
Massachusetts Institute of Technology Handout 24 
6.854J/18.415J: Advanced Algorithms Monday, November 28, 2005 
David Karger 

Problem Set 12 

Due: Wednesday, November 30, 2005 and Monday, December 5 2005. 

Problem 1. Due Wednesday, November 30. On a separate page, turn in a brief (i.e. 
half a page) description of your planned project. If you have formed a group, turn in a single 
submission for the group, listing all members. List references you have found. 

NONCOLLABORATIVE Problem 2. A problem last week found lines (and poly­
gons) contained in a rectangle; here we consider finding lines crossing a rectangle. As 
a starting point, suppose you are given an interval tree data structure. This takes n 
possibly­overlapping intervals on the real line, and builds a size­n data structure that can, 
in O(k + log n) time, output the set of all intervals intersecting with a given query interval 
(you may optionally design this data structure if you wish). Given such a data structure, 
show that you can build a size O(n log n) data structure for the following problem: given n 
vertical and horizontal segments in the plane, and given a query rectangle, output all the 
segments that intersect that query rectangle in O(k + log 2 n) time. 

Problem 3. Suppose you’re implementing a video game in which the player can walk 
around a planar environment made up of walls, and at any time the screen displays only 
the walls that are (partially) visible by the player. More precisely, the player is modeled as 
a single point; the walls are modeled as noncrossing line segments; two points are visible if 
the line segment connecting them does not intersect any walls except at its endpoints; and 
a wall is visible from a point if at least one point on the wall is visible from the point. Give 
an O(n lg n)­time algorithm to compute the set of walls visible from the player. Hint: Use 
a line­sweep algorithm, but instead of sweeping a horizontal line, sweep a half­line around a 
point. 

Problem 4. Consider the problem of finding the smallest (minimum diameter) circle con­
taining some set H of n points in the plane. We will assume that the points are in “general 
position”—no 3 points are colinear, and no 4 points are on the boundary of a common circle. 
This assumption can be achieved by small perturbations in the input. For any set of points 
S in the plane, let O(S) denote the smallest circle containing S. 

1. Show that for any 3 non­colinear points, there is a unique circle having all 3 of those 
points on the circle boundary. This circle (center and radius) can be computed in 
constant time from the points. 



2 Handout 24: Problem Set 12 

2. Show that O(H) contains either 2 or 3 of the input points on its boundary. We will call 
these points the “basis” of the circle (hint, hint) and refer to them as B(H). Deduce a 
simple O(n4)­time algorithm for solving the problem. 

3. Show that if a circle	 C excludes a point of H, then C cannot be the smallest circle 
containing B(H). 

4. Show that if p is not contained in O(S) for some S then p is on the boundary of 
O(S ∪ {p}). 

5. Generalize the above to finding the smallest circumcircle of H that is required to pass 
through a specific set of (one or two) points (assuming it exists).


˜
6. Give an O(n) expected time randomized incremental algorithm for finding O(H). 

OPTIONAL Problem 5. The standard representation of a Voronoi diagram is a graph 
together with, for each vertex of the Voronoi diagram, a cyclic linked list of the incident 
edges in clockwise order around the vertex and, for each input point, a cyclic linked list of 
the vertices and edges around the Voronoi cell of that point. 

(a)	 Show how to reduce the problem of sorting n numbers to the problem of comput­

ing the Voronoi diagram of Θ(n) points. Your reduction should take linear time,

and can use standard arithmetic (+, −, ·, /, √ 

) but cannot use trigonometric

functions (sin, cos, etc.). (This is the real RAM model of computation.)


(b)	 Conclude that computing the Voronoi diagram of n points requires Ω(n lg n) time

in the worst case in the algebraic decision tree model of computation, in which

the computation can branch based only on a binary decision of comparing two

algebraic expressions (expressions involving inputs and +, −, ·, /, √ 

), and the

cost of a computation is the depth of that node in the tree.



