
1 Online algorithms

Motivation:

• till now, our algorithms start with input, work with it

• (exception: data structures—come back later)

• now, suppose input arrives a little at a time, need instant response

• eg stock market, paging

• question: what is a “good” algorithm.

• depends on what we measure.

• if knew whole input σ in advance, easy to optimize CMIN (σ)

• ski rental problem: rent 1, buy T . don’t know how often.

• notice that on some inputs, can’t do well! (stock market that only goes
down, thrashing in paging)

• problem isn’t to decide fast, rather what to decide.

Definition: competitive ratio

• compare to full knowledge optimum

• k-competitive if for all sequences etc. CA(σ) ≤ kCMIN (σ)

• sometimes, to ignore edge effects, CA(σ) ≤ kCMIN (σ) + O(1).

• idea: “regret ratio”

• analyze ski rental

• we think of competitve analysis as a (zero sum) game between algorithm
and adversary. want to find best strategy for algorithm.

• supposed to be competitive against all sequences. So, can imagine that
adversary is adapting to algorithm’s choices (to get worst sequence)

Graham’s Rule

Define P ||max Cj to minimize load.
NP-complete to solve exactly!
Always assign to least loaded machine:

• any alg has 2 lower bounds: average load and maximum job size.

• Suppose M1 has max load L, let pj be biggest job.

1

• claim every machine has L − pj (else wouldn’t have assigned last job to
M1

• thus total load at least
∑

pi = m(L− pj) + pj

• thus OPT ≥ L− pj + pj/m

• but OPT≥ pj , so (2− 1/m)OPT ≥ L

More recent algs do somewhat better:

• keep some machines small

• algorithms not too bad, proofs awful!

1.1 Move to front

Allowed to move up accessed item; other transposes cost 1.
Potential function: number of inversions.

• amortized cost

• suppose search for item xj at j in opt, at k in MTF

• suppose v items precede xk but not xj

• then k − v − 1 precede in BOTH

• so k − v − 1 ≤ j − 1 so k − v ≤ j

• MTF creates k − v − 1 new inversions and kills v old ones,

• so amortized cost is k + (k − v − 1)− v ≤ 2(k − v) ≤ 2j

• now do opt’s move.

• moving xj towards front only decreases inversions (already at front in
MTF)

• other transposes increase potential but are paid for.

2 Paging problem

• define

• LRU, FIFO, LIFO, Flush when full, Least freq use

• LIFO, LFU not competititive

• LRU, FIFO k-competitive.

• will see this is best possible (det)

2

LRU is k-competitive

• note we prove this without knowing opt!

• assume start with same pages in memory (adds const)

• phase: k page faults, ending with last fault (start counting after first fault)

• show 1 fault to MIN in each phase

• case 1: two faults on p in 1 phase

– then had accesses to k other pages between faults to p

– so k + 1 pages accessed in phase—MIN must fault once.

• case 2: kdistinct faults

– let p be last fault of previous phase

– case 2a: fault to p in phase. Then argue as before, k pages between
p faults

– case 2b: no fault to p. immediately after first p-fault, MIN has p in
memory, other k − 1 pages. k new pages accessed in phase. Deduce
one faults MIN.

• Notice: in case 2, fault we charge to phase might happen before phase.

– but, happens after last fault-for-LRU in previous phase

– so is different fault than the one deduced for previous phase.

Observations:

• proved without knowing optimum

• instead, derived lower bound on cost of any algorithm

• same argument applies to FIFO.

Lower bound: no online algorithm beats k-competitive.

• set of k + 1 pages

• always ask for the one A doesn’t have

• faults every time.

• so, just need to show can get away with 1 fault every k steps

• have k pages, in memory. When fault, look ahead, one of k + 1 isn’t used
in next k, so evict it.

• one fault every k steps

3

• so A is only k-competitive.

Observations:

• lb can be proven without knowing OPT, often is.

• competitive analysis doesn’t distinguish LRU and FIFO, even though
know different in practice.

• still trying to refine competitive analysis to measure better: new SODA
paper: “LRU is better than FIFO”

• applies even if just have k + 1 pages!

Optimal offline algorithm: Longest Forward Distance

• evict page that will be asked for farthest in future.

• suppose MIN is better than LFD. Will make NEW, as good, agrees more
with LFD.

• Let σi be first divergence of MIN and LFD (at page fault)

• LFD discards q, MIN discards p (so p will be accessed before q after time
i)

• Let t be time MIN discards q

• revise schedule so MIN and LFD agree up to t, yielding NEW

• NEW discards q at i, like LFD

• so MIN and NEW share k − 1 pages. will preserve till merge

• in fact, q is unique page that MIN has that new doesn’t

• case 1: σi, . . . , σt, . . . , p, . . . , q

– until reach q

– let e be unique page NEW has that MIN doesn’t (init e = p)

– when get σl 6= e, evict same page from both

– note σl 6= q, so MIN does fault when NEW does

– both fault, and preserves invariant

– when σl = e, only MIN faults

– when get to q, both fault, but NEW evicts e and converges to MIN.

– clearly, NEW no worse than MIN

• case 2: t after q

– follow same approach as above till hit q

4

– since MIN didn’t discard q yet, it doesn’t fault at q, but

– since p requested before q, had σl = e at least once, so MIN did worse
than NEW. (MIN doesn’t have p till faults)

– so, fault for NEW already paid for

– still same.

• prove that can get to LFD without getting worse.

• so LFD is optimal.

Randomized Online Algorithms

An online algorithm is a two-player zero sum game between algorithm and
adversary. Well known that optimal strategies require randomization.
A randomized online algorithm is a probability distribution over deterministic
online algorithms.

• idea: if adversary doesn’t know what you are doing, can’t mess you up.

• idea: can’t see adversary’s “traps”, but have certain probability of wiggling
out of them.

• in practice, don’t randomly pick 1 det algorithm at start. Instead, make
random choices on the way. But retrospectively, gives 1 deterministic
algorithm.

Algorithm is k-competitive if for any σ, E[CA(σ)] ≤ k ·OPT + O(1).
Adversaries:

• oblivous: knows probability distribution but not coin tosses. Might as
well pick input in advance.

• fully adaptive: knows all coin tosses. So algorithm is deterministic for
it.

• adaptive: knows coin tosses up to present—picks sequence based on what
did.

• clearly adaptive stronger than oblivious.

• oblivious adversary plausible in many cases (eg paging)

• problematic if online behavior affects nature (eg, paging an alg that changes
behavior if it sees itself thrashing)

• for now, oblivous

Idea: evict random page?

• k-competitive against adaptive adversary

5

• but uses no memory

• trading space for randomness

Marking algorithm:

• initially, all pages marked (technicality)

• on fault, if all marked, unmark all

• evict random unmarked page

• mark new page.

Fiat proved: Marking is O(log k) competitive for k pages.
Phases:

• first starts on first fault

• ends when get k + 1st distinct page request.

• so a phase has k distinct pages

• cost of M is cost of phases

• note: defined by input, independent of coin tosses by M

• but, marking tracks:

– by induction, unmark iff at end of phase

– by induction, all pages requested in phase stay marked till end of
phase

– so, pay for page (if at all) only on first request in phase.

– by induction, at end of phase memory contains the k pages requested
during the phase.

Analysis:

• ignore all but first request to a page (doesn’t affect M , helps offline)

• compare phase-by-phase cost

• phase i starts with Si (ends with Si+1)

• request clean if no in Si. M must fault, but show offline pays too

• request stale if in Si. M faults if evicted during phase. Show unlikely.

Online cost:

• Expected cost of stale request:

– suppose had s stale and c clean requests so far.

6

– so s pages of Si known to be currently in memory

– remaining k − s may or may not be.

– in particular, c of them got evicted for clean requests

– what prob current request was evicted? c/(k − s)

– this is expected cost of stale request.

• Cost of phase.

– Suppose has ci clean requests, k − ci stale.

– Pay ci for clean.

– for stale requests, pay at most

ci(
1
k

+
1

k − 1
+ · · ·+ 1

ci + 1
) = ci(Hk −Hci

)

– so total at most ci log k

Offline cost:

• potential function Φi = difference between M and O (offline) at start of
phase i.

• got ci clean requests, not in M ’s memory. So at least ci − Φi not in O’s
memory.

• at end of round, M has all k most recent requests. So O is missing Φi+1

of k this round’s requests. Must have evicted (thus paid for) them.

• so, Ci(O) ≥ max(ci − Φi, φi+1 ≥ 1
2 (ci + Φi − Φi+1).

• sum over all phases; telescopes. Deduce Ci ≥ 1
2

∑
ci.

Summary: If online pays x log k, offline pays x/2. So, (log k)-competitive.

Lower bounds

Turns out that O(log k) is tight for randomized algorithms (Fiat). How prove?
Recall that situation is a game:

• in general, optimal strategy of both sides is randomized

• online chooses random alg, adversary chooses random input

• leads to payoff matrix—expected value of game

• number in matrix is cost for alg on that input

• Von Neumann proved equality of minimax and maximins

• notice: player who picks strategy second can use deterministic choice

7

• note when one player’s strategy known, other player can play determinis-
tically to meet optimum.

• above, assumed adversary knew online’s strategy, so he played determin-
istically

• for lower bound, we let adversary have randomized strategy, look for best
deterministic counter!

• If give random input for which no deterministic alg does well, we get a
lower bound.

Formalize:

• say online A is c-competitive against an input distribution pσ if Eσ(CA(σ)) ≤
cEσ(COPT (σ)) (note: OPT gets to see sequence before going)

• Theorem: if for some distribution no deterministic alg is c-competitive,
than no randomized algorithm is c-competitive.

• to prove, suppose have c-competitive randomized alg, show det c-competitive
against any σ.

• consider payoff EA[CA(σ)− cCOPT (σ)]

• by assumption, some dist on A achieves nonpositive payoff.

• remains true even if choose best possible randomized strategy on σ

• once do so, have deterministic counter A

• so for any pσ on σ, some A such Eσ[CA(σ)− cCOPT (σ) ≤ 0

• in other words, A is c-competitive against pσ.

For paging:

• set of k + 1 pages

• uniform random sequence of requests

• any deterministic (or randomized!) algorithm has an expected 1/k fault
per request. So cost n/k if seq length n

• what is offline cost? on fault, look ahead to page that is farthest in future.

• phase ends when all k + 1 pages requested

• offline faults once per phase

• how long is a phase? coupon collection. Ω(k log k).

• intuitively, number of faults is n/k log k

• formally, use “renewal theory” that works because phase lengths are i.i.d.

• deduce expected faults n/k log k, while online is n/k

• log k gap, so online not log k-competitive.

8

k-server

Definition:

• metric space with k servers on points

• request is point in space

• must move a server, cost is distance.

• eg taxi company

• paging is special case: all distances 1, servers on “memory pages”

• also multihead disks

• compute offline by dynamic program or reducion to min cost flow

Greedy doesn’t work:

• 2 servers, 1 far away, other flips between 2 points.

• need an algorithm that moves a far away server sometimes in case a certain
region is popular

Fancy algorithmics:

• HARMONIC: randomized, move with probability inversely proptional to
distance from goal

• WORK FUNCTION: track what offline algorithms would have done (com-
putationally very expensive) and then do your best to move into a similar
configuration.

• in 2001, work-function was proven 2k-competitive using a black magic
potential function

• conjectured k-competitive.

• questions remain on finding an algorithm that does little work per input.

2.1 On a Line

greedy algorithm bad if requests alternate a near b but server on distant c.
double coverage algorithm (DC):

• If request outside conv hull, move nearest point to it.

• else, move nearest point on each side towards it equal distance till one
hits.

k-competitive.

• let M be min-cost matching of opt points to DC points

9

• Φ = kM +
∑

i<j d(si, sj)

• show:

– adversary moves d: increases Φ by ≤ kd

– DC moves moves d: decrease Φ by d

• deduce: DC is k-competitive because it moves only k times opt.

Analysis:

• adv moves d just increases M by d, so ∆Φ ≤ kd

• DC moves d.

• If to outside hull, note adversary already has a point at dest; moving point
must match to it (else matches something else; uncross).

• so ∆M = −d while δΣ = (k− 1)d. claim follows: ∆φ = −kd + (k− 1)d =
−d

• if inside hull, one of moving points is matched to request. So that move
decreases M . Other move may increase M same amount, so no change to
M .

• Now consider Σ. Moves of two points cancel out with respect to other
points, but they get 2d units closer.

Generalizes to trees: all servers neighboring a request move toward it. (server
stops if other moving server “blocks” it.

• as before, if opt moves d, change kd in matching contrib to Φ

• for DC, suppose m servers move

• as before, one moving neighbor is matched, decreases M . m − 1 others
increase. total (m− 2)kd

• consider any nonmoving server: 1 moving away from it, m moving towards.
total −(k −m)(m− 2)d

• moving pairs approaching each other: total −m(m− 1)(2d)/2

• add up, get dm

Application: weighted paging

• cost w(p) to load p (equiv, w(p)/2 to load and same to evict)

• treat as star, with edge lengths w(p)

10

3 Finance

Known or unknown duration. But assume know which offer is last.
Need fluctuation ratio φ between largest M and smallest m price.
Selling peanuts:

• Break into log φ groups of equal amounts

• Sell group i for value m · 2i

• One group sold for at least half of max price

• So achieve log φ competitive

Selling (one) car: Best deterministic algorithm: agree to first price exceeding√
Mm

•
√

φ competitive

• note have to know when last offer

Can achieve log φ randomized

• Consider powers of 2 between m and M

• Choose one at random

• sell all at first bid exceeding

• with prob 1/ log φ, pick the power of 2 that is within factor 2 of highest
offered price.

• even if know φ but don’t know m, can just run above alg after seeing first
price

11

