6.854 Advanced Algorithms

Lecture 12: October 20, 2003 Lecturers: Erik Demaine, David Karger
Scribe: Jason Eisenberg

Approximation Algorithms

12.1 Introduction

So far in class, we have studied problems which are efficiently solvable (solvable in polynomial time),
and we have asked how quickly we can solve them. For the next few lectures, however, we will
consider problems which are not known to be efficiently solvable.

12.1.1 NP-Completeness

In studying such problems, we encounter the notion of NP-completeness. NP-complete problems
comprise a family of thousands of distinct combinatorial and optimization problems for which

e 10 efficient algorithms are known; we can, however, use brute force to solve these problems in
exponential time

e an efficient reduction exists from every other NP-complete problem; thus, if we have a black
box which is able to solve one of these problems efficiently, we can solve all of the problems
efficiently

Below are listed some examples of NP-complete problems. Each problem except SAT is formulated
as an optimization problem, although strictly speaking it is the decision version of each problem
that is NP-complete. As an aside, there does exist an optimization problem related to SAT, called
MAXSAT. In this problem, we are given a boolean formula, and we must find an assignment to the
variables which maximizes the number of satisfied clauses.

Satisfiability (SAT): Given a boolean formula, is there an assignment to the variables which
satisfies the formula (makes the formula evaluate to true)?

Bin Packing: Given a set of items of specified sizes and unit-size bins, determine the minimum
number of bins required to hold the items.

Max Independent Set: Given a graph, find a maximum-size subset of vertices such that no two
vertices in the subset are adjacent.

Knapsack: Given a knapsack of fixed size and a set of items, each of a specified value and size,
determine the maximum total value of any set of items which fits in the knapsack.

12-1

Lecture 12: October 20, 2003 12-2

Parallel Machine Scheduling: Given a set of identical machines and a set of tasks, each of spec-
ified duration, find an assignment of tasks to machines which minimizes the time required for
all machines to complete their assigned tasks.

Traveling Salesman Problem (TSP): Find a minimum-distance route through a set of cities
which allows a salesman to begin and end in the same city and visit every other city exactly
once.

That all of these problems cannot be solved efficiently depends on the assumption that P # NP.
Although this conjecture is not proven, it is widely believed to be true, and so we will simply assume
that P # NP.

12.1.2 Coping with NP-Completeness
Since we do not know how to solve NP-complete problems efficiently, what can we do?

heuristics: One possibility is to abandon searching for polynomial-time algorithms and to instead
concentrate on developing heuristics which are almost polynomial-time in practice for instances
which are not too large. But in general, it would be surprising to obtain algorithms which are
even subexponential, as achieving this goal would have ramifications as to whether P and NP
are equal.

average-case analysis: Rather than looking at the worst-case performance of algorithms for these
problems, we can analyze the algorithms’ behavior only on certain classes of inputs. This is
done by determining their expected performance over some specified distribution of the input
instances. But there is often much disagreement over which distribution to use.

approximation algorithms: We can attempt to find polynomial-time approximation algorithms
which can be proven to be approximately correct.

We will explore the topic of approximation algorithms over the next few lectures.

12.2 Optimization Problems

Before discussing approximation algorithms, we must establish some terminology for optimization
problems.

Definition 1 An optimization problem has a set of problem instances.
Definition 2 FEach instance I has a solution set S(I).

Definition 3 The mazimization/minimization problem is to find a solution s € S(I) of maxi-
mum/minimum objective value f(s). We will assume the input and output of f are integers com-
posed of a polynomial number of bits.

Lecture 12: October 20, 2003 12-3

Definition 4 The value f(s) of an optimum solution s for instance I is denoted OPT(I).

Each of the optimization problems given in Section 12.1.1 fits into this optimization framework.
For example, consider the Max Independent Set problem. Each problem instance is a graph; the
solution set for a graph consists of all subsets of vertices such that no two vertices in each subset
are adjacent; and the value of a solution is the number of vertices in the subset.

Although we would like to refer to these optimization problems as being NP-complete, this term is
usually reserved for decision problems and languages. Instead, we use the concept of NP-hardness.

Definition 5 An optimization problem is NP-hard if some other NP-hard problem can be reduced
to it in polynomial time.

Usually, the NP-hard problem used in the reduction is the corresponding decision problem of whether
OPT(I) is at least (or at most) some value k.

12.3 Absolute Approximation Algorithms

Definition 6 An approximation algorithm is a polynomial-time algorithm which when given an
instance I, returns a solution s in the solution space S(I).

For example, in the bin-packing problem, one possible approximation algorithm is to simply place
each item in its own bin. But doing so most likely produces a poor quality solution. To address the
issue of quality, let us consider absolute approximation algorithms.

Definition 7 Given an instance I, an a-absolute approximation algorithm finds a solution of
value at most OPT(I) + a.

Note that this definition only makes sense for minimization problems; an a-absolute approximation
algorithm for a maximization problem would return a solution of value at least OPT(I) — .. Further,
observe that when designing an absolute approximation algorithm, we would like @ to be as small
as possible.

12.3.1 Algorithms for Graph Coloring

Consider the problem of planar graph coloring, in which we are given a planar graph (one which
can be drawn in a plane without its edges crossing) and we must find a coloring of the vertices such
that no two neighboring vertices have the same color. As the following theorem demonstrates, this
problem possesses an absolute approximation algorithm.

Theorem 1 A 2-absolute approximation algorithm exists for planar graph coloring.

Proof: By the Five Color Theorem, every planar graph is 5-colorable. Further, note that empty
graphs (graphs without edges) are 1-colorable, bipartite graphs are 2-colorable, while all other graphs
require at least 3 colors. These observations lead to the following algorithm:

1. If the graph is empty or bipartite, color it optimally.

Lecture 12: October 20, 2003 12-4

2. Otherwise, color it with 5 colors.

Since this algorithm only uses 5 colors when the optimum number of colors is at least 3, it is a
2-absolute approximation algorithm. W

We can also consider the problem of edge-coloring, in which we color the edges rather than the
vertices. Unlike in planar graph coloring, there is no constant upper bound on the number of colors
required, since the optimum number OPT(I) is lower-bounded by the maximum vertex degree A.
Nevertheless, we have the following theorem due to Vizing:

Theorem 2 The edges of any graph can be colored using at most A + 1 colors.

Since his proof of the theorem is constructive, it provides us with an algorithm for finding an edge-
coloring using at most 1 more color than the optimum.

Corollary 1 A I-absolute approzimation algorithm exists for edge-coloring.

12.3.2 Proving Negative Examples by Scaling

Although these coloring problems possess absolute approximation algorithms, most NP-hard prob-
lems do not. In fact, for most of these problems, we can prove that an absolute approximation
algorithm cannot exist unless P equals NP. Such proofs use a technique called scaling. In scaling,
we first increase (scale) certain parameters of the problem instance. We then show that if an absolute
approximation algorithm existed, the solution it would provide for the modified instance could be
rescaled to yield an optimum solution for the original instance. But this would imply the existence
of an efficient algorithm for an NP-hard problem, and thus P would equal NP.

The following two examples illustrate the use of scaling.

Claim 1 An absolute approximation algorithm does not exist for the Knapsack problem.

Proof: Consider a Knapsack problem instance I in which each of the items ¢ has profit p;, and
suppose we have an a-absolute approximation algorithm A for the problem. If we double the profit
of each item to 2p; to form a new instance (call it 2I), the resulting optimum solution OPT(21) is
twice the original optimum solution OPT'(I), since the set of items which originally yielded a profit
of OPT(I) now yields a profit of 20PT(I). If we then run A on instance 21, we obtain a solution
of at least OPT'(2I) — a@ = 20PT(I) — «. Finally, dividing this result by 2 yields a solution to the
original instance of at least OPT(I) — /2. Thus, we have improved the value of a by a factor of 2.

In general, scaling the original instance I by a factor of r and then dividing the resulting solution
of A by r allows us to reduce a to a/r. Hence, if we choose r to be [2a], we can reduce a to
a/[2a] <1/2, implying A can be used to obtain a solution s for I of at least OPT(I) — 1/2. If we
assume [has integer sizes and profits, the maximum achievable profit OPT'(I) is also an integer, and
so s must equal OPT'(I). Consequently, we have an efficient algorithm for solving integer instances
of Knapsack, which contradicts our assumption that P # NP. B

Lecture 12: October 20, 2003 12-5

Claim 2 An absolute approzimation algorithm does not exist for Max Independent Set.

Proof: Suppose we have an a-absolute approximation algorithm A. If we modify an instance I by
making a copy of the graph (call this new instance 27), the size of the optimum independent set in
21 is twice that in I. Thus, OPT(2I) equals 20 PT'(I), which implies that running A on instance 271
yields an independent set of size of at least OPT'(2I) —a = 20PT(I) —a. To transform this solution
into one for the original I, we count the number of vertices in the independent set of 21. One of the
graphs must have at least half of these vertices, and thus that graph has an independent set of size at
least (20PT(I) —a)/2 = OPT(I) — a/2, implying we have reduced « by a factor of 2. Generalizing
this result, if we make [2«] copies of the graph, we can use A to find an independent set of size
at least OPT'(I) — 1/2 in I. But this must equal OPT(I), since the number of vertices is integral.
Thus, we have an efficient algorithm for solving Max Independent Set, which is a contradiction. H

12.4 Relative Approximation Algorithms

Since absolute approximation algorithms are known to exist for so few optimization problems, a
better class of approximation algorithms to consider are relative approximation algorithms. Because
they are so commonplace, we will refer to them simply as approximation algorithms.

Definition 8 An a-approximation algorithm finds a solution of value at most a - OPT'(I).

Note that although « can vary with the size of the input, we will only consider those cases in which it
is a constant. To illustrate the design and analysis of an a-approximation algorithm, let us consider
the Parallel Machine Scheduling problem, a generic form of load balancing.

Parallel Machine Scheduling: Given m machines m; and n jobs with processing times p;, assign
the jobs to the machines to minimize the load

max Z Dj,
JEL
the time required for all machines to complete their assigned jobs. In scheduling notation, this
problem is described as P || Cmax.

A natural way to solve this problem is to use a greedy algorithm called list scheduling.

Definition 9 A list scheduling algorithm assigns jobs to machines by assigning each job to the
least loaded machine.

Note that the order in which the jobs are processed is not specified. To analyze the performance
of list scheduling, we must somehow compare its solution for each instance I (call this solution
A(I)) to the optimum OPT(I). But we do not know how to obtain an analytical expression for
OPT(I). Nonetheless, if we can find a meaningful lower bound LB(I) for OPT(I) and can prove
that A(I) < «- LB(I) for some «, we then have

A(D) <

< a-LB(I)
<

«
a-OPT(I).

Using this idea of lower-bounding OPT'(I), we can now determine the performance of list scheduling.

Lecture 12: October 20, 2003 12-6

Claim 3 List scheduling is a 2-approrimation algorithm for Parallel Machine Scheduling.

Proof: Consider the following two lower bounds for the optimum load OPT'(I):

e the maximum processing time p = max; p;

e the average load L =3, pj/m

The maximum processing time p is clearly a lower bound, as the machine to which the corresponding
job is assigned requires at least time p to complete its tasks. To see that the average load is a lower
bound, note that if all of the machines could complete their assigned tasks in less than time L, the
maximum load would be less than the average, which is a contradiction. Now suppose machine m;
has the maximum runtime ¢y, and let job j be the last job that was assigned to m;. At the time
job j was assigned, m; must have had the minimum load (call it L;), since list scheduling assigns
each job to the least loaded machine. Thus,

L; < average load when j assigned

< final average load L,

since the average load can only increase. Assigning job j to m; added at most p to L;, which implies
that

< Li+p

< L+p

< 20PT(I) (L and p are lower bounds for OPT(I)).

Cmax

The solution returned by list scheduling is c¢pax, and thus list scheduling is a 2-approximation
algorithm for Parallel Machine Scheduling. B

It is possible to show that by modifying list scheduling to assign the jobs in decreasing order of
processing time, we obtain a 4/3-approximation algorithm. Further, note that list scheduling is an
online algorithm. Newer online algorithms are able to achieve an « of about 1.8.

12.5 Polynomial Approximation Schemes

The obvious question to now ask is how good an « we can obtain.

Definition 10 A polynomial approximation scheme (PAS) is a set of algorithms {A.} for
which each A¢ is a polynomial-time (1 + €)-approzimation algorithm.

Thus, given any ¢ > 0, a PAS provides an algorithm that achieves a (1 + ¢)-approximation. How do
we devise a PAS? The most common method used is k-enumeration.

Definition 11 An approzimation algorithm using k-enumeration finds an optimal solution for the
k most important elements in the problem and then uses an approrimate polynomial-time method to
solve the remainder of the problem.

For example, an approximation algorithm which uses k-enumeration to solve Parallel Machine
Scheduling is as follows:

Lecture 12: October 20, 2003 12-7

1. Enumerate all possible assignments of the k largest jobs.
2. For each of these partial assignments, list schedule the remaining jobs.

3. Return as the solution the assignment with the minimum load.

Note that in enumerating all possible assignments of the k largest jobs, the algorithm will always
find the optimal assignment for these jobs. The following claim demonstrates that this algorithm
provides us with a PAS.

Claim 4 For any fized m, k-enumeration yields a polynomial approximation scheme for Parallel
Machine Scheduling.

Proof: As in the proof of Claim 3, let us consider the machine m; with maximum runtime ¢pa, and
the last job j that m; was assigned. If this job is not among the k largest, it was assigned during
list scheduling, at which point there were at least k larger jobs which had already been scheduled.
Thus, when job j was assigned, the average load (call it Lagsignea) must have been at least kp;/m,
which implies that

Pj < mLas]:igned
mL
< —.
- k

Since cmax is the sum of p; and the load on m; before job j was assigned (which was shown in the
proof of Claim 3 to be at most L), we have

Cmax < L + pj

m
< (1+)L
<

(1+ %)OPT(I).
Given an € > 0, if we let k equal m/e,
Cmax < (1 +€)OPT(I).

This bound on ¢pax also holds if job j is among the £k largest. In this case, job j is scheduled
optimally, and ¢ax thus equals OPT(I). Finally, to determine the running time of the algorithm,
note that because each of the k largest jobs can be assigned to any of the m machines, there are
mk = m™/¢ possible assignments of these jobs. Since the list scheduling performed for each of these
assignments takes O(n) time, the total running time is O(nm™/¢), which is polynomial because m is
fixed. Thus, given an € > 0, the algorithm is a (1 + €)-approximation, and so we have a polynomial

approximation scheme. H

Obviously, we would prefer an approximation algorithm for which m does not have to be fixed. As a
first step towards achieving this goal, let us reconsider Parallel Machine Scheduling when there are
only k possible sizes (or types) of jobs, where k is bounded by a constant. In this case, it is possible
to find an optimum solution in polynomial time using dynamic programming. Note that each set of
jobs can be described by its “profile,” the number of each type of job, and the number of possible

Lecture 12: October 20, 2003 12-8

profiles is at most n*, which is polynomial in the input size. The dynamic program computes the
function M (ay,as,...,ax), the minimum number of machines needed to complete the a; type-i jobs
in some fixed time 7". After enumerating the set X of all profiles which can be completed by a single
machine in time 7' and using X to initialize the appropriate entries in the table, the remaining
entries are computed using

M(ay,a9,...,ar) =1+ min M(ay — x1,a2 — T2, ..., 0 — Tg)-
(z1,22,...,xk)EX

Thus, the minimum number of machines required to complete a profile y is found by exhaustively
removing all possible single-machine profiles from y and looking up the minimum number of machines
required to complete the rest of y. Finally, to determine the optimum time required to complete all
of the jobs, the dynamic program can be used as a “subroutine” in a binary search over the values
of T'.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

