
6.852: Distributed Algorithms

Fall, 2009

Class 19

Today’s plan

z Techniques for implementing concurrent objects:

�	 Coarse-grained mutual exclusion
�	 Fine-grained locking (mutex and read/write)
�	 Optimistic locking
�	 Lock-free/nonblocking algorithms
�	 “Lazy” synchronization

�	 We illustrate on list-based sets, but the techniques apply to
other data structures

z Reading:

� Herlihy, Shavit, Chapter 9

z Next:
�	 Transactional memory
�	 HS, Chapter 18
�	 Guerraoui, Kapalka

Shared-memory model
•	 Shared variables
•	 At most one memory access per atomic step.
•	 Read/write access
•	 Synchronization primitives:

–	 Compare-and-swap (CAS)
–	 Load-linked/store-conditional (LL/SC)
–	 Assume lock and unlock methods for every object.

•	 Most (not all) of our algorithms use locking.
•	 Memory management:

–	 Allocate objects dynamically, assume unlimited supply.
–	 In practice, would garbage collect and reuse, but we won’t worry

about this.
•	 Assume no failures (mostly).

Correctness guarantees

• Linearizability (atomicity) of object operations.
• Liveness properties:

– Different guarantees for different algorithms.
– Progress:

•	 Some operations keep completing.
– Lockout-freedom (AKA starvation-freedom):

•	 Every operation completes.
– “Nonblocking” conditions:

•	 Wait-freedom: Even if other processes stop, a particular operation by
a process that keeps taking steps eventually finishes.

•	 Lock-freedom: Even if some processes stop, if some keep taking
steps, then some operation finishes.

•	 Can think of the stopped processes as failing, or as going slowly.
•	 Captures the idea that slow processes don’t block others.
•	 Rules out locking strategies.

• Performance
– Worst-case (time bounds) vs. average case (throughput).
– No good formal models

List-based sets

•	 Data type: Set S of integers (no duplicates)

–	 S.add(x): Boolean: S := S ෽ {x}; return true iff x not already in S
–	 S.remove(x): Boolean: S := S \ {x}; return true iff x in S initially
–	 S.contains(x): Boolean: return true iff x in S (no change to S)

•	 Simple ordered linked-list-based implementation
–	 Illustrates techniques useful for pointer-based data structures.
–	 Unless set is small, this is a poor data structure for this specific

data type--better to use arrays, hash tables, etc.

head

��	 1 4 9 �

Sequential list-based set
head

�� 1 4 9 �

add(3) 3

head

1 4 9 ���

remove(4)

Sequential list-based set

S.add(x)
pred := S.head
curr := pred.next
while (curr.key < x)
pred := curr

curr := pred.next

if curr.key = x then

return false

else
node := new Node(x)
node.next := curr
pred.next := node
return true

S.remove(x)
pred := S.head
curr := pred.next
while (curr.key < x)
pred := curr
curr := pred.next

if curr.key = x then
pred.next := curr.next
return true

else

return false

S.contains(x)
curr := S.head
while (curr.key < x)

curr := curr.next
if curr.key = x then
return true

else
return false

Sequential list-based set
head

S.remove(x)
pred := S.head

4 9 �1��

pred curr

remove(4)

curr := pred.next
while (curr.key < x)
pred := curr
curr := pred.next

if curr.key = x then
pred.next := curr.next
return true

else
return false

Correctness

•	 Assume algorithm queues up operations, runs them

sequentially.
•	 Atomicity (linearizability):

–	 Show the algorithm implements a canonical atomic set object.

–	 Use forward simulation relation: Set consists of those elements

that are reachable from the head of the list via list pointers.
–	 When do “perform” steps occur?

•	 add(x): If successful, then when pred.next := node, else any time
during the operation.

•	 remove(x): If successful, then when pred.next := curr.next, else any
time during the operation.

•	 contains(x): Any time during the operation.
–	 Proof uses invariants saying that the list is ordered and contains no

duplicates.
•	 Liveness: Lockout-free, but blocking (not wait-free or lock-

free)

Invariants

•	 Keys strictly increase down the list.
– List is ordered.
– No duplicates.

•	 Keys of first and last nodes (i.e., the
“sentinels”) are �෱ and ෱ respectively.

•	 pred.key < x
•	 pred.key < curr.key
•	 pred.next ำ null
• …

Allowing concurrent access
z Can this algorithm tolerate concurrent
execution of the operations by different
processes?

z What can go wrong?
z How can we fix it?

Concurrent operations (bad)
head

9 �1 4��

pred curr

remove(4)

S.remove(x)
pred := S.head
curr := pred.next
while (curr.key < x)
pred := curr
curr := pred.next

if curr.key = x then
pred.next := curr.next
return true

else

return false

pred curr

remove(9)

Techniques for managing

concurrent operations

• Coarse-grained mutual exclusion
• Fine-grained locking
• Optimistic locking
• Lock-free/nonblocking algorithms
• “Lazy” synchronization

Coarse-grained mutual exclusion

•	 Each process acquires a global lock, for the
entire time it is executing significant steps of
an operation implementation.

Coarse-grained locking

S.add(x) Why can we unlock early here?
S.lock()

pred := S.head
curr := pred.next
while (curr.key < x)

pred := curr
curr := pred.next

if curr.key = x then

S.unlock()
return false

else
node := new Node(x)

node.next := curr
pred.next := node
S.unlock()
return true

S.lock()
pred := S.head
curr := pred.next
while (curr.key < x)

pred := curr
curr := pred.next

if curr.key = x then
pred.next := curr.next
S.unlock()
return true

else
S.unlock()
return false

S.contains(x)
S.lock()
curr := S.head
while (curr.key < x)

curr := curr.next
S.unlock()
if curr.key = x then
return true

else
return false

Correctness

•	 Similar to sequential implementation.
•	 Atomicity:

–	 Show the algorithm implements a canonical atomic set object.
–	 Use forward simulation: S = elements that are reachable in the list

–	 When do “perform” steps occur?

•	 add(x): If successful, then when pred.next := node, else any time the lock is
held.

•	 remove(x): If successful, then when pred.next := curr.next, else any time the
lock is held.

•	 contains(x): Any time the lock is held.
–	 Invariant: If an operation holds the lock, then any node it visits is

reachable in the list.
•	 Liveness:

–	 Guarantees progress, assuming that the lock does.
–	 May or may not be lockout-free, depending on whether the lock is.
–	 Blocking (not wait-free or lock-free):

• Everything comes to a halt if someone stops while holding the lock.

Coarse-grained locking

4 9 �1
head

��

pred curr

remove(4)

Coarse-grained locking

• Easy For many applications, this is the best solution!

– to write, (Don't underrate simplicity.)

– to prove correct.
• Guarantees progress
• If we use queue locks, it’s lockout-free.
• But:

– Blocking (not wait-free, not lock-free)
– Poor performance when contention is high

• Essentially no concurrent access.
• But often good enough for low contention.

Coarse-grained locking with high

contention

head
4�� 1 9 �

pred curr

remove(4)
remove(9)

add(6)
contains(4)

add(3)

Improving coarse-grained

locking

z Reader/writer locks
� Multiple readers can hold the lock simultaneously, but
writer cannot share with anyone else (reader or writer).

z Using reader/writer lock for coarse-grained locking,

in the list-based set implementation:

� Contains takes only a read lock

z Can be a big win if contains is the most common operation.

� What about add or remove that returns false?

z Let add/remove start with a read lock, then “upgrade” to a write lock

if needed.
z If it can’t upgrade, abandon/restart the operation.

Fine-grained locking

•	 Associate locks with smaller pieces of data,
not entire data structure.

•	 Process acquires/releases locks as it
executes steps of an operation.

•	 Operations that work on disjoint pieces of
data proceed concurrently.

Two-phase locking

•	 Finish acquiring all locks before releasing any.

–	 Typically, release all locks at end of the op: “strict 2-phase locking”.
•	 Easy to prove atomicity:

–	 Serialize each operation at any point when it holds all its locks.

–	 For strict 2-phase locking, usually the end of the operation.
–	 Algorithm behaves like sequential algorithm, with operations

performed in order of serialization points.
•	 But acquiring all the locks at once can be costly (delays).
•	 Must avoid deadlock, e.g., by acquiring locks in

predetermined order.

•	 Naïve 2-phase locking for list-based set implementation:
–	 Lock each node as visited, using a mutex lock.
–	 Avoids deadlock by acquiring all locks in list order.
–	 Doesn’t help performance.
–	 Using reader/writer locks might help performance, but introduces

new deadlock possibilities.

Hand-over-hand locking
z Fine-grained locking, but not “two-phase”

� Atomicity doesn't follow from general rule; trickier to prove.

z Each process holds at most two locks at a time.
� Acquires lock for successor before releasing lock for predecessor.

� Keeps operations “pipelined”.

head
�� 1 4 9 �

remove(4)

pred curr

Hand-over-hand locking
z Must we lock a node we are trying to
remove?

z Can’t we just lock its predecessor, while
resetting the predecessor’s next pointer?

z No. Counterexample (from Herlihy and
Shavit’s slides):

Removing a Node

a b c d

remove(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing a Node

a b c d

remove(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing a Node

a b c d

remove(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(c)
remove(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(b)
remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(b)
remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(b)
remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(b)
remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(b)
remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(b)
remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a b c d

remove(b)
remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a c d

remove(b)

b

remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing Two Nodes

a c d

remove(b)

b

remove(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Hand-over-hand locking

• add(x)
– Lock hand-over-hand.
– When adding new node, keep both predecessor

and successor locked (HS Fig. 9.6).
– We could actually release the lock on the

successor before adding the new node.

• contains(x)

– Lock hand-over-hand, can unlock everything
before reading curr.key.

Hand-over-hand locking

S.add(x)
pred := S.head
pred.lock()
curr := pred.next
curr.lock()
while (curr.key < x)
pred.unlock()
pred := curr
curr := pred.next
curr.lock()

if curr.key = x then
pred.unlock()

curr.unlock()

return false

else
node := new Node(x)
node.next := curr
pred.next := node
pred.unlock()

curr.unlock()

return true

S.remove(x)
pred := S.head
pred.lock()
curr := pred.next
curr.lock()
while (curr.key < x)
pred.unlock()
pred := curr
curr := pred.next
curr.lock()

if curr.key = x then
pred.next := curr.next
pred.unlock()

curr.unlock()

return true

else

pred.unlock()

curr.unlock()

return false

S.contains(x)
curr := S.head
curr.lock()
while (curr.key < x)
temp := curr
curr := curr.next
curr.lock()

temp.unlock()

curr.unlock()

if curr.key = x then
return true

else
return false

Correctness

•	 Atomicity:

–	 Similar to coarse-grained locking.
–	 Forward simulation to canonical atomic set object: S = elements

that are reachable in the list.
–	 “perform” steps:

•	 add(x):
–	 If successful, then when pred.next := node.
–	 Else any time the lock on the node already containing x is held.

•	 remove(x):
–	 If successful, then when pred.next := curr.next
–	 Else any time the lock on the node seen to have a higher key is held.

•	 contains(x): LTTR
–	 If true, then any time the lock on the node containing x is held.
–	 Else any time the lock on the node seen to have a higher key is held.

–	 Invariant: Any locked node is reachable in the list.

Correctness

• Atomicity:

– Forward simulation to canonical atomic set object:

• S = elements that are reachable in the list.

• Liveness:
– Guarantees progress, assuming that the locks do.

– Guarantees lockout-freedom, assuming the locks do.

• All processes compete for locks in the same order.

– Blocking (not wait-free or lock-free).

Evaluation

• Problems:

– Each operation must acquire O(|S|) locks.
– Pipelining means that fast threads can get stuck

behind slow threads.
– Using reader/writer locks might help performance, but

introduces new deadlock possibilities.
• Idea:

– Can we examine the nodes first without locking, and
then lock only the nodes we need?

– Must ensure that the node we modify is still in list.

– Optimistic locking.

Optimistic locking

•	 Examine the nodes first without locking.
•	 Lock the nodes we need.
•	 Verify that the locked nodes are still in the

list, before making modifications or
determining results

Optimistic locking

• add(x):

–Traverse the list from the head, without locking, looking for the nodes
we need (pred and curr).

–Lock nodes pred and curr.
–Validate that pred and curr are still in the list, and are still consecutive

(pred.next = curr), by traversing the list once again.
– If this works, then add the node and return true (or return false if it’s

already there).
– If it doesn’t work, start over.

• remove(x), contains(x): Similar.

z Better than hand-over-hand if
� Traversing twice without locking is cheaper than once with locking.
� Validation usually succeeds

Optimistic locking

b d ea

add(c) Aha!

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Optimistic locking

b d ea

add(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

What can go wrong? (Part 1)

b d ea

add(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

What can go wrong? (Part 1)

b d ea

add(c)
remove(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

What can go wrong? (Part 1)

b d ea

add(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Validate (Part 1)

b d ea

add(c) Yes, b still
reachable
from head

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

What can go wrong? (Part 2)

b d ea

add(c)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

What can go wrong? (Part 2)

b d ea

add(c)
add(b’)

b’

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

What can go wrong? (Part 2)

b d ea

add(c)

b’

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Validate (Part 2)

b d ea

add(c) Yes, b still
points to d

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Optimistic locking

b d ea

add(c)
c

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Correctness

• Atomicity: Similar to hand-over-hand locking.

– Forward simulation to canonical atomic set object:
• S = elements that are reachable in the list.

– “perform” steps: As for hand-over-hand locking,
but consider only the last attempt (for which
validation succeeds).

• Liveness:
– Guarantees progress, assuming the locks do.
– Does not guarantee lockout-freedom (even if locks

do).
– Blocking (not wait-free or lock-free).

Evaluation

•	 Works well if lock-free traversal is fast, and

contention is infrequent.
•	 Problems:

– Repeated traversals.
– Need to acquire locks.

• Even contains() needs locks.
z Locks can cause problems:
� Some operations take 1000x (or more) longer than

others, due to page faults, descheduling, etc.
� If this happens to anyone holding a lock, everyone else

who wants to access that lock must wait.

• Q: Can we avoid locks?

Lock-free algorithm

•	 Avoids locks/blocking entirely.
•	 Instead, separates logical vs. physical node

removal, marking nodes before deleting
them.

•	 Operations help other operations by deleting
marked nodes.

Lock-freedom

• If any process executing an operation does

not stop then some operation completes.

•	 Weaker than wait-free: lockout is possible.

•	 Rules out a delayed process from blocking

other processes indefinitely, and so, no
locks.

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit..

Lock-free list-based set

•	 Idea: Use CAS to change pred.next pointer.

•	 Make sure pred.next pointer hasn't changed

since you read it.

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Adding a Node

a c d

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Adding a Node

a c d

b

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Adding a Node

a c d

b

CAS

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Adding a Node

a c d

b

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing a Node

a b c d

remove
b

remove
c

CAS

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing a Node

a c d

remove
b

remove
c

CAS

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Look Familiar?

Bad news

a b c d

remove
b

remove
c

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lock-free list-based set

•	 Idea: Add “mark” bit to a node to indicate whether its key has been

removed from the abstract set S.
–	 If mark = true, then node’s key is not in the set.
–	 When a node is first added to the list, its mark = false.
–	 Set mark := true before physically removing node from list by detaching its

incoming pointer.
–	 Setting the mark logically removes the node’s key from the set: It is the

serialization point of a successful remove operation.

•	 Simulation relation:
–	 S is the set of values in reachable nodes with mark = false.

•	 Don't change next pointer of a marked node.
–	 Mark and next pointer must be in the same word, change atomically.

–	 “Steal” a bit from pointers.
–	 Jave class AtomicMarkableReference (in Java concurrency library)

supports techniques like those in this algorithm.

Lock-free list-based set

•	 To perform any operation, traverse the list, through

marked and unmarked nodes, to find needed nodes.
•	 If needed nodes are marked, retry the operation.
•	 If needed nodes are unmarked then operate as follows:

–	 For contains(x) or unsuccessful add/remove(x), return
appropriate value as usual based on whether curr.key = x

–	 For successful add(x), CAS pred’s (curr, false) to (node,
false).

–	 For successful remove(x),
• Logical removal: CAS curr’s (next, false) to (next, true)

• Physical removal: CAS pred’s (curr, false) to (curr.next, false)

– If any CAS except for the physical remove fails, retry the
operation.

Helping

•	 Whenever an operation encounters marked nodes

during traversal, it helps:
•	 If curr is marked:

– CAS pred’s (curr, false) to (curr.next, false).
– If this CAS fails (because next is no longer curr or

mark is now true), then retry the operation.

•	 Such helping is characteristic of lock-free and
wait-free algorithms (not all have it, but most do).

•	 See HS Section 9.8.

Lock-free list: Find subroutine

Returns (pred, curr) such that at some point during execution, the following held
simultaneously: pred.next = (curr, false), curr.next.mark = false, and
pred.key < x d curr.key.

S.find(x)
retry:

pred := S.head; curr := pred.next.ref
while (curr.key < x or curr.next.mark) do

if curr.next.mark then
if CAS(pred.next, (curr, false), (curr.next.ref, false)) then curr := pred.next.ref
else
if pred.next.mark then goto retry

else curr := pred.next.ref

else // It must be that curr.key < x.

pred : = curr; curr := pred.next.ref

return (pred, curr)

Lock-free list: Add
S.add(x)
retry:

(pred, curr) := S.find(x)
if curr.key = x then return false
else

node := new Node(x)
node.next.ref := curr
if CAS(pred.next, (curr, false), (node, false)) then return true
else goto retry

Lock-free list: Remove and

Contains

S.remove(x)
retry:

(pred, curr) := S.find(x)
if curr.key = x then

next := curr.next.ref
if CAS(curr.next, (next, false), (next, true)) then

CAS(pred.next, (curr, false), (curr.next.ref, false))
return true

else goto retry

else return false

S.contains(x)
(pred, curr) := S.find(x)
if curr.key = x then return true
else return false

Removing a Node

a c d

remove
c

CAS

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing a Node

a d

remove
b

remove
c

cCASCAS

failed

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing a Node

a b d

remove
b

remove
c

c

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Removing a Node

a d

remove
b

remove
c

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Correctness

•	 Atomicity:

–	 Forward simulation to canonical atomic set:
•	 S = values in unmarked nodes that are reachable from the head via list

pointers (through marked and unmarked nodes).
–	 “perform” steps:

•	 contains(x) or unsuccessful add(x) or remove(x): When curr is read
from pred.next.

•	 Successful add(x): When successful CAS sets pred.next := node.
•	 Successful remove(x): When successful CAS marks node x (sets

curr.mark := true).
–	 Invariant: Any unmarked node encountered while traversing the list

is reachable in the list.
•	 Liveness:

–	 Nonblocking: lock-free
•	 Operations may retry, but some must succeed.

–	 Allows starvation (not lockout-free).

Evaluation

• No locks!
• Nonblocking, lock-free algorithm.
• But: Overhead for CAS and for helping.

Lazy algorithm

•	 Uses the marking trick as in the lock-free
algorithm, removing nodes in two stages.

•	 Avoids CAS and helping.
•	 Instead, uses short-duration locks.

Lazy list algorithm

•	 Idea: Use mark as in lock-free list.
•	 “Lazy” removal: First mark node, then splice around it.
•	 Now mark can be separate from next pointer.
•	 No helping---assume each remove operation completes its

own physical removal.

•	 Locks curr and pred nodes, with short-duration locks.
•	 Validation: Check locally that nodes are adjacent and

unmarked; if not, retry the operation.

•	 See HS, Section 9.7.

Lazy Removal

a b c d

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy Removal

a b c d

Present in list

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy Removal

a b c d

Logically deleted

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy Removal

a b c d

Physically deleted

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

•	 Observation: contains(x) doesn't need to
lock/validate.

•	 Just find first node with key ุ x, return true
iff key = x and unmarked.

Lazy list algorithm

a b c

contains(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a b c

contains(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a b c

contains(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a b c

remove(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a b c

a not
marked

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

© 2005 Herlihy & Shavit
From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

a b c

a still
points

to b

Lazy list algorithm

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

a b c

logical
delete

Lazy list algorithm

© 2005 Herlihy & Shavit
From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

a b c

physical
delete

Lazy list algorithm

a b c

contains(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a b c

add(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a b c

add(b)

b

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a b

contains(b)

b

c

Is this okay?

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a c

add(b)

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a c

add(b)

b

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy list algorithm

a c

contains(b)

b

© 2005 Herlihy & Shavit

From The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit.

Lazy List: Add
Nodes have fields: key, next, mark.

S.add(x)
retry:

pred := S.head; curr := pred.next
while (curr.key < x) do pred := curr; curr := curr.next
if (curr.key = x and curr.mark = false) then return false
else

pred.lock()
if (pred.mark = false and pred.next = curr) then
node := new Node(x)
node.next := curr
pred.next := node
pred.unlock()
return true

else

pred.unlock()

goto retry

Lazy List: Remove
S.remove(x)
retry:

pred := S.head; curr := pred.next
while (curr.key < x) do pred := curr; curr := curr.next
if (curr.key > x or curr.mark = true) then return false
else

pred.lock(); curr.lock()
if (pred.mark = curr.mark = false and pred.next = curr) then

curr.mark := true
pred.next := curr.next
pred.unlock(); curr.unlock()
return true

else

pred.unlock(); curr.unlock()

goto retry

Lazy List: Contains
S.contains(x)
curr := S.head.next
while (curr.key < x) do curr := curr.next
if (curr.key = x and curr.mark = false) then return true
else return false

Lazy list algorithm
z Serializing contains(x) that returns false
� if node found has key > x

z when node.key is read?
z when pred.next is read?
z when pred is marked (if it is marked)?

� if node with key = x is marked
z when mark is read?
z when pred.next is read?
z when mark is set?

Lazy list algorithm
z Serializing contains(x) that returns false
� if node found has key > x

z when node.key is read?
z when pred.next is read?
z when pred is marked (if it is marked)?

� if node with key = x is marked
z when mark is read?
z when pred.next is read?
z when mark is set?

Can we do this for the optimistic list?

Correctness

• Atomicity:

–	 Forward simulation to canonical atomic set:
•	 S = values in reachable unmarked nodes.

–	 “perform” steps:
•	 contains(x) or unsuccessful add(x) or remove(x): LTTR, based

on some technical cases.
•	 Successful add(x): When pred.next := node.
•	 Successful remove(x): When curr.mark := true.

• Liveness:
– contains is wait-free.
– add, remove are blocking.
– add, remove satisfy progress, but not lockout-

freedom.

Lock-free list with wait-free

contains()

•	 Add and remove just like lock-free list.
•	 Contains() does not help, does not retry, just

like in lazy list.

Evaluation/Comparison

• Lock-free list with wait-free contains():
– contains() is wait-free
– add() and remove() are nonblocking (lock-free)
– Incurs overhead of CAS and of cleanup.

• Lazy list:
– contains() is wait-free
– add() and remove() are blocking, but use short

lock durations.
– Low overhead.

Application of list techniques
z Trees
z Skip lists
� multiple layers of links
� list at each layer is sublist of layer below
� logarithmic expected search time if each list has half
elements of next lower level
z probabilistic guarantees

2
5

8

7
90

Next time

z Transactional memory
z Reading:
�HS, Chapter 9
�Guerraoui, Kapalka

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

