
6.854 Advanced Algorithms 

Lecture 1: September 7, 2005 Lecturer: David Karger 
Scribes: David G. Andersen, Ioana Dumitriu, John Dunagan, Akshay Patil (2003) 

Fibonaccci Heaps 

1.1 Motivation and Background 

Priority queues are a classic topic in theoretical computer science. As we shall see, Fibonacci 
Heaps provide a fast and elegant solution. The search for a fast priority queue implementation is 
motivated primarily by two network optimization algorithms: Shortest Path and Minimum Spanning 
Tree (MST). 

1.1.1 Shortest Path and Minimum Spanning Trees 

Given a graph G(V, E) with vertices V and edges E and a length function l : E → �+ . We define 
the Shortest Path and MST problems to be, respectively: 

shortest path. For a fixed source s ∈ V , find the shortest path to all vertices v ∈ V 

minimum spanning tree (MST). Find the minimum length set of edges F ⊂ E such that F 
connects all of V . 

Note that the MST problem is the same as the Shortest Path problem, except that the source is 
not fixed. Unsurprisingly, these two problems are solved by very similar algorithms, Prim’s for MST 
and Djikstra’s for Shortest Path. The algorithm is: 

1. Maintain a priority queue on the vertices 

2. Put s in the queue, where s is the start vertex (Shortest Path) or any vertex (MST). Give s a 
key of 0. 

3.	 Repeatedly delete the minimum-key vertex v from the queue and mark it “scanned”


For each neighbor w of v:


If w is not in the queue and not scanned, add it with key:


•	 Shortest Path: key(v) +  length(v → w) 

•	 MST: length(v → w) 

If, on the other hand, w is in the queue already, then decrease its key to the minimum of the 
value calculated above and w’s current key. 
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1.1.2 Heaps 

The classical answer to the problem of maintaining a priority queue on the vertices is to use a binary 
heap, often just called a heap. Heaps are commonly used because they have good bounds on the 
time required for the following operations: 

insert O(log n) 
delete-min O(log n) 
decrease-key O(log n) 

If a graph has n vertices and m edges, then running either Prim’s or Djikstra’s algorithms will 
require O(n log n) time for inserts and deletes. However, in the worst case, we will also perform m 
decrease-keys, because we may have to perform a key update every time we come across a new edge. 
This will take O(m log n) time. Since the graph is connected, m ≥ n, and the overall time bound is 
given by O(m log n). 

Since m ≥ n, it would be nice to have cheaper key decreases. A simple way to do this is to use 
d-heaps. 

1.1.3 d-Heaps 

d-heaps make key reductions cheaper at the expense of more costly deletions. This trade off is 
accomplished by replacing the binary heap with a d-ary heap—the branching factor (the maximum 
number of children for any node) is changed from 2 to d. The depth of the tree then becomes logd(n). 
However, delete-min operations must now traverse all of the children in a node, so their cost goes up 
to d logd(n). Thus, the running time of the algorithm becomes O(nd logd(n)+  m logd(n)). Choosing 
the optimal d = m/n to balance the two terms, we obtain a total running time of O(m logm/n n). 

When m = n2, this is  O(m), and when m = n, this is  O(n log n). This seems pretty good, but it 
turns out we can do much better. 

1.1.4 Amortized Analysis 

Amortized analysis is a technique for bounding the running time of an algorithm. Often we analyse an 
algorithm by analyzing the individual operations that the algorithm performs and then multiplying 
the total number of operations by the time required to perform an operation. However, it is often the 
case that an algorithm will on occasion perform a very expensive operation, but most of the time the 
operations are cheap. Amortized analysis is the name given to the technique of analyzing not just 
the worst case running time of an operation but the average case running time of an operation. This 
will allow us to balance the expensive-but-rare operations against their cheap-and-frequent peers. 

There are several methods for performing amortized analysis; for a good treatment, see Introduction 
to Algorithms by Cormen, Leiserson, and Rivest. The method of amortized analysis used to analyze 
Fibonacci heaps is the potential method: 

• Measure some aspect of the data structure using a potential function. Often this aspect of 
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the data structure corresponds to what we intuitively think of as the complexity of the data 
structure or the amount by which it is out of kilter or in a bad arrangement. 

•	 If operations are only expensive when the data structure is complicated, and expensive op-
erations can also clean up (“uncomplexify”) the data structure, and it takes many cheap 
operations to noticeably increase the complexity of the data structure, then we can amortize 
the cost of the expensive operations over the cost of the many cheap operations to obtain a 
low average cost. 

Therefore, to design an efficient algorithm, we want to force the user to perform many operations to 
make the data structure complicated, so that the work doing the expensive operation and cleaning 
up the data structure is amortized over those many operations. 

We compute the potential of the data structure by using a potential function Φ that maps the data 
structure (DS) to a real number Φ(DS). Once we have defined Φ, we calculate the cost of the ith 

operation by: 

costamortized(operationi) =  costactual (operationi) + Φ(DSi) − Φ(DSi−1) 

where DSi refers to the state of the data structure after the ith operation. The sum of the amortized 
costs is then  

costactual (operationi) + Φfinal − Φinitial 

. 

If we can prove that Φfinal  ≥ Φinitial, then we’ve shown that the amortized costs bound the real 
costs, that is, costamortized ≥ costactual . Then we can just analyze the amortized costs and 
show that this isn’t too much, knowing that our analysis is useful. Most of the time it is obvious 
that Φfinal  ≥ Φinitial and the real work is in coming up with a good potential function. 

1.2 Fibonacci Heaps 

The Fibonacci heap data structure invented by Fredman and Tarjan in 1984 gives a very efficient 
implementation of the priority queues. Since the goal is to find a way to minimize the number of 
operations needed to compute the MST or SP, the kind of operations that we are interested in are 
insert, decrease-key, merge, and  delete-min. (We haven’t covered why merge is a useful operation 
yet, but it will become clear.) The method to achieve this minimization goal is laziness – “do work 
only when you must, and then use it to simplify the structure as much as possible so 
that your future work is easy”. This way, the user is forced to do many cheap operations in 
order to make the data structure complicated. 

Fibonacci heaps make use of heap-ordered trees. A heap-ordered tree is one that maintains the heap 
property, that  is,  where  key(parent) ≤ key(child) for all nodes in the tree. 

A Fibonacci heap H is a collection of heap-ordered trees that have the following properties: 
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1. The roots of these trees are kept in a doubly-linked list (the “root list” of H); 

2. The root of each tree contains the minimum element in that tree (this follows from being a 
heap-ordered tree); 

3. We access the heap by a pointer to the tree root with the overall minimum key; 

4. For each node x, we keep track of the rank (also known as the order or degree) of  x, which  
is just the number of children x has; we also keep track of the mark of x, which is a Boolean 
value whose role will be explained later. 

For each node, we have at most four pointers that respectively point to the node’s parent, to one of 
its children, and to two of its siblings. The sibling pointers are arranged in a doubly-linked list (the 
“child list” of the parent node). Of course, we haven’t described how the operations on Fibonacci 
heaps are implemented, and their implementation will add some additional properties to H . Here  
are some elementary operations used in maintaining Fibonacci heaps. 

1.2.1 Inserting, merging, cutting, and marking. 

Inserting a node x. We create a new tree containing only x and insert it into the root list of H ; 
this is clearly an O(1) operation. 

Merging two trees. Let x and y be the roots of the two trees we want to merge; then if the key 
in x is no less than the key in y, we  make  x the child of y; otherwise,  we make  y the child of x. We  
update the appropriate node’s rank and the appropriate child list; this takes O(1) operations. 

Cutting a node. If x is a root in H , we are done. If x is not a root in H , we  remove  x from the 
child list of its parent, and insert it into the root list of H , updating the appropriate variables (the 
rank of the parent of x is decremented, etc.). Again, this takes O(1) operations. (We assume that 
when we want to find a node, we have a pointer hanging around that accesses it directly, so actually 
finding the node takes O(1) time.) 

Marking. We say that x is marked if its mark is set to “true”, and that it is unmarked if its mark 
is set to “false”. A root is always unmarked. We mark x if it is not a root and it loses a child (i.e., 
one of its children is cut and put into the root-list). We unmark x whenever it becomes a root. We 
will make sure later that no marked node loses another child before it itself is cut (and reverted 
thereby to unmarked status). 

1.2.2 Decreasing keys and Deleting mins 

At first, decrease-key does not appear to be any different than merge or insert ; just find the node 
and cut it off from its parent, then insert the node into the root list with a new key. This requires 
removing it from its parent’s child list, adding it to the root list, updating the parent’s rank, and (if 
necessary) the pointer to the root of smallest key. This takes O(1) operations. 
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The delete-min operation works in the same way as decrease-key: Our pointer into the Fibonacci 
heap is a pointer to the minimum keyed node, so we can find it in one step. We remove this root of 
smallest key, add its children to the root-list, and scan through the linked list of all the root nodes to 
find the new root of minimum key. Therefore, the cost of a delete-min operation is O(# of children ) 
of the root of minimum key plus O(# of root nodes); in order to make this sum as small as possible, 
we have to add a few bells and whistles to the data structure. 

1.2.3 Population Control for Roots 

We want to make sure that every node has a small number of children. This can be done by ensuring 
that the total number of descendants of any node is exponential in the number of its children. In 
the absence of any “cutting” operations on the nodes, one way to do this is by only merging trees 
that have the same number of children (i.e, the same rank). It is relatively easy to see that if we 
only merge trees that have the same rank, the total number of descendants (counting onself as a 

descendant) is always (2# of children). The resulting structure is called a binomial tree because the 
number of descendants at distance k from the root in a tree of size n is exactly n

k . Binomial heaps 
preceded Fibonacci heaps and were part of the inspiration for them. We now present Fibonacci 
heaps in full detail. 

1.2.4 Actual Algorithm for Fibonacci Heaps 

•	 Maintain a list of heap-ordered trees. 

•	 insert : add a degree 0 tree to the list. 

•	 delete-min: We can find the node we wish to delete immediately since our handle to the entire 
data structure is a pointer to the root with minimum key. Remove the smallest root, and add 
its children to the list of roots. Scan the roots to find the next minimum. Then consolidate all 
the trees (merging trees of equal rank) until there is ≤ 1 of each rank. (Assuming that we have 
achieved the property that the number of descendants is exponential in the number of children 
for any node, as we did in the binomial trees, no node has rank > c  log n for some constant c. 
Thus consolidation leaves us with O(log n) roots.) The consolidation is performed by allocating 
buckets of sizes up to the maximum possible rank for any root node, which we just showed to 
be O(log n). We put each node into the appropriate bucket, at cost O(log n) +  O(# of roots). 
Then we march through the buckets, starting at the smallest one, and consolidate everything 
possible. This again incures cost O(log n) +  O(# of roots). 

•	 decrease-key: cut the node, change its key, and insert it into the root list as before, Additionally, 
if the parent of the node was unmarked, mark it. If the parent of the node was marked, cut it 
off also. Recursively do this until we get up to an unmarked node. Mark it. 

1.2.5 Actual Analysis for Fibonacci Heaps 

Define Φ(DS) =  (k· # of  roots  in  DS + 2  · # marked bits in DS). Note that insert and delete-min 
do not ever cause nodes to be marked - we can analyze their behaviour without reference to marked 
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and unmarked bits. The parameter k is a constant that we will conveniently specify later. We now 
analyze the costs of the operations in terms of their amortized costs (defined to be the real costs 
plus the changes in the potential function). 

•	 insert : the amortized cost is O(1). O(1) actual work plus k * O(1) change in potential for 
adding a new root. O(1) + kO(1) = O(1) total amortized cost. 

•	 delete-min: for every node that we put into the root list (the children of the node we have 
deleted), plus every node that is already in the root list, we do constant work putting that 
node into a bucket corresponding to its rank and constant work whenever we merge the node. 
Our real costs are putting the roots into buckets (O(#roots)), walking through the buckets 
(O(log n)), and doing the consolidating tree merges (O(#roots)). On the other hand, our 
change in potential is k∗(log n−#roots) (since there are at most log n roots after consolidation). 
Thus, total amortized cost is O(#roots) +  O(log  n) +  k ∗ (log n − #roots) =  O(log  n). 

•	 decrease-key: The real cost is O(1) for the cut, key decrease and re-insertion. This also 
increases the potential function by O(1) since we are adding a root to the root list, and maybe 
by another 2 since we may mark a node. The only problematic issue is the possibility of a 
“cascading cut” - a cascading cut is the name we give to a cut that causes the node above it 
to cut because it was already marked, which causes the ndoe above it be cut since it too was 
alrady marked, etc. This can increase the actual cost of the operation to (# of nodes already 
marked). Luckily, we can pay for this with the potential function! Every cost we incur from 
having to update pointers due to a marked node that was cut is offset by the decrease in the 
potential function when that previously marked node is now left unmarked in the root list. 
Thus the amortized cost for this operation is just O(1). 

The only thing left to prove is that for every node in every tree in our Fibonacci heap, the number 
of descendants of that node is exponential in the number of children of that node, and that this is 
true even in the presence of the “weird” cut rule for marked bits. We must prove this in order to 
substantiate our earlier assertion that all nodes have degree ≤ log n. 

1.2.6 The trees are big 

Consider the children of some node x in the order in which they were added to x. 

Lemma : The  ith child to be added to x has rank at least i − 2. 

Proof : Let  y be the ith child to be added to x. When it was added, y had at least i − 1 children. 
This is true because we can currently see i − 1 children that were added earlier, so they were there 
at  the time of  the  y’s addition. This means that y had at least i − 1 children at the time of it’s 
merger, because we only merge equal ranked nodes. Since a node could not lose more than one child 
without being cut itself, it must be that y has at least i − 2 children (i− 1 from when it was added, 
and no more than a potential 1 subsequently lost). 

Note that if we had been working with a binomial tree, the appropriate lemma would have been 
rank = i − 1 not  ≥ i − 2. 
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Let Sk be the minimum number of descendants of a node with k children. We have S0 = 1, S1 = 2  
and, 

k−2 

Sk ≥ Si 

i=0 

This recurrence is solved by Sk ≥ Fk+2, the  (k+2)th Fibonacci number. Ask anyone on the street and 
that person will tell you that the Fibonacci numbers grow exponentially; we have proved Sk ≥ 1.5k , 
completing our analysis of Fibonacci heaps. 

1.2.7 Utility 

Only recently have problem sizes increased to the point where Fibonacci heaps are beginning to 
appear in practice. Further study of this issue might make an interesting term project; see David 
Karger if you’re curious. 

Fibonacci Heaps allow us to improve the running time in Prim’s and Djikstra’s algorithms. A more 
thorough analysis of this will be presented in the next class. 
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