6.852: Distributed Algorithms
Fall, 2009

Class 24

Today’s plan

Self-stabilization

Self-stabilizing algorithms:
— Breadth-first spanning tree
— Mutual exclusion

Composing self-stabilizing algorithms
Making non-self-stabilizing algorithms self-stabilizing
Reading:
— [Dolev, Chapter 2 |
Next time:
— Partially synchronous distributed algorithms
— Clock synchronization
— Reading:
o Chapters 23-25
« [Attiya, Welch] Section 6.3, Chapter 13

Self-stabilization

A useful fault-tolerance property for distributed algorithms.
Algorithm can start in any state---arbitrarily corrupted.

From there, if it runs normally (usually, without any further
failures), it eventually gravitates back to correct behavior.

[Dijkstra 73: Self-Stablilizing Systems in Spite of Distributed
Control]
— Dijkstra’s most important contribution to distributed computing theory.

— [Lamport talk, PODC 83] Reintroduced the paper, explained its
Importance, popularized it.

— Became (still is) a major research direction.
— Won PODC Influential Paper award, in 2002.
— Award renamed the Dijkstra Prize.

[Dolev book, 00] summarizes main ideas of the field.

Today...

e Basic ideas, from [Dolev, Chapter 2 |

e Rest of the book describes:
— Many more self-stabilizing algorithms.
— General techniques for designing them.
— Converting non-SS algorithms to SS algorithms.
— Transformations between models, preserving SS.
— SS In presence of ongoing failures.
— Efficient SS.
— Etc.

Self-Stabilization: Definitions

Self-stabilization

[Dolev] considers:

— Message-passing models, with FIFO reliable channels.
— Shared-memory models, with read/write registers.

— Asynchronous and synchronous models.

To simplify, avoids internal process actions---combines
these with sends, receives, or register access steps.

Sometimes considers message losses (“loss” steps).
Many models, must continually specify which is used.

Defines executions:

— Like ours, but needn’t start in initial state.
— Same as our “execution fragments”.
Fair executions:

— Described informally.
— Our task-based definition is fine.

Legal execution fragments

e Given a distributed algorithm A, define a set L of
legal execution fragments of A.

e L can include both safety and liveness conditions.

 Example: Mutual exclusion problem

— L might be the set of all fragments o satisfying:
e Mutual exclusion:
— No two processes are in the critical region, in any state in o.
* Progress:

— If iIn some state of a, someone is in T and no one is in C, then
sometime thereafter, someone — C.

— If In some state of a, someone is in E, then sometime thereatfter,
someone — R.

Self-stabilization: Definition

« A global state s of algorithm A Is safe with respect to legal
set L, provided that every fair execution fragment of A that
starts with s is in L.

« Algorithm A is self-stabilizing for legal set L if every fair
execution fragment o of A contains a state s that is safe
with respect to L.

— Implies that the suffix of a starting with s'is in L.
— Also, any other fair execution fragment starting with s is in L.

N

I o \ In L
S

J

o Weaker definition: Algorithm A is self-stabilizing for legal
set L if every fair execution fragment o has a suffix in L.

In L

| o I
| |

Stronger vs. weaker definition of
self-stabilization

Stronger definition: Algorithm A is self-stabilizing for legal
set L if every fair execution fragment of A contains a state s
that is safe with respect to L.

Weaker definition: Algorithm A is self-stabilizing for legal
set L if every fair execution fragment has a suffix in L.

[Dolev] generally uses the stronger definition; so will we.

But occasionally, he appears to be using the weaker
definition; we’ll warn when this arises.

Q: Equivalent definitions? Not in general. LTTR.

Non-termination

 Self-stabilizing algorithms for nontrivial problems don't
terminate.

 E.g., consider message-passing algorithm A:

Suppose A is self-stabilizing for legal set L, and A has a terminating
global state s.

» All processes quiescent, all channels empty.
Consider a fair execution fragment a starting with s.
o. contains no steps---just global state s.

Since A is self-stabilizing with respect to L, o« must contain a safe
state.

So s must be a safe state.
Then the suffix of o starting with sis in L; that is, just s itself is in L.
So L represents a trivial problem---doing nothing satisfies it.

e Similar argument for shared-memory algorithms.

Self-Stabilizing Algorithm 1.
Self-Stabilizing Breadth-First
Spanning Tree Construction

Breadth-first spanning tree

Shared-memory model L
Connected, undirected graph G = (V,E). / 1
X

. r 3
Processes P,,...,P,, P, a designated root. fa| [Fa =

Permanent knowledge (built into all states of the
processes): e

— P, always knows it’s the root.
— Everyone always knows who their neighbors are.

Neighboring processes in G share registers in both directions:
— I written by P;, read by P,

Output: A breadth-first spanning tree, recorded in the r; registers:
— r.parent = 1if jis I's parent, O otherwise.

— r dist = distance from root to i in the BFS tree = smallest number of
hops on any path from 1 toiin G.

— Values in registers should remain constant from some point onward.

In terms of legal sets...

Define execution fragment o to be legal if:

— The registers have correct BFS output values, in all states in o.
— Registers never change.

L = set of legal execution fragments.

Safe state s:

— Global state from which all extensions have registers with correct,
unchanging BFS output values.

SS definition says:

— Any fair execution fragment «, starting from any state, contains
some safe state s.

— That is, one from which all extensions have registers with correct,
unchanging BFS output values.

— Implies that any fair execution fragment o has a suffix in which the
register contents represent a fixed BFS tree.

BFS Algorithm strategy

The system can start in any state, with
— Any values (of the allowed types) in registers,
— Any values in local process variables.

Processes can’'t assume that their own states and output
registers are initially correct.

Repeatedly recalculate states and outputs based on inputs
from neighbors.

In case of tie, use some default rule for selecting parent.

Prove correctness, stabilization time, using induction on
distance from root.

Root process P,

do forever
for every neighbor m do
write r,, := (0,0)

VAN

You're not my parent My distance from root

o Keep writing (0,0) everywhere.
e Access registers in fixed, round-robin order.

Non-root process P,

Maintains local variables Ir to hold latest observed
values of incoming reglsters Fji.

First loop:

— Read all the r;;, copy them into Ir;;

Use this local info to calculate new best distance
dist, choose a parent that yields this distance.

— Use default rule, e.g., smallest index, so always break
ties the same way.

— Needed to ensure stabilization to a fixed tree.
Second loop:

— Write dist to all outgoing registers.

— Notify new parent.

Non-root process P,

e do forever
— for every neighbor m do
e Ir :=read(r,)
— dist :=min({ Ir,.dist}) + 1
— found := false

— for every neighbor m do

« if not found and dist = Ir .dist + 1 then
— write r;,,, == (1,dist)
— found := true

» else
— write r,,, := (0,dist)

* Note:
— P, doesn’t take min of its own dist and neighbors’ dists.
— Unlike non-SS relaxation algorithms.
— Ignores its own dist, recalculates solely from neighbors’ dists.
— Because its own value could be erroneous.

Correctness

Prove this stabilizes to a particular “default” BFS tree.

Define the default tree to be the unique BFS tree where
ties in choosing parent are resolved using the rule:
— Choose the smallest index yielding the shortest distance.

Prove that, from any starting global state, the algorithm
eventually reaches and retains the default BFS tree.

More precisely, show it reaches a safe state, from which
any execution fragment retains the default BFS tree.

Show this happens within bounded time: O(diam A),
where
— diam is diameter of G (max distance from P, to anyone is enough).
— A'Is maximum node degree
— | is upper bound on local step time
— The constant in the big-O is about 4.

Correctness

Uses a lemma marking progress through distances 0, 1,
2,..., diam, as for basic AsynchBFS.

New complication: Erroneous, too-small distance
estimates.

Define a floating distance in a global state to be a value of
some r;.dist that Is strictly less than the actual distance
from P to P..

— Can’ t be correct.

Lemma: For every k > 0, within time (4k+1)Al, we reach a
configuration such that:

1. For any i with dist(P,,P;) <k, every r;.dist is correct.

2. There is no floating distance < k.

Moreover, these properties persist after this configuration.

Proof of lemma

« Lemma: For every k > 0, within time (4k+1)Al, we reach a configuration
such that:

1. For any i with dist(P,,P;) <k, every r;.dist is correct.
2. There is no floating distance < k.

e Proof: Induction on k.
— k=0: P writes (0,0) everywhere within time Al.
— Assume for k, prove for k+1.:
* Property 1:
— Consider P; at distance k+1 from P;.

— In one more interval of length 4Al, P, has a chance to update its local dist
and outgoing register values.

— By inductive hypothesis, these updates are based entirely on:
» Correct distance values from nodes with distance < k from P,, and
» Possibly some floating values, but these must be > k.

— So P, will calculate a correct distance value.

* Property 2:
— For anyone to calculate a floating distance < k+1, it must see a floating
distance < k.
— Can't, by inductive hypothesis.

Proof, cont’'d

We have proved:

— Lemma: For every k > 0, within time (4k+1)Al, we reach a
configuration such that:

1. For any i with dist(P,P;) <k, every r;.dist is correct.
2. There is no floating distance < k.

So within time (4 diam +1) Al, all the r;.dist values become
correct.

Persistence is easy to show.

Once all the r;.dist values are correct, everyone will use the
default rule and always obtain the default BFS tree.

Ongoing failures:

— If arbitrary failures occur from time to time, not too frequently, the
algorithm gravitates back to correct behavior in between failures.

— Recovery time depends on size (diameter) of the network.

Self-Stabilizing Algorithm 2:
Self-Stabilizing Mutual
Exclusion

Self-stabilizing mutual exclusion

o [Dijkstra 73]
* Ring of processes, each with output variable X

« Large granularity: In one atomic step, process
P, can read both neighbors’ variables, compute
Its next value, and write it to variable x..

P,
do forever:
If X, = x, then x, :=x; + 1 mod (n+1)
P 11 That's (n+1), not n.
do forever:

If X, # X, then x, := X,

e P, tries to make its variable one more than its predecessor’s (mod
n+1).

« [Each other process tries to make its variable equal to its
predecessor’s

Mutual exclusion

In what sense does this “solve mutual exclusion”?

Definition: “P;is enabled” (or “P; can change its state”) in a
configuration, if the variables are set so P, can take a step
and change the value of its variable x;.

Legal execution fragment o
— In any state in o, exactly one process is enabled.
— For each i, a contains infinitely many states in which P; is enabled.

Use this to solve mutual exclusion:
— Say P;interacts with requesting user U..

— P, grants U, the critical section when:
* U, has requested it, and
« P, is enabled.

— When U, returns the resource, P, actually does its step, changing X
— Guarantees mutual exclusion, progress.
— Also lockout-freedom.

Lemma 1

Legal .
— In any state in o, exactly one process is enabled.
— For each i, a contains infinitely many states in which P; is enabled.

Lemma 1: A configuration in which all the x variables have
the same value Is safe.

This means that, from such a configuration, any fair
execution fragment is legal.

Proof: Only P, can change its state, then P,, then P, ...,
and so on around the ring (forever).

Remains to show: Starting from any state, the algorithm
eventually reaches a configuration in which all the x values
are the same.

This uses some more lemmas.

Lemma 2

« Lemma 2: In every configuration, at least one of
the potential x values, {0, ...,n}, does not appear in
any X

* Proof: Obviously. There are n+1 values and only
n variables.

Lemma 3

« Lemma 3: In any fair execution fragment (from any
configuration c), P, changes x, at least once every nl time.

e Proof:

— Assume not---P, goes longer than nl without changing x; from
some value v.

— Then by time |, P, sets x, to v,
— By time 2I, P, sets x5 to v,

— By (n-1)I, P, sets x, to v.
— All these values remain = v, as long as x, doesn’t change.
— But then by time nl, P, sees x, = X, = v, and increments X,.

Lemma 4

Lemma 4: In any fair execution fragment o, a configuration
In which all the x values are the same (and so, a safe
configuration) occurs within time (n? + n)l.

Proof:

— Let ¢ = initial configuration of a.

— Let v = some value that doesn’t appear in any x;, in C.

— Then v doesn’t appear anywhere, in o, unless/until P, sets x; :=v.
— Within time nl, P, changes x,, incrementing it by 1, mod (n+1).

— Within another nl, P, increments x; again.

— Within n2l, P, increments x, to v.

— At that point, there are still no other v's anywhere else.
— Then this v propagates all the way around the ring.

— P, doesn’t change x,; until v reaches x...

— Yields all x, = v, within time (n? + n)l.

Putting the pieces together

Legal execution fragment o
— In any state in o, exactly one process is enabled.
— For each i, a contains infinitely many states in which P; is enabled.

L = set of legal fragments.

Theorem: Dijkstra’s algorithm is self-stabilizing with
respect to legal set L.

In the sense of reaching a safe state.

Remark:
— This uses n+1 values for the x; variables.
— A curiosity:
» This also works with n values, or even n-1.
e But not with n-2 [Dolev, p. 20].

Reducing the atomicity

* Dikstra’s algorithm reads x;;,
computes, and writes x;, all atomically.

 Now adapt this for usual model, in
which only individual read/write steps

are atomic.

e Consider Dijkstra’s algorithm on a 2n-
process ring, with processes Q,
variablesy. J=1, 2, ..., 2n.

— Needs 2n+1 values for the variables.

 Emulate this in the usual n-process ring, with processes
P,, variables x;
— P,emulates both Q,,; and Q.;
— Y, Is a local variable of P..
— Y, corresponds to X

Reducing the atomicity

Consider Dijkstra’s algorithm on a 2n-
process ring, with processes Q,
variablesy. J=1, 2, ..., 2n.

Emulate this in an n-process ring, with
processes P;, variables X

— P,emulates both Q. ; and Q,;

— Y., IS a local variable of P,.
— Y, corresponds to X

To emulate a step of Q,;.4, P; reads from x;_;, writes to its local
variable y,, ;.

To emulate a step of Q.;, P; reads from its local variable y,, ,,
writes to Xx..

Since Iin each case one variable is internal, can emulate each
step with just one ordinary read or write to shared memory.

Composing Self-Stabilizing
Algorithms

Composing self-stabilizing
algorithms

Consider several algorithms, where
— A, Is self-stabilizing for legal set L,
— A, is SS for legal set L,, “assuming A, stabilizes for L,”

— A, is SS for legal set L, “assuming A, stabilizes for L, and A,
stabilizes for L,”

— efc.

Then we should be able to run all the algorithms together,
and the combination should be self-stabilizing for L1 n L2
N L3N ...

Need composition theorems.
Details depend on which model we consider.
E.g., consider two shared memory algorithms, A, and A..

Composing SS algorithms

« Consider read/write shared memory algorithms, A, and A,
where:
— All of A;’'s shared registers are written only by A, processes.
* No inputs arrive in A,’s registers.
— All of A,’s shared registers are written only by A, and A, processes.
« No other inputs arrive in A,’s registers.

— Registers shared between A and A, are written only by A;
processes, not by A, processes

— One-way mformatlon flow, from A; and A,.
— A, makes sense in isolation, but A2 depends on A, for some inputs.

 Definition: A,is self-stabilizing for L, with respect to A, and
L, provided that: If o IS any fair executlon fragment of the
combination of A, and A, whose projection on A is in L,
then o has a SUffIX in L.

e Theorem: If AiSSS for L, and A, is SS for L, with respect
toA; and L, then the combination of A, and A IS SS for L,,.

Weaker definition of SS

At this point, [Dolev] seems to be using the weaker
definition for self-stabilization:
Instead of:

— Algorithm A is self-stabilizing for legal set L if every fair
execution fragment o of A contains a state s that is safe
with respect to L.

Now using:

— Algorithm A is self-stabilizing for legal set L if every fair
execution fragment o has a suffix in L.

So we’ll switch here.

Composing SS algorithms

Def: A, is self-stabilizing for L, with respect to A, and L, provided that
any fair execution fragment of the combination of A, and A, whose
projection on A;is in L, has a suffix in L,.

Theorem: If A is SSfor L, and A,is SS for L, with respect to A, and
L,, then the combination of A; and A, is SS for L,.

Proof:

— Let a be any fair exec fragment of the combination of A, and A,.

— We must show that a has a suffix in L, (weaker definition of SS).

— Projection of a on A, is a fair execution fragment of A,.

— Since A, is SS for L, this projection has a suffix in L,.

— Therefore, a has a suffix o' whose projection on A, is inL;.

— Since A, is self-stabilizing with respect to A, o’ has a suffix o'’ in L.
— So a has a suffix in L,, as needed.

Total stabilization time Is the sum of the stabilization times
of A; and A,.

Applying the composition theorem

Theorem supports modular
construction of SS algorithms.

Example: SS mutual exclusion in an
arbitrary rooted undirected graph
- AL
» Constructs rooted spanning tree, using
the SS BFS algorithm.

* The r; registers contain all the tree info
(parent and distance).

« Takes A,'s r; registers as input.

 Solves mutual exclusion using a Dijkstra-
like algorithm, which runs on the stable
tree in the r; registers.

— Q: But Dijkstra’s algorithm uses a ring---
how can we run it on a tree?

— A: Thread the ring through the nodes of
the tree, e.g.:

Mutual exclusion In a rooted tree

Use the read/write version of the Dijkstra
ring algorithm, with local and shared
variables.

Each process P; emulates several processes
of Dijkstra algorlthm

Bookkeeping needed, see [Dolev, p. 24-27].

Initially, both the tree and the mutex
algorithm behave badly.

After a while (O(diam A |) time), the tree
stabilizes (since the BFS algorithm is SS),
but the mutex algorithm continues to behave
badly.

After another while (O(n?1) time), the mutex algorithm also stabilizes
(since it's SS given that the tree is stable).

Total time is the sum of the stabilization times of the two algorithms:
O(diam A) + O(n2 1) = O(n?).

Self-Stabilizing Emulations

Self-stabilizing emulations
[Dolev, Chapter 4]}

* Design a SS algorithm A, to solve a problem L.,
using a model that is more powerful then the “real”
one.

» Design an algorithm A, using the real model, that
“stabilizes to emulate” the powerful model

« Combine A; and A, to get a SS algorithm for L,
using the real model.

Self-stabilizing emulations

« Example 1 [Dolev, Section 4.1]: Centralized scheduler

Rooted undirected graph of processes.
Powerful model: Process can read several variables, change state,
write several variables, all atomically.
Basic model: Just read/write steps.
Emulation algorithm A;:
» Uses Dijkstra-style mutex algorithm over BFS spanning tree algorithm

» Process performs steps of A, only when it has the critical section
(global lock).

« Performs all steps that are performed atomically in the powerful model,
before exiting the critical section.

Stabilizes to emulate the more powerful model.
Initially, both emulation A, and algorithm A, behave badly.

After a while, emulation begins behaving correctly, yielding mutual
exclusion.

After another while, A, stabilizes for L,.

Self-stabilizing emulations

« Example 2 [Nolte]: Virtual Node layer for mobile networks

— Mobile ad hoc network: Collection of processes running on mobile
nodes, communicating via local broadcast.

— Powerful model: Also includes stationary Virtual Nodes at fixed
geographical locations (e.g., grid points).

— Basic model: Just the mobile nodes.

— Emulation algorithm A;:

* Mobile nodes in the vicinity of a Virtual Node’s location cooperate to
emulate the VN.

» Uses Replicated State Machine strategy, coordinated by a leader.

— Application algorithm A, running over the VN layer:
» Geocast, or point-to-point routing, or motion coordination,...

— Initially, both the emulation A and the application algorithm A,
behave badly.

— Then the emulation begins behaving correctly, yielding a VN Layer.
— Then the application stabilizes.

Making Non-Self-Stabilizing
Algorithms Self-Stabllizing

Making non-self-stabilizing
algorithms self-stabilizing

[Dolev, Section 2.8]: Recomputation of floating outputs.

— Method of converting some non-SS distributed algorithms to SS algorithms.
What kinds of algorithms?

— Algorithm A, computes a distributed function based on distributed inputs.

— Assumes processes’ inputs are in special, individual input variables, I,
whose values never change (e.g., contain fixed information about local
network topology).

— Outputs placed in special, individual output variables O..

Main idea: Execute A repeatedly, from its initial state, with the fixed
inputs, with two kinds of output variables:

— Temporary output variables o,.
— Floating output variables FO..

Use the temporary variables o, the same way A uses O..
Write to the floating variables FO, only at the end of function computation.
When restarting A, reset all variables except the floating outputs FO..
Eventually, the floating outputs should stop changing.

Example: Consensus

Start with a simple synchronous, non-fault-tolerant, non-
self-stabilizing network consensus algorithm A, and make
It self-stabilizing.

Undirected graph G = (V,E), known upper bound D on
diameter.

Non-SS consensus algorithm A:

Everyone starts with Boolean input in I..

After D rounds, everyone agrees, and decision value = 1 iff
someone’s Input = 1.

At intermediate rounds, process | keeps current consensus
proposal in O,

At each round, send O; to neighbors, resets O; to “or” of its current
value and received values.

Stop after D rounds.

A works fine, in synchronous model, if it executes once,
from initial states.

Example: Consensus

 To make this self-stablilizing:

— Run algorithm A repeatedly, with the FO, as floating
outputs.

— While running A, use o, instead of O..
— Copy o, to FO, at the end of each execution of A.

e This Is not quite right...
— Assumes round numbers are synchronized.

— Algorithm begins in an arbitrary global state, so round
numbers can be off.

Example: Consensus

Run algorithm A repeatedly, with the FO, as floating outputs.
While running A, use o; instead of O..
Copy o; to FO, at the end of each execution of A.

Must also synchronize round numbers 1,2,...,D.
— Needs a little subprotocol.

— Each process, at each round, sets its round number to max of its
own and all those of its neighbors.

— When reach D, start over at 1.

Eventually, rounds become synchronized throughout the
network.

Thereatfter, the next full execution of A succeeds, produces
correct outputs in the FO, variables.

Thereafter, the FO, will never change.

Extensions

« Can make this into a fairly general transformation,
for synchronous algorithms.

e Using synchronizers, can extend to some
asynchronous algorithms.

Making non-SS algorithms SS;:
Monitoring and Resetting [Section 5.2]

AKA Checking and Correction.

Assumes message-passing model.

Basic idea:
— Continually monitor the consistency of the underlying algorithm.
— Repair the algorithm when inconsistency is detected.

For example:

— Use SS leader election service to choose a leader (if there isn’t already a
distinguished process).

— Leader, repeatedly:
» Conducts global snapshots,
» Checks consistency,
« Sends out corrections if necessary.
Local monitoring and resetting [Varghese thesis, 92]
— For some algorithms, can check and restore local consistency predicates.

— E.g., BFS: Can check that local distance is one more than parent’s
distance, recalculate dist and parent if not.

Other stuff In the book

Discussion of practical motivations.
Proof methods for showing SS.
Stabilizing to an abstract specification.

Model conversions, for SS algorithms:
— Shared memory — message-passing
— Synchronous — asynchronous

SS in presence of ongoing failures.
— Stopping, Byzantine, message loss.

Efficient “local” SS algorithms.
More examples.

Next time...

o Partially synchronous distributed algorithms
 Reading:

— Chapters 23-25

— [Attiya, Welch], Section 6.3, Chapter 13

MIT OpenCourseWare
Ihttp://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Self-stabilization
	Today…
	Self-Stabilization: Definitions
	Self-stabilization
	Legal execution fragments
	Self-stabilization: Definition
	Stronger vs. weaker definition of self-stabilization
	Non-termination
	Self-Stabilizing Algorithm 1: Self-Stabilizing Breadth-First Spanning Tree Construction
	Breadth-first spanning tree
	In terms of legal sets…
	BFS Algorithm strategy
	Root process P1
	Non-root process Pi
	Non-root process Pi
	Correctness
	Correctness
	Proof of lemma
	Proof, cont’d
	Self-Stabilizing Algorithm 2:�Self-Stabilizing Mutual Exclusion
	Self-stabilizing mutual exclusion
	Mutual exclusion
	Lemma 1
	Lemma 2
	Lemma 3
	Lemma 4
	Putting the pieces together
	Reducing the atomicity
	Reducing the atomicity
	Composing Self-Stabilizing Algorithms
	Composing self-stabilizing algorithms
	Composing SS algorithms
	Weaker definition of SS
	Composing SS algorithms
	Applying the composition theorem
	Mutual exclusion in a rooted tree
	Self-Stabilizing Emulations
	Self-stabilizing emulations�[Dolev, Chapter 4]
	Self-stabilizing emulations
	Self-stabilizing emulations
	Making Non-Self-Stabilizing Algorithms Self-Stabilizing
	Making non-self-stabilizing algorithms self-stabilizing
	Example: Consensus
	Example: Consensus
	Example: Consensus
	Extensions
	Making non-SS algorithms SS: Monitoring and Resetting [Section 5.2]
	Other stuff in the book
	Next time…

