e LIFO, LFU not competititive
e LRU, FIFO k-competitive.

e will see this is best possible (det)

LRU is k-competitive
e note we prove this without knowing opt!
e assume start with same pages in memory (adds const)
e phase: k page faults, ending with last fault (start counting after first fault)
e show 1 fault to MIN in each phase
e case 1: two faults on p in 1 phase

— then had accesses to k other pages between faults to p

— so k + 1 pages accessed in phase—MIN must fault once.
e case 2: kdistinct faults

— let p be last fault of previous phase

— case 2a: fault to p in phase. Then argue as before, k pages between
p faults

— case 2b: no fault to p. immediately after first p-fault, MIN has p in
memory, other k£ — 1 pages. k new pages accessed in phase. Deduce
one faults MIN.

e Notice: in case 2, fault we charge to phase might happen before phase.

— but, happens after last fault-for-LRU in previous phase

— so is different fault than the one deduced for previous phase.

Observations:

e proved without knowing optimum

e instead, derived lower bound on cost of any algorithm

e same argument applies to FIFO.
Lower bound: no online algorithm beats k-competitive.

e set of k + 1 pages

e always ask for the one A doesn’t have

e faults every time.

e 50, just need to show can get away with 1 fault every k steps

e have k pages, in memory. When fault, look ahead, one of k£ + 1 isn’t used
in next k, so evict it.

e one fault every k steps

so A is only k-competitive.

Observations:

Ib can be proven without knowing OPT, often is.

competitive analysis doesn’t distinguish LRU and FIFO, even though
know different in practice.

still trying to refine competitive analysis to measure better: new SODA
paper: “LRU is better than FIFO”

applies even if just have k + 1 pages!

Optimal offline algorithm: Longest Forward Distance

evict page that will be asked for farthest in future.

suppose MIN is better than LFD. Will make NEW, as good, agrees more
with LFD.

Let o; be first divergence of MIN and LFD (at page fault)

LFD discards ¢, MIN discards p (so p will be accessed before ¢ after time
i)

Let ¢t be time MIN discards ¢

revise schedule so MIN and LFD agree up to ¢, yielding NEW

NEW discards q at i, like LFD

so MIN and NEW share k£ — 1 pages. will preserve till merge

in fact, ¢ is unique page that MIN has that new doesn’t

case 1: 04,...,0¢,...,Dy...,q

— until reach ¢

— let e be unique page NEW has that MIN doesn’t (init e = p)

— when get o7 # e, evict same page from both

— note g; # ¢, so MIN does fault when NEW does

— both fault, and preserves invariant

— when g; = e, only MIN faults

— when get to g, both fault, but NEW evicts e and converges to MIN.
— clearly, NEW no worse than MIN

case 2: t after ¢

— follow same approach as above till hit ¢

— since MIN didn’t discard ¢ yet, it doesn’t fault at ¢, but

— since p requested before ¢, had o; = e at least once, so MIN did worse
than NEW. (MIN doesn’t have p till faults)

— so, fault for NEW already paid for

— still same.
e prove that can get to LFD without getting worse.

e so LFD is optimal.

Randomized Online Algorithms

An online algorithm is a two-player zero sum game between algorithm and
adversary. Well known that optimal strategies require randomization.

A randomized online algorithm is a probability distribution over deterministic
online algorithms.

e idea: if adversary doesn’t know what you are doing, can’t mess you up.

e idea: can’t see adversary’s “traps”, but have certain probability of wiggling
out of them.

e in practice, don’t randomly pick 1 det algorithm at start. Instead, make
random choices on the way. But retrospectively, gives 1 deterministic
algorithm.

Algorithm is k-competitive if for any o, E[C4(c)] < k- OPT + O(1).
Adversaries:

e oblivous: knows probability distribution but not coin tosses. Might as
well pick input in advance.

e fully adaptive: knows all coin tosses. So algorithm is deterministic for
it.

e adaptive: knows coin tosses up to present—picks sequence based on what
did.

e clearly adaptive stronger than oblivious.
e oblivious adversary plausible in many cases (eg paging)

e problematic if online behavior affects nature (eg, paging an alg that changes
behavior if it sees itself thrashing)

e for now, oblivous
Idea: evict random page?

e k-competitive against adaptive adversary

e but uses no memory
e trading space for randomness
Marking algorithm:
e initially, all pages marked (technicality)
e on fault, if all marked, unmark all
e evict random unmarked page
e mark new page.

Fiat proved: Marking is O(log k) competitive for k pages.
Phases:

o first starts on first fault

e ends when get k + 1% distinct page request.

e so a phase has k distinct pages

e cost of M is cost of phases

e note: defined by input, independent of coin tosses by M
e but, marking tracks:

— by induction, unmark iff at end of phase

— by induction, all pages requested in phase stay marked till end of
phase

so, pay for page (if at all) only on first request in phase.

by induction, at end of phase memory contains the k pages requested
during the phase.

Analysis:

e ignore all but first request to a page (doesn’t affect M, helps offline)

e compare phase-by-phase cost

e phase ¢ starts with .S; (ends with S;1)

e request clean if no in S;. M must fault, but show offline pays too

e request stale if in S;. M faults if evicted during phase. Show unlikely.
Online cost:

e Expected cost of stale request:

— suppose had s stale and ¢ clean requests so far.

— so s pages of S; known to be currently in memory

— remaining k — s may or may not be.

— in particular, ¢ of them got evicted for clean requests
— what prob current request was evicted? c¢/(k — s)

— this is expected cost of stale request.

e Cost of phase.

Suppose has ¢; clean requests, k — ¢; stale.

Pay ¢; for clean.

for stale requests, pay at most

~(1+ Lo
AV o+ 1

) =ci(Hy — He,)

— so total at most ¢; log k
Offline cost:

e potential function ®; = difference between M and O (offline) at start of
phase 1.

e got ¢; clean requests, not in M’s memory. So at least ¢; — ®; not in O’s
memory.

e at end of round, M has all k£ most recent requests. So O is missing ®;41
of k this round’s requests. Must have evicted (thus paid for) them.

® SO, CZ(O) Z max(ci — (I)i7 ¢i+1 Z %(Ci + (bi — (I)iJrl).
e sum over all phases; telescopes. Deduce C; > % >

Summary: If online pays x log k, offline pays /2. So, (log k)-competitive.

Lower bounds

Turns out that O(log k) is tight for randomized algorithms (Fiat). How prove?
Recall that situation is a game:

e in general, optimal strategy of both sides is randomized

e online chooses random alg, adversary chooses random input
e leads to payoff matrix—expected value of game

e number in matrix is cost for alg on that input

e Von Neumann proved equality of minimax and maximins

e notice: player who picks strategy second can use deterministic choice

e note when one player’s strategy known, other player can play determinis-
tically to meet optimum.

e above, assumed adversary knew online’s strategy, so he played determin-
istically

e for lower bound, we let adversary have randomized strategy, look for best
deterministic counter!

e If give random input for which no deterministic alg does well, we get a
lower bound.

Formalize:

e say online A is c-competitive against an input distribution p, if E,(C4(0)) <
cEs(Copr(o)) (note: OPT gets to see sequence before going)

e Theorem: if for some distribution no deterministic alg is c-competitive,
than no randomized algorithm is c-competitive.

e to prove, suppose have c-competitive randomized alg, show det c-competitive
against any o.

e consider payoftf E4o[Cx(c) — cCopr(0o)]
e by assumption, some dist on A achieves nonpositive payoff.
e remains true even if choose best possible randomized strategy on o
e once do so, have deterministic counter A
e so for any p, on o, some A such E,[Cs(0) — cCopr(c) <0
e in other words, A is c-competitive against p,.
For paging:
e set of k + 1 pages
e uniform random sequence of requests

e any deterministic (or randomized!) algorithm has an expected 1/k fault
per request. So cost n/k if seq length n

e what is offline cost? on fault, look ahead to page that is farthest in future.
e phase ends when all k + 1 pages requested

e offline faults once per phase

e how long is a phase? coupon collection. 2(klogk).

e intuitively, number of faults is n/klogk

e formally, use “renewal theory” that works because phase lengths are i.i.d.
e deduce expected faults n/klogk, while online is n/k

e log k gap, so online not log k-competitive.

k-server

Definition:

metric space with k£ servers on points

request is point in space

must move a server, cost is distance.

eg taxi company

paging is special case: all distances 1, servers on “memory pages”
also multihead disks

compute offline by dynamic program or reducion to min cost flow

Greedy doesn’t work:

2 servers, 1 far away, other flips between 2 points.

need an algorithm that moves a far away server sometimes in case a certain
region is popular

Fancy algorithmics:

2.1

HARMONIC: randomized, move with probability inversely proptional to
distance from goal

WORK FUNCTION: track what offline algorithms would have done (com-
putationally very expensive) and then do your best to move into a similar
configuration.

in 2001, work-function was proven 2k-competitive using a black magic
potential function

conjectured k-competitive.

questions remain on finding an algorithm that does little work per input.

On a Line

greedy algorithm bad if requests alternate a near b but server on distant c.
double coverage algorithm (DC):

If request outside conv hull, move nearest point to it.

else, move nearest point on each side towards it equal distance till one
hits.

k-competitive.

let M be min-cost matching of opt points to DC points

S =kM + Zi<j d(si,sj)
show:

— adversary moves d: increases ¢ by < kd

— DC moves moves d: decrease ¢ by d

deduce: DC is k-competitive because it moves only k times opt.

Analysis:

adv moves d just increases M by d, so A® < kd
DC moves d.

If to outside hull, note adversary already has a point at dest; moving point
must match to it (else matches something else; uncross).

so AM = —d while 62 = (k — 1)d. claim follows: A¢p = —kd+ (k—1)d =
—d

if inside hull, one of moving points is matched to request. So that move
decreases M. Other move may increase M same amount, so no change to
M.

Now consider Y. Moves of two points cancel out with respect to other
points, but they get 2d units closer.

Generalizes to trees: all servers neighboring a request move toward it. (server
stops if other moving server “blocks” it.

as before, if opt moves d, change kd in matching contrib to ®
for DC, suppose m servers move

as before, one moving neighbor is matched, decreases M. m — 1 others
increase. total (m — 2)kd

consider any nonmoving server: 1 moving away from it, m moving towards.

total —(k — m)(m — 2)d
moving pairs approaching each other: total —m(m — 1)(2d)/2

add up, get dm

Application: weighted paging

cost w(p) to load p (equiv, w(p)/2 to load and same to evict)

treat as star, with edge lengths w(p)

10

3 Finance

Known or unknown duration. But assume know which offer is last.
Need fluctuation ratio ¢ between largest M and smallest m price.
Selling peanuts:

e Break into log ¢ groups of equal amounts

e Sell group 4 for value m - 2°

e One group sold for at least half of max price
e So achieve log ¢ competitive

Selling (one) car: Best deterministic algorithm: agree to first price exceeding

VMm
e /¢ competitive
e note have to know when last offer
Can achieve log ¢ randomized
e Consider powers of 2 between m and M
e Choose one at random
e sell all at first bid exceeding

e with prob 1/log ¢, pick the power of 2 that is within factor 2 of highest
offered price.

e even if know ¢ but don’t know m, can just run above alg after seeing first
price

11

