
� 

Massachusetts Institute of Technology Handout 22 
6.854J/18.415J: Advanced Algorithms Wednesday, November 16, 2005 
David Karger 

Problem Set 11 

Due: Wednesday, November 23, 2005. 

NONCOLLABORATIVE Problem 1. Consider the (nonparameterized) vertex cover 
problem: given a graph G, find a minimum­size set of vertices that covers all edges (i.e., every 
edge has at least one endpoint in the vertex cover). Show that vertex cover is fixed­parameter 
tractable with respect to the treewidth parameter. 

Problem 2. Here we will generalize from the Double Coverage algorithm for k­server on 
the line to k­server on trees. We say that a server si is a “neighbor” of a request if there is 
no other server on the path from si to the request. 

Algorithm DC­TREE: At each time, all the servers neighboring the request are moving 
at a constant speed toward the request. 

For analysis, we will use the same potential function used for the line: Φ = kMmin + � DC, 
where Mmin is the minimum cost matching between OPT’s and DC’s servers, and = � DC 

i<j d(si, sj). Note that the set of neighbors may decrease during the service process since 
a moving server may become “blocked” by other servers. 

(a) Show that DC­TREE is k­competitive.


Hint: Break the algorithm into phases, where in each phase the number of

neighbors is fixed. Now consider the changes to each of the parts of the potential 
function within a phase. 

(b)	 Show that any algorithm for k­server on a tree can be used to solve the paging

problem by modeling paging as k­server on a particularly simple tree. Note that

k­server algorithm can place servers midway along edges, which doesn’t make

sense for paging, so you have to “reinterpret” it a bit to get a paging algorithm.


(c) What standard paging algorithm do you get when you apply the above reduction

using DC­TREE?


(d)	 Show that the same approach works for the weighted paging problem, where the

cost of a miss is an arbitrary function of the missed page.


Problem 3. Consider a collection of faculty available to give you advice about your future 
path in life. Since they are busy, each only answers yes or no questions. Some are wiser than 
others, and are more often correct in their advice. You would like, looking back, to have 



2 Handout 22: Problem Set 11 

taken the advice of the wisest faculty member, but ahead of time you don’t know who that 
is. Consider the following online algorithm: each time you have a question, you ask all the 
faculty, and go with a “weighted majority” opinion as follows: 

1. Initially, each faculty member has a weight of 1. 

2. After asking a question, take the (yes/no) answer of larger total weight. 

3. Upon discovering which answer is correct, halve the weight of each faculty member who 
answered incorrectly (some faculty might thank you for this). 

You will show that, using this algorithm, you make at most 2.41(m + lg n) mistakes, where 
m is the number of mistakes made by the wisest faculty, and n is the number of faculty. 
(Thus, in the language of asymptotic competitive ratios, you are 2.41­competitive against 
asking the best faculty member.) 

(a) Prove that, when the online algorithm makes a mistake, the total weight of the

faculty decreases by a factor of 4/3. Use this to upper bound the total weight

assigned to faculty.


(b)	 Lower­bound the weight assigned to faculty by considering ths weight of the

wisest faculty member in terms of m.


(c)	 Combine the above two parts to prove the claim. 

With randomization, you can do better. We modify the online algorithm as follows: 

1. Instead of going with the majority, choose one faculty member with probability pro­
portional to his weight, and follow his opinion. 

2. Instead of multiplying incorrect faculty weights by 1/2, multiply them by some β < 1 
to be determined later. 

(d)	 For a given question, let F denote the fraction of the weight of faculty with the

wrong answer. Give an expression for the expected (multiplicative) change in the

total weight as a result of reweighting for this question.


(e)	 Arguing much as in the deterministic case, prove that the (expected) number of

wrong answers will be at most


m ln(1/β) + ln n 

1 − β 

so for example, setting β = 1/2 gives 1.39m + 2 ln n, for a competitive ratio of 
1.39. 

(f) Show that if one uses the “right” β, one can limit the number of errors to m +

ln n+O(

√
m ln n), achieving a 1­competitive algorithm (in the asymptotic sense).


(This β can actually be found online by “repeated doubling” as the mistakes build

up.)




3 Handout 22: Problem Set 11 

Problem 4. In many applications, one wants to do range searching among objects other 
than points. In this problem, we will see that we can reduce several problems of this flavor 
to normal orthogonal range searching. 

(a) Let S be a set of n axis­parallel rectangles in the plane (i.e., the sides of the

rectangles are vertical and horizontal). We want to be able to report all rectangles

in S that are completely contained in a query rectangle [x : x�]×[y : y�]. Describe a

data structure for this problem that uses O(n log3 n) storage and has O(log 4 n+k)

query time, where k is the number of reported answers. (Hint: Transform the

problem to an orthogonal range searching problem in some higher­dimensional

space.)


(b)	 Let P consist of a set of n polygons in the plane. Again, describe a data structure

that uses O(n log3 n) storage and has O(log 4 n + k) query time to report all

polygons completely contained in the query rectangle, where k is the number of

reported answers (note that as a special case, you can report containment of line

segments).



