
6.854 Advanced Algorithms 

Lecture 1: 10/13/2004 Lecturer: David Karger 
Scribes: Jay Kumar Sundararajan 

Duality 

This lecture covers weak and strong duality, and also explains the rules for finding the dual 
of a linear program, with an example. Before we move on to duality, we shall first see some 
general facts about the location of the optima of a linear program. 

1.1 Structure of LP solutions 

1.1.1 Some intuition in two dimensions 

Consider a linear program -

Maximize yT b 
subject to yT A ≤ c 

The feasible region of this LP is in general, a convex polyhedron. Visualize it as a polygon in 
2 dimensions, for simplicity. Now, maximizing yT b is the same as maximizing the projection 
of the vector y in the direction represented by vector b. For whichever direction b we choose, 
the point y that maximizes yT b cannot lie strictly in the interior of the feasible region. The 
reason is that, from an interior point, we can move further in any direction, and still be 
feasible. In particular, by moving along b, we can get to a point with a larger projection 
along b. This intuition suggests that the optimal solution of an LP will never lie in the 
interior of the feasible region, but only on the boundaries. In fact, we can say more. We 
can show that for any LP, the optimal solutions are always at the “corners” of the feasible 
region polyhedron. This notion is formalized in the next subsection. 

1.1.2 Some definitions 

Definition 1 (Vertex of a Polyhedron) A point in the polyhedron which is uniquely op-
timal for some linear objective, is called a vertex of the polyhedron. 

Definition 2 (Extreme Point of a Polyhedron) A point in the polyhedron which is not 
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a convex combination of two other points in the polyhedron is called an extreme point of the 
polyhedron. 

Definition 3 (Tightness) A constraint of the form aT x ≤ b, aT x = b or aT x ≥ b in a 
linear program is said to be tight for a certain point y, if  aT y = b. 

Definition 4 (Basic Solution) For an n-dimensional linear program, a point is called a 
basic solution, if n linearly independent constraints are tight for that point. 

Definition 5 (Basic Feasible Solution) A point is a basic feasible solution, iff it is a 
basic solution that is also feasible. 

Note: If x is a basic feasible solution, then it is in fact, the unique point that is tight for all 
its tight constraints. This is because, there can be only one solution for a set of n linearly 
independent equalities, in n-dimensional space. 

Theorem 1 For a polyhedron P and a point x ∈ P , the following are equivalent: 

1.	 x is a basic feasible solution 

2.	 x is a vertex of P 

3.	 x is an extreme point of P 

Proof: Assume the LP is in the canonical form. 

1.	 Vertex⇒ Extreme Point 
Let v be a vertex. Then for some objective function c, cT x is uniquely minimized at 
v. Assume v is not an extreme point. Then, v can be written as v = λy + (1  − λ)z 
for some y, z neither of which is v, and  some  λ satisfying 0 ≤ λ ≤ 1. 

TNow, cT v = cT [λy + (1  − λ)z] =  λcT y + (1  − λ)c z 

This means cT y ≤ cT v ≤ cT z. But,  since  v is a minimum point, cT v ≤ cT y and 
cT v ≤ cT z. Thus,  cT y = cT v = cT z. This is a contradiction, since v is the unique 
point at which  cT x is minimized. 

2.	 Extreme Point ⇒ Basic Feasible Solution 
Let x be an extreme point. By definition, it lies in the polyhedron and is therefore 
feasible. Assume x is not a basic solution. Let T be the set of rows of the constraint 
matrix A for which the constraints are tight at x. Let  ai (a 1 × n vector) denote the 
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ith	 row of A. For  ai /∈ T , ai.x > bi. Since  x is not a basic solution, T does not span 
Rn . So, there is a vector d �= 0  such  that  ai.d = 0  ∀ai ∈ T . 

Consider y = x + εd and z = x − εd. If  ai ∈ T , then  ai.y = ai.z = bi. If  ai /∈ T , 
then, by choosing a sufficiently small ε: 0  < ε  ≤ mini/

ai.x−bi , we can ensure that ∈T |ai.d|
ai.y ≥ bi and ai.z ≥ bi. Thus  y and z are feasible. Since x = y/2 +  z/2, x cannot be 
an extreme point – a contradiction. 

3.	 Basic Feasible Solution ⇒ Vertex 
Let x be a basic feasible solution. Let T = {i | ai.x = bi}. Consider the objective as 
minimizing c.y for c = i∈T ai. Then, c.x = i∈T (ai.x) =  i∈T bi. 
For any x′ ∈ P, c.x = i∈T (ai.x

′) ≥ i∈T bi with equality only if ai.x = bi ∀i ∈ T . 
This implies that x = x and that x uniquely minimizes the objective c.y. 

This proves that vertex, extreme point and basic feasible solution are equivalent terms. 

Theorem 2 Any bounded LP in standard form has an optimum at a basic feasible solution. 

Proof: Consider an optimal x which is not a basic feasible solution. Being optimal, it is 
feasible, hence it is not basic. As in the previous proof, let T be the set of rows of the 
constraint matrix A for which the constraints are tight at x. Since  x is not a basic solution, 
T does not span Rn . So, there is a vector d �= 0  such  that  ai.d = 0  ∀ai ∈ T . For  a  scalar  ε 
with sufficiently small absolute value, y = x + εd is feasible, and represents a line containing 
x in the direction d. The objective function at y is cT x + εcTd. Since  x is optimal, cT d = 0,  
as otherwise, an ε of the opposite sign can reduce the objective. This means, all feasible 
points on this line are optimal. One of the directions of motion on this line will reduce some 
xi. Keep going till some xi reduces to 0. This results in one more tight constraint than 
before. 

This technique can be repeated, till the solution becomes basic. 

Thus, we can convert any feasible solution to a basic feasible solution of no worse value. In 
fact, this proof gives an algorithm for solving a linear program: evaluate the objective at 
all basic feasible solutions, and take the best one. Suppose there are m constraints and n 
variables. Since a set of n constraints defines a basic feasible solution, there can be upto 
m basic feasible solutions. For each set of n constraints, a linear system of inequalities n 

has to be solved, which by Gaussian elimination, takes O(n3) time. This is in general an 
exponential complexity algorithm in n. Note that the output size is polynomial in n, since  
the optimal solution is just the solution of a system of linear equalities. 
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1.2 The dual of a linear program 

Given an LP in the standard form: 

Minimize c.x 
subject to: Ax = b; x ≥ 0 

We  call  the above  LP  the primal LP.  The decision  version  of  the  problem is:  Is  the optimum  
c.x ≤ δ ? This problem is in NP  , because, if we find a feasible solution with optimum 
value ≤ δ, we can verify that it satisfies these requirements, in polynomial time. A more 
interesting question is whether this problem is in co-NP. We need to find an easily verifiable 
proof for the fact that there is no x which satisfies c.x < δ. To do this, we require the concept 
of duality. 

1.2.1 Weak Duality 

We seek a lower bound on the optimum. Consider a vector y (treat is as a row vector here). 
For any feasible x, yAx = yb holds. If we require that yA ≤ c, then  yb = yAx ≤ cx. Thus,  
yb is a lower bound on cx, and in particular on the optimum cx. To get the best lower 
bound, we need to maximize yb. This new linear program: 

Maximize yb 
subject to: yA ≤ c 

is called the dual linear program. (Note: The dual of a dual program is the primal). Thus 
primal optimum is lower bounded by the dual optimum. This is called weak duality. 

Theorem 3 (Weak Duality) Consider the LP z = Min{c.x | Ax = b, x ≥ 0} and its 
dual w = max{y.b | yA ≤ c}. Then  z ≥ w. 

Corollary 1 If the primal is feasible and unbounded, then the dual is infeasible. 

1.3 Strong Duality 

In fact, if either the primal or the dual is feasible, then the two optima are equal to each 
other. This is known as strong duality. In this section, we first present an intuitive expla-
nation of the theorem, using a gravitational model. The formal proof follows that. 
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1.3.1 A gravitational model 

Consider the LP min{y.b|yA ≥ c}. We represent this feasible region as a hollow polytope, 
with the vector b pointing “upwards”. If a ball is dropped into the polytope, it will settle 
down at the lowest point, which is the optimum of the above LP. Note that any minimum 
is a global minimum, since the feasible region of an LP is a convex polyhedron. At the 
equilibrium point, there is a balance of forces – the gravitational force and the normal 
reaction of the floors (constraints). Let xi represent the amount of force exerted by the ith 

constraint. The direction of this force is given by the ith column of A. Then the total force 
exerted by all the constraints Ax balances the gravity b: Ax = b. 

The physical world also gives the constraints that x ≥ 0, since the floors’ force is always 
outwards. Only those floors which the ball touches exert a force. This means that for the 
constraints which are not tight, the corresponding xi’s are zero: xi = 0  if  yAi > ci. This  
can be summarized as 

(ci − yAi)xi = 0  

. This means x and y satisfy: 

y.b = yAixi = cixi = c.x 

But weak duality says that yb ≤ cx, for every x and y. Hence the x and y are the optimal 
solutions of their respective LP’s. This implies strong duality – the optima of the primal 
and dual are equal. 

1.3.2 A formal proof 

Theorem 4 (Strong Duality) Consider w = min{y.b | yA ≥ c} and z = min{c.x | Ax = 
b, x ≥ 0}. Then  z = w. 

Proof: Consider the LP min{y.b|yA ≥ c}. Consider the optimal solution y ∗ . Without loss 
∗of generality, ignore all the constraints that are loose for y . If there are any redundant 

constraints, drop them. Clearly, these changes cannot alter the optimal solution. Dropping 
these constraints leads to a new A with fewer columns and a new shorter c. We will prove 
that the dual of the new LP has an optimum equal in value to the primal. This dual optimal 
solution can be extended to an optimal solution of the dual of the original LP, by filling in 
zeros at places corresponding to the dropped constraints. The point is that we do not need 
those constraints to come up with the dual optimal solution. 

After dropping those constraints, at most n tight constraints remain (where n is the length 
of the vector y). Since we have removed all redundancy, these constraints are linearly 
independent. In terms of the new A and c,  we have new  constraints  yA = c. y ∗ is still the 
optimum. 
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Claim: There exists an x, such that Ax = b.

Proof: Assume such an x does not exist, i.e. Ax = b is infeasible. Then “duality” for

linear equalities implies that there exists a z such that zA = 0, but zb �
= 0. Without 

∗loss of generality, assume z.b < 0 (otherwise, just negate the z). Now consider (y + z). 
∗ ∗ ∗ ∗A(y + z) =  Ay + Az = Ay∗ . Hence, it is feasible. (y + z).b = y .b + z.b < y ∗.b, which  

is better than the assumed optimum – a contradiction. So, there is an x such that Ax = b. 
∗Let this be called x . 

∗ ∗Claim: y .b = c.x . 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗Proof: y .b = y .(Ax ) = (y A).x = c.x (since Ax = b and y A = c) 

Claim: x ∗ ≥ 0 
∗ ′Proof: Assume the contrary. Then, for some i, xi < 0. Let c = c + ei, where  ei is all 

0’s  except at the  ith position, where it has a 1. Since A has full rank, yA ≥ c has a 
solution, say y . Besides, since c′ ≥ c, y′ is feasible for the original constraints yA ≥ c. But,  

∗ ∗ ∗ ′y′.b = y′Ax∗ = c′x < cx  = y b (since ci is now higher and xi < 0). This means y′ gives a 
better objective value than the optimal solution – a contradiction. Hence, x ∗ ≥ 0. 

∗Thus, there is an x which is feasible in the dual, and whose objective is equal to the primal 
∗optimum. Hence, x must be the dual optimal solution, using weak duality. Thus, the 

optima of primal and dual are equal. 

Corollary 2 Checking for feasibility of a linear system of inequalities and optimizing an 
LP are equally hard. 

Proof: Optimizer → Feasibility checker 
Use the optimizer to optimize any arbitrary function with the linear system of inequalities 
as the constraints. This will automatically check for feasibility, since every optimal solution 
is feasible. 

Feasibility checker → Optimizer 
We construct a reduction from the problem of finding an optimal solution of LP1 to the 
problem of finding a feasible solution of LP2. LP1 is min{c.x | Ax = b, x ≥ 0}. Consider  
LP2 = min{0.x|Ax = b, x ≥ 0, yA  ≤ c, c.x = b.y}. Any feasible solution of LP2 gives an 
optimal solution of LP1 due to the strong duality theorem. Finding an optimal solution is 
thus no harder than finding a feasible solution. 
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1.4 Rules for duals 

Usually the primal is constructed as a minimization problem and hence the dual becomes 
a maximization problem. For the standard form, the primal is given by: 

T z = min  (c x) 
Ax ≥ b 

x ≥ 0 

while the dual is given by: 

w = max  (bT y) 
AT y ≤ c 

y ≥ 0 

For a mixed form of the primal, the following describes the dual: 

Primal: 

z = min  c1x1 + c2x2 + c3x3 

A11x1 + A12x2 + A13x3 = b1


A21x1 + A22x2 + A23x3 ≥ b2


A31x1 + A32x2 + A33x3 ≤ b3


x1 ≥ 0 

x2 ≤ 0 

x3 UIS 

(UIS = unrestricted in sign) 

Dual: 

w = max  y1b1 + y2b2 + y3b3 

y1A11 + y2A21 + y3A31 ≤ c1


y1A12 + y2A22 + y3A32 ≥ c2


y1A13 + y2A23 + y3A33 = c3
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y1 UIS 

y2 ≥ 0 

y3 ≤ 0 

These rules are summarized in the following table. 

PRIMAL Minimize Maximize DUAL 
Constraints ≥ bi ≥ 0 Variables 

≤ bi ≤ 0 
= bi Free 

Variables ≥ 0 
≥ 0 
Free 

≤ cj 

≤ cj 

= cj 

Constraints 

Each variable in the primal corresponds to a constraint in the dual, and vice versa. For a 
maximization, an upper bound constraint is a “natural” constraint, while for a minimization, 
a lower bound constraint is natural. If the constraint is in the natural direction, then the 
corresponding dual variable is non-negative. 

An interesting observation is that, the tighter the primal gets, the looser the dual gets. 
For instance, an equality constraint in the primal leads to an unrestricted variable in the 
dual. Adding more constraints in the primal leads to more variables in the dual, hence more 
flexibility. 

1.5 Shortest Path – an example 

Consider the problem of finding the shortest path in a graph. Given a graph G, we wish  
to find the shortest path from a specified source node, to all other nodes. This can be 
formulated as a linear program: 

w = max  (dt − ds) 

s.t. dj − di ≤ cij , ∀i, j 

In this formulation, di represents the distance of node i from the source node s. The  
cij constraints are essentially the triangle inequalities – the distance from the source to a 
node i should not be more than the distance to some node j plus the distance from j to 
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i. Intuitively, one can imagine stretching the network physically, to increase the source-
destination distance. When we cannot pull any further without breaking an edge, we have 
found a shortest path. 

The dual to this program is found thus. The constraint matrix in the primal has a row for 
every pair of nodes (i, j), and a column for every node. The row corresponding to (i, j) has  
a +1  in the  ith column and a -1 in the jth column, and zeros elsewhere. 

1. Using this, we conclude that the dual has a variable for each pair (i, j), say yij. 

2. It has a constraint for each node i. The constraint has a coefficient of +1 for each edge 
entering node i and a -1 for each edge leaving i. The right side for the constraints 
are -1 for the node s constraint, 1 for the node t constraint, and 0 for others, based 
on the objective function in the primal. Moreover, all the constraints are equality 
constraints, since the di variables  were unrestricted in sign in the  primal.  

3. The dual variables will have to have a non-negativity constraint as well, since the 
constraints in the primal were “natural” (upper bounds for a maximization). 

4. The objective is to minimize i,j cijyij, since the right side of the primal constraints 
are cij . 

Thus the dual is: 

z = min  cijyij 

i,j 

(yjs − ysj) =  −1 
j 

(yjt  − ytj) = 1  
j 

(yji  − yij) = 0, ∀i �= s, t 
j 

yij ≥ 0, ∀i, j 

This is precisely the linear program to solve the minimum cost unit flow, in a gross flow 
formulation. The constraints correspond to the flow conservation at all nodes except at the 
source and sink. The value of the flow is forced to be 1. Intuitively, this says that we can 
use minimum cost unit flow algorithms to find the shortest path in a network. 

Duality is a very useful concept, especially because it helps to view the optimization problem 
on hand from a different perspective, which might be easier to handle. 
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