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Massachusetts Institute of Technology Handout 15 
6.854J/18.415J: Advanced Algorithms Wednesday, October 26, 2005 
David Karger 

Problem Set 8 

Due: Wednesday, November 2, 2005. 

Problem 1. Markov chains. An n×n matrix P is stochastic if all entries are nonnegative 
and every row sums to 1, that is j pij = 1 (so each row can be thought of as taking a 
convex combination). Stochastic matrices are used to represent the transition matrices 
of Markov chains—random walks through a series of states. The term pij represents the 
probability, if you are in a current state i, that your next state will be j (thus the sum to 
one rule). If you have a probability distribution π over your current state, where πi denotes 
the probability you are in state i, then after a transition with probability defined by P , your 
new probability distribution is πP . 

Use duality to prove that for any stochastic matrix P , there is a nonzero vector π ≥ 0 such 
that πP = π. 

The vector π can be normalized to 1, in which case it represents a probability distribution 
that is stationary under the action of the transition matrix—that is, if π is the probability 
distribution on what state you are in before a transition, it is also the probability distribution 
after the transition. This proves that every Markov chain has a stationary probability 
distribution. 

Hint: there is no objective function, so think in terms of feasibility/unboundedness. Also, 
you must somehow express the constraint π > 0 (a strict inequality). Consider the constraint 

πi = 1. 

Problem 2. In a 0­sum 2­player game, Alice has a choice of n so­called pure strategies 
and Bob has a choice of m pure strategies. If Alice picks strategy i and Bob picks strategy 
j, then the payoff is aij, meaning aij dollars are transfered from Alice to Bob. So Bob makes 
money if aij is positive, but Alice makes money if aij is negative. Thus, Alice wants to pick 
a strategy that minimizes the payoff while Bob wants a strategy that maximizes the payoff. 
The matrix A = (aij) is called the payoff matrix. 

It is well known that to play these games well, you need to use a mixed strategy—a random 
choice from among pure strategies. A mixed strategy is just a particular probability distri­
bution over pure strategies: you flip coins and then play the selected pure strategy. If Alice 
has mixed strategy x, meaning he plays strategy i with probability xi, and Bob has mixed 
strategy y, then it is easy to prove that the expected payoff in the resulting game is xAy. 
Alice wants to minimize this expected payoff while Bob wants to maximize it. Our goal is 
to understand what strategies each player should play. 
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We’ll start by making the pessimal assumption for Alice that whichever strategy she picks, 
Bob will play best possible strategy against her. In other words, given Alice’s strategy x, 
Bob will pick a strategy y that achieves maxy xAy. Thus, Alice wants to find a distribution 
x that minimizes maxy xAy. Similarly, Bob wants a y to maximize minx xAy. So we are 
interested in solving the following 2 problems: 

max xAy�min � 
xi=1 yj=1 

max �min xAy 
yj=1 xi=1 

Unfortunately, these are nonlinear programs! 

(a) Show that if Alice’s mixed strategy is known, then Bob has a pure strategy

serving as his best response.


(b)	 Show how to convert each program above into a linear program, and thus find

an optimal strategy for both players in polynomial time.


(c) Give a plausible explanation for the meaning of your linear program (why does

it give the optimum?)


(d)	 Use strong duality (applied to the LP you built in the previous part) to argue

that the above two quantities are equal.


The second statement shows that the strategies x and y, besides being optimal, are in Nash 
Equilibrium: even if each player knows the other’s strategy, there is no point in changing 
strategies. This was proven by Von Neumann and was actually one of the ideas that led to 
the discovery of strong duality. 

Problem 3. You are given a collection of n points in some metric space (i.e., the distances 
between the points satisfy the triangle inequality). Consider the problem of dividing the 
points into k clusters so as to minimize the maximum diameter of (distance between any 
two points in) a cluster. 

(a) Suppose the optimum diameter d is known. Devise a greedy 2­approximation

algorithm. Hint: consider any point and all points within distance d of it.


(b)	 Consider the algorithm that (k times) chooses as a “center” the point at maxi­

mum distance from all previously chosen centers, then assigns each point to the

nearest center. By relating this algorithm to the previous algorithm, show that

you get a 2­approximation.


Problem 4. Consider the problem of scheduling, on one machine, a collection of jobs with 
given processing times pj, due dates dj, and lateness penalties (weights ) wj paid for jobs that 
miss their due dates, so as to minimize the total lateness penalty. (If we let Uj denote the 
indicator variable for job j completing after its due date, we want to minimize wjUj.) 
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(a) Argue that any feasible subset of jobs (that can all together be completed by

their due dates) might as well be scheduled in order of increasing deadline (so it

is sufficient to find a set without worrying about order). Hint: if two adjacent

jobs in the sequence are out of order, swap them.


(b)	 Assuming the lateness penalties are polynomially bounded integers, give a polynomial­
time dynamic program that finds the fastest­completing maximum­weight feasi­
ble subset. 

(c) Give a fully polynomial­time approximation scheme for the original problem of

minimizing lateness penalty with arbitrary lateness penalties.



