
� 

Massachusetts Institute of Technology Handout 4 
6.854J/18.415J: Advanced Algorithms Wednesday, September 14, 2005 
David Karger 

Problem Set 1 Solutions 

Problem 1. Suppose we have a Fibonacci heap that is a single chain of k − 1 nodes. The 
following operations make a chain of length k. Let min be the current minimum of the 
Fibonacci heap: 

1. Insert items x1 < x2 < x3 < min in an arbitrary order. 

2. Delete the minimum, which is x1. 

3. Decrease the key of x3 to be −∞, i.e. the minimum. 

4. Delete the minimum, which is x3 = −∞. 

The second step is the key one: it removes x1, joins x2 and x3 as a chain, and then joins the 
original chain with the chain containing x2 and x3 (obtaining a tree where x2 is the root, 
with x3 and the original k− 1­nodes chain as children). The third step just removes x3 from 
the chain, and the last step completely deletes it. The result is that x2 is now the root of 
the original chain, so we have constructed a chain of length k. For the base case, just insert 
a single node. 

Thus, we obtain k­nodes chain with O(k) operations; therefore, we can construct Ω(n)­nodes 
chain with n operations. 

Note that decrease­key operation was essential for obtaining Ω(n) depth: without it, you 
can only obtain binomial heaps (which have logarithmic depth). 

Problem 2. For each node, we store a counter of how many of its children were removed 
(call counti the counter of node i). To analyze the running time of the operations, we use 

2 countiithe following potential function: φ = #roots + 
k−1 

. 

The insert operation has O(1) amortized cost. Note that φ increases by 1 unit as in the 
case of the original Fibonacci heap. Thus, the cost of insert does not change. 

The decrease­key operation will have a lower amortized cost. Suppose there are c cascading 
cuts. Then, the amortized cost of decrease­key is 1 + c + Δφ, with Δφ = +c + −2c(k−1)+2 .

k−1 
2Concluding, the cost of decrease­key is 1 + c + c − 2c + 2 = 1 + . Note that in the 

k−1 k−1

original Fibonacci heaps, this cost was 1 + 2 = 3. 

Conversely, the delete­min operation will have a higher amortized cost. The analysis is the 
same as in the case of the original Fibonacci heaps. Thus, the amortized cost of delete­min 
is bounded by the maximum degree of a heap in our data structure. 
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To analyze the maximum degree, we use arguments similar to those used for the original 
Fibonacci heaps. Let Sm be the minimum number of nodes in a heap with degree m. We 
will try to find a recurrence formula for Sm and then lower bound Sm. 

Consider a node with degree m. Then the degree of its i’s child is at least max{0, i − k}. 
Considering that Sm = m + 1 for m = 0 . . . k − 1, we have that Sm = k + m Si−k fori=k 

mm ≥ k. Next, note that Sm − Sm−1 = Sm−k. The solution for this recurrence is Sm ≥ Ω(λk ), 
where λk is the largest solution to the characteristic equation λk − λk−1 − 1 = 0 (note that in 
the case of k = 2, the largest solution, λ2, is the golden ratio). If M is the highest possible 

degree of a heap, then we have that SM ≤ n, meaning that M ≤ O(logλk 
n) = O( 

logλ2 
n 

).
logλ2 

λk 

Thus, our modification slows down the running time of delete­min by a factor of log λ2 (λklog λk 

is a decreasing function of k). 

Note: a common mistake was to take a potential function that gives suitable amortized 
cost of one operation. Remember that if you use a potential function, you have to check the 
running time of all operations using the same potential function. 

Another common mistake was to use for the analysis the same potential function as was used 
for the original Fibonacci heaps. That function does not give you a lower amortized cost for 
decrease­key (consider the case when there are no cuts). 

Problem 3. (a) We can augment the priority queue P with a linked list l. We 
modify the insert operation so it just puts the element in the linked list l. Now 
we define a consolidate operation that adds the elements of the linked list to the 
priority queue. We do this by creating a new priority queue P � containing only the 
items in the linked list l using make­heap. This takes O(m) time, where m is the 
size of the linked list. We then merge the two queues P and P � in O(log n) time. 
Therefore, the total consolidation time is O(m + log n). We modify delete­min 
to first consolidate, and then call the original delete­min. We modify merge to 
first consolidate each of the augmented priority queues, and then call the original 
merge. 

Consider a set of initially empty augmented priority queues {P �} (that may be 
merged later) on which all operations are performed. The potential function φ� 

is defined as the sum of the size of the lists of each of the priority queues P �. 
Note that inserting in a particular priority queue takes O(1) amortized time. 
Delete­min on any particular priority queue also takes only O(log nh) amortized, 
time, where nh is the size of that priority queue, since the O(mh + log nh) real 
work to consolidate is decreased to amortized O(log nh) by the potential from 
the queue before delete­min was processed. Now, consider the amortized time 
to merge two of the augmented priority queues. We spend amortized time of 
O(log nh) + O(log nh ) to consolidate each one, plus the real work of merging the 
two priority queues which takes O(log nh) time, assuming nh > n�

h. The total 
amortized time, then, is O(log nh) 
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(b)	 The basic idea is to use a heap of heaps (together with a list as in part (a)).

The data structure is composed of several binary heaps P1, . . . Pk and a “master”

binary heap M . The heaps P1, . . . Pk contain the elements of the data struc­

ture. The heap M contains as its elements the heaps P1, . . . Pk, which are keyed

(compared) according to the values of their roots.


To insert an element into the data structure, we just add it to the linked list l. 

Delete­min first does a consolidation (which takes O(m+log n) time, where m is 
the length of l). Then, delete­min retrieves the “smallest” heap Pi from M . The 
root of Pi is the minimum element in the data structure. Remove the minimum 
from Pi (usual heap operation). If Pi is not empty, insert the modified Pi back

into M .


In the consolidation step, we construct a binary heap Pk+1 from l (if l is non­

empty) and empty the list l. This can be done in O(m) using a standard heap 
construction algorithm. To finish the consolidation step, we insert Pk+1 into into 
M . 

To analyze the running time, let the potential function be equal to the length 
of the list l. Then, insert takes O(1). Consolidation takes O(m + log n) real 
time, but O(log n) amortized time (since the length of the list decreases by m). 
Delete­min takes O(log n) time (note that the depth of all heaps, M, P1, . . . Pk is 
always O(log n)). 

Problem 4. Consider the offline algorithm: we process nodes in postorder (i.e., we traverse 
the nodes using DFS, and process a node only after processsing all of its children). When 
we process a node a, we answer queries (a, b), such that b was processed earlier than a by 
doing a find in our union­find data structure D; the “name” of the result is the answer to 
the query. Then we union a with the parent of a, and set the name of the set­representative 
to be the name of the parent. 

The relationship to persistent data structures is as follows. We view the order in which 
we process the nodes as time. Note that changes to the union­find data structure D occur 
exactly at the times the nodes are processed, so that we can think of the data structure as 
changing over time: D1, D2, . . . Dn. Suppose we run the above algorithm, but at each time 
t we process a node, we save the state of Dt . Now, suppose we wish to answer a query of 
the form (a, b). Suppose b was processed after a at time t. Revert to the data structure Dt, 
and do a “find” of a. This would answer the query (a, b). 

The goal, then, is to design a persistent version of the union­find data structure to support 
the following two operations: 

•	 find(x,t): Find the name of x’s component at time t. 

•	 union(w,p,t): Union the component with name w and the component with name p at 
time t. 
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We use the disjoint­forest implementation of the union­find data structure using the union 
by rank heuristic. For each node, the parent pointer will also store the timestamp t at which 
the parent pointer became non­null (note that this occurs exactly once for each node in the 
tree). 

Therefore, to do find(x,t), we walk up the parent pointers until we find a node whose parent 
pointer became non­null at a time later than t. However, we need to find the name of 
this component. To do this, we create a log of the operations done on the union­find data 
structure. The log is an array mapping time­stamps to the names of the components unioned. 
To compute the root node, we can lookup the name of the parent component corresponding 
to the time­stamp of the last edge traversed. Following parent pointers takes O(log n) time 
due to union by rank, so the find operation takes O(log n) time. 

To do a union(w,p,t), we first do a find(w,t) and a find(p,t). Then we do union by rank and 
timestamp the edge added with t. Now we need to update the log: a log entry (w, p) is 
added to the tth element in the log array. It is clear that the union operation takes O(log n) 
time, so the preprocessing time takes O(n log n) time. 


