6.852: Distributed Algorithms
Fall, 2009

Class 18

Today’s plan

e Atomic objects:

— Atomic snapshots of shared memory: Snapshot
atomic objects.

— Read/write atomic objects
 Reading: Sections 13.3-13.4

* Next:
— Wait-free synchronization.
— Reading:
» [Herliny, Walit-free synchronization]
 [Attiya, Welch, Chapter 15]

Well, that was the plan for next
time, but:

 We have an amended plan: Move classes 21 and
22 before 19 and 20.

e So really, next time:

— Shared-memory multiprocessor computation

— Techniques for implementing concurrent objects:
- Coarse-grained mutual exclusion
- Locking techniques
- Lock-free algorithms

. Reading:
- [Herlihy, Shavit] Chapter 9

Last time

Defined Atomic Objects.

Atomic object of a given type is similar to
an ordinary shared variable of that type,
but it allows concurrent accesses by
different processes.

Still looks “as if” operations occur one at
a time, sequentially, in some order
consistent with order of invocations and
responses.

Correctness conditions:
. Well-formedness, atomicity.

. Fault-tolerance conditions:
. Wait-free termination
. f-failure termination

Atomic

Object

Atomic sequences

e Suppose [is any well-formed
sequence of invocations and
responses. Then 3 is atomic
provided that one can

— Insert serialization points for all
complete operations.

— Select a subset @ of incomplete
operations.

— For each operation in @, insert a
serialization point somewhere after the
Invocation, and make up a response.

In such a way that moving all matched
Invocations and their responses to the
serialization points yields a trace of the
variable type.

Atomic

Object

Canonical atomic object automaton

e Canonical object automaton keeps internal copy of
the variable, plus delay buffers for invocations and
responses.

« 3 kinds of steps:
— Invoke: Invocation arrives, gets put into in-buffer.

— Perform: Invoked operation gets performed on the
Internal copy of the variable, response gets put into
resp-buffer.

— Respond: Response returned to user.
o Perform step corresponds to serialization point.

Canonical atomic object automaton

Equivalent to the original specification for a wait-
free atomic object, in a precise sense.

Can be used to prove correctness of algorithms
that implement atomic objects, e.g., using
simulation relations.

Theorem 1: Every fair trace of the canonical
automaton (with well-formed U) satisfies the
properties that define a wait-free atomic object.

Theorem 2: Every trace allowed by a wait-free
atomic object (with well-formed U) is a fair trace
of the canonical automaton.

Atomic objects vs. shared variables

 Can substitute atomic objects for shared
variables in a shared-memory system, and
the resulting system “behaves the same”.

« Theorem: For any execution o of Trans x

U, there is an execution o' of A x U (the

— o | U=da'|U (looks the same to the users), and

original shared-memory system) such that: @

— stop, events occur for the same i in o and o
(same processes falil).

 Needs a technical assumption.

« Construction also preserves liveness:
— o fair implies o fair.
— Provided that the atomic objects don’t introduce new blocking.
 E.g., wait-free.

 E.g., at most f failures for A and each atomic object guarantees f-
failure termination.

Can use Trans to justify:

* Implementing fault-tolerant
atomic objects using other
fault-tolerant atomic
objects.

e Building shared-memory
systems, including shared-
memory implementations of

fault-tolerant atomic objects,
hierarchically.

Snapshot Atomic Objects

Snapshot Atomic Objects

Most common shared-memory model:

— Single-writer multi-reader read/write
shared variables,

— Each process writes to one variable,
others read it.

Limitation: Process can read only one
variable at a time.

Atomic snapshot object adds

capability for one process to read
everyone’s variables in one step.

We will:

— Define atomic snapshot objects.

— Show that they do not add any power: they can be implemented
using only simple read/write shared variables, with wait-free
termination!

Variable type for snapshot objects

Assume a lower-level value domain W
(for the Individual processes to write),
with initial value wy.

Value domain for the snapshot object:
Vectors v of fixed length m, with values
in W.

Initial value: (wy, Wy, W, ...,Wg).

Invocations and responses:
— update(i,w):

* Writes value w into component i.

* Reponds “ack”.
— shap:

* Responds with the entire vector.
External interface: m “update ports”, p
“snapshot ports”.

Each update port i is for updates of
vector component i, update(i,w);.

shapshot
ports

Implementing snapshot atomic objects

e Goal: Implement an atomic snapshot
object using a shared-memory system,
one process per port, with only single-
writer multi-reader shared variables.

 Unbounded-variable algorithm [Afek,
Attiya, Dolev, Gafni,...]

e Also a bounded-variable version.

e Shared variables:

— For each update port i, shared variable x(i),
written by update process i, read by everyone.

— Each x(i) holds: snapshot
e val, an element of W. ports
* tag, a natural number.
» Some other stuff, we’ll see shortly.

* Processes use these separate read/write
variables to implement a single snapshot
atomic object.

ldea 1

e update(w,i);:

To write w to vector component i, update process i writes it in x(i).val.

— Adds a tag that uniquely identifies the update (a sequence number,

starting with 1).

e snap:

Read all the x(i)s, one at a time.
Read them all again.

If the two read passes yield the same tags, then return the vector of
X(i).val values.

* The vector actually appears in the memory at some point in real time.
« That can be the serialization point for the snap.

If not, then keep trying, until two consecutive read passes yield the
same tags.

This is correct, if it completes.

But the snap might never complete, because of continuing concurrent
updates.

ldea 2 (Clever)

Suppose the snap sees the same x(i) variable with four different tag
values t, t,, t;, t,.

Then it knows that the interval of the update operation that wrote t; is
entirely contained in the interval of the snap.

Why:
— Since the snap sees t,, I's update with tag t, doesn’t finish before the snap
starts.
— So I's update with tag t; starts after the snap starts.

— Since the snap sees t,, i's update with tag t, must start before the snap
finishes.

— So I's update with tag t, finishes before the snap finishes.
So, modify update process i:

— Before it writes to x(i), executes its own embedded-snap subroutine, which
IS just like a snap.

— When it writes (val, tag) to x(i), also writes the result of its embedded-snap.

Now, a snap that sees four different tags t,, t,, t5, t,, in X(i) returns the
recorded value of the embedded-snap associated with t,.

Embedded-snap behaves the same.

In Mmore detall:

e X(I) contains:

— val in W, initially w,

— tag, a natural number, initially O

— view, a vector indexed by { 1,...,m } of W, initially (wg)™.
e snhap:

— Repeatedly read all x(i)s (any order) until one of the following:

» 2 passes yield the same x(i).tag for every i.

— Then return the common vector of x(i).val values.
» For some i, four distinct x(i).tags are seen.

— Then return x(i).view from the third x(i).tag.

o update(i,w):
— Perform embedded-snap, same as snap.
— Write to x(i):
e val:=w
» tag := next sequence number (local count)
* view := vector returned by embedded snap
— Return ack.

Correctness

* Theorem: This algorithm implements a wait-free
snhapshot atomic object.

e Proof:
— Well-formedness: Clear.

— Wait-free termination: Easy---always returns by one
case or the other.

— Atomicity:

Show we can insert serialization points appropriately.

By Lemma 13.10, it's enough to consider executions in which all
operations complete.

So, fix an execution a of the algorithm + users, and assume that
all operations complete in a.

Insert serialization points:
— For update: Just after the write step.
— For snap: We need a more complicated rule:

Serialization points for snaps

e Assign serialization points to all snaps/embedded-snaps.

* For every snap/embedded-snap that terminates by
performing two read passes with the same tags (type 1):
— Choose any point between end of the first pass and beginning of
the second pass.

« For all the snap/embedded-snaps that terminate by finding
four distinct tags for some x(i) (type 2):

— Insert serialization points 1 by 1, in order of operation completion.
— For each snap/embedded-snap = in turn:

* The vector returned comes from some embedded-snap ¢ (from some
update) whose interval is completely contained within the interval of m:

| ¢ |

| T |

» By the ordering, ¢ has already been assigned a serialization point.
 Insert serialization point for « right after that for ¢.

Correctness of serialization points

« All serialization points are in the required intervals:

— updates:
* Obvious.
— Type 1 snaps/embedded-snaps (terminate with two identical read
phases):
* Obvious.

— Type 2 snaps/embedded-snaps (terminate with four distinct
values):
« Argue inclusion by induction on the number of response events.

« Use the containment property.
« Result of shrinking operations to their serialization points is

a serial trace:

— Because each snap returns the “correct” vector at its serialization
point (result of all writes up to that point).

— Easy for Type 1 snaps.
— For Type 2 snaps, use induction on number of response events.

Complexity

e Shared memory size:
— m variables, each of unbounded size (because of
X(i).tag).
— m variables for length m vector.
e Time for snapshot:
— < (Bm+1) m shared memory accesses
— O(m? 1) time
 Time for update:
— Also O(m? 1), because of embedded-snap.

Algorithm using bounded variables

Also by [Afek, Attiya, Dolev, Gafni,...], based on ideas by
Peterson.

Uses bounded tags.
Involves a slightly tricky handshake protocol.
See [Book, Section 13.3.3].

Other snapshot algorithms have been developed,
Improving further on complexity, more complicated.

Moral: Wait-free snapshot atomic objects can be
Implemented from simple wait-free read/write registers.

So they don’t add extra computing power.

Read/Write Atomic Objects

Read/write atomic objects

Consider implementing an atomic m- write
writer, p-reader register, using lower-
level primitives.

Q: What lower-level primitives?
Try 1-writer, 1-reader registers.

Several published algorithms, some
quite complicated.

Show a simple one, with unbounded read
tags [Vitanyi, Awerbuch]. ports

Caution: Bounded-tag algorithm in that
paper Iis incorrect.

Vitanyi-Awerbuch algorithm

m-writer, p-reader read/write atomic objects from 1-writer,
1-reader read/write registers.

Use n?shared variables, n = m + p:
Caps for high-level operations

X(1,])) has:
— val in V, initially v, WRITE procs READ procs
— tag, a natural number, initially O WfiteA Wj{e
— index, a write process number, initially 1 (AN A
1,2, ..., m m+1l, m+2,..., n
_
1
WRITE procs [2
read .
_ m
C m+l X(i.j)
READ procs m+2 read by |,
read <L written by j
n
N~

Vitanyi-Awerbuch algorithm

« WRITE(V);:
— Process i reads all variables in its row.
— Let k = largest tag it sees.
— Writes to each variable in its column:
e val :=v, tag ;= k+1, index =i
— Responds “ack”.
e READ;
— Process i reads all variables in its row.

— Let (v,k,)) be a triple with maximum (tag,index) (lexicographic
order).

— “Propagates” this information by writing to each variable in its
column:

« val :=v, tag =k, index :=j
— Finally, responds v.

Correctness

 Theorem: Vitanyi-Awerbuch implements a wait-free m-writer

p-reader read/write atomic object.
 Well-formed, wait-free: Easy.
o Atomicity:

— Proceed as in snapshot proof, describing exactly where to put the

serialization points?
— But not so obvious where to put them:
 E.g., each WRITE and READ does many write steps.

« Contrast. Each update in snapshot algorithm does just one write step.

» Placement of serialization points seems to be sensitive to “races”
between processes reading their rows and other processes writing their
columns.

— Use a different proof method:

» Define a partial ordering of the high-level operations, based on
(tag,index), and prove that the partial order satisfies certain conditions:

A useful lemma

Let B be a (finite or infinite) sequence of invocations and
responses for a read/write atomic object, that is well-formed
for each I, and that contains no incomplete operations.

Let I1 be the set of operations in .

Suppose there is an irreflexive partial order < of I1
satisfying:
1. For any operation r« in I, there are only finitely many operations ¢
such that ¢ < .

2. If the response for © precedes the invocation for ¢ in 3, then we don’t
have ¢ < .

3. Ifrisa WRITE in IT and ¢ is any operation in II then either t < ¢ or
¢ <.

4. Value returned by each READ is the one written by the last

preceding WRITE, according to <. (Or v,, If there Is no such
WRITE.)

Then [satisfies the atomicity property.

Proof of lemma

Insert serialization points using the rule:

— Insert serialization point for r just after the latest of the invocations for = and
for all operations ¢ with ¢ < m.

— Condition 1 implies this is well-defined.

— Order contiguous serialization points consistently with <.
Claim 1: The order of the serialization points is consistent with the <
ordering on IT; that is, if ¢ < n then the serialization point for ¢ precedes
the serialization point for r.
Claim 2: The serialization point for each = is in the interval of .

— Obviously after the invocation of .

— Could it be after the response of n?

— No: If it were, then the invocation for some ¢ < = would come after the
response of =, violating Condition 2.

Claim 3: Each READ returns the value of the WRITE whose
serialization point comes right before the READ’s serialization point.
— Condition 3 says all WRITES are ordered w.r.t. everything.

— Condition 4 says that the READ returns the result written by the last
preceding WRITE in <.

— Since order of ser. pts. is consistent with <, that’s the right value to return.

Using lemma to show atomicity for
[Vitanyl, Awerbuch] algorithm

Consider any execution a of V-A, assume no incomplete
operations.

Construct a partial order based on (tag,index) pairs:
— m <¢Iff
« 1 writes (or propagates) a smaller tag pair than ¢, or

« 1 and ¢ write (or propagate) the same tag pair, =is a WRITE and ¢ is a
READ.

— That is, iff

» tagpair(m) < tagpair(s), or
« tagpair(m) = tagpair(¢), = is a WRITE and ¢ is a READ.

Show this satisfies the Properties 1-4.

Condition 1 follows from Condition 2 and the fact that there
are no incomplete operations.

Show Condition 2:

Condition 2

 Claim: The (tag,index) pairs in any particular
variable x(1,])) never decrease during a.

e Proof of Claim 1:
— X(1,)) Is written only by process .
— J's high-level operations are sequential.

— Each operation of | involves reading row j, choosing a
tag pair > the maximum one it sees, then writing it to
column j.

— Among the variables | reads is the diagonal x(J,j), SO J's
chosen pair is > the one in X(},)).

— Since x(i,J) contains the same pair as X(J,J), J'S chosen
pair is also > the one in x(1,)).

— Writes x(i,j) with this tag pair, nondecreasing.

Condition 2

 Condition 2: If the response for n precedes the
iInvocation for ¢ in 3, then we can’t have ¢ < r.

e Proof:
— Suppose we have: m - ¢

— Then before the response event, © has written tagpair(m)
to its entire column.

— So (by Claim 1), ¢ reads a tagpair > tagpair(n).

— Then (by the way the algorithm works), ¢ chooses a tag
pair, tagpair(¢), that is > tagpair(x); furthermore, if ¢ is a
WRITE, then tagpair(¢) > tagpair(n).

— Then we can’t have ¢ < «:

« Since tagpair(¢) > tagpair(r), the only way we could have ¢ <=
IS If tagpair(¢p) = tagpair(rn), ¢ isa WRITE and =t is a READ (by
definition of <).

» But in this case, tagpair(¢) > tagpair(m), contradiction.

Condition 3

Condition 3: WRITEs are ordered with respect to
each other and with respect to all READs.

Proof:

— Follows because all WRITESs get distinct tagpairs.
— Why distinct?

 Different ports: Different indices.

e Same port i

— WRITES on port i are sequential.

— Each WRITE by i reads its previous tag in its own diagonal
variable x(i,i) and chooses a larger tag.

Condition 4: LTTR

Apply the Lemma, implies that V-A satisfies
atomicity, as needed.

Complexity

e Shared memory size:
— n? variables, each of unbounded size (because
of x(i).tag).
 Time for read:
— <2 (m + p) shared memory accesses
— O((m + p) I) time
e Time for write:
— Also O((m + p))

More on read/write atomic objects

[Vitanyi, Awerbuch] algorithm is not too costly in
time, but uses unbounded variables.

. : . : write
Q: Can we implement multi-writer multi-reader
atomic objects in terms of single-writer single-
reader registers, using bounded variables?
A:. Yes. Several published algorithms:
— [Burns, Peterson]
— [Dolev, Shavit]
— [Vidyasankar]
— Bounded-tag algorithm in [Vitanyi, Awerbuch]
incorrect. read
Fairly complicated, costly. ports

Usually divide the problem into:
— 1-writer multi-reader from 1-writer 1-reader.
— Multi-writer multi-reader from 1-writer multi-reader.

Bloom algorithm

* A simple special case, illustrates:
— Typical difficulties that arise
— Interesting proof methods

o 2-writer multi-reader register from
1-writer multi-reader registers

e Shared variables:
— X(1), x(2), with:
e val in V, initially v,
e tag in {0,1}, initially O
— X(1) written by WRITER 1, read by
everyone

— X(2) written by WRITER 2, read by
everyone

WRITE
ports

READ
ports 4

Bloom algorithm

« WRITE(V);:
— Read x(2).tag, say b
— Write: 1
e X(1).val :=v, \é\(/)l?th
e X(1).tag:=1-Db 2
— Tries to make tags unequal.
« WRITE(V),: 3
— Read x(1).tag, say b READ
— Write: ports - 4
o X(2).val :=v,
 X(2).tag :=b
— Tries to make tags equal.
e READ:

— Read both registers.
— If tags are unequal then reread and return x(1).val.
— If tags are equal then reread and return x(2).val.

Correctness

e Well-formedness, wait-freedom: Clear
o Atomicity:
— Could use:

« Explicit serialization points, or
 Partial-order lemma

— Instead, use a simulation relation, mapping the
algorithm to a simpler unbounded-tag version

Unbounded-tag algorithm

Shared variables:

1
— X(1), x(2), with: WRITE
- valinV, initially v, ports 5 ite
* tag, a natural number;
initially x(1).tag = 0, x(2).tag = 1
WRITE(V),: 3
— Read x(2).tag, say t READ
— Write x(1).val := v, x(1).tag :==t + 1 ports 4
WRITE(V),:

— Read x(1).tag, say t
— Write x(2).val :=v, x(2).tag .=t +1
READ:

— Read both registers, get tags t, and t..

— If | t; - t, | £ 1 then reread the register x(i) with the higher tag and
return x(i).val.

— Else reread and return either (choose nondeterministically)

Why the nondeterministic choice?

Extra generality needed to make the simulation
relation from the Bloom algorithm work correctly.

The integer algorithm works even with the
nondeterministic choice.

The nondeterminism doesn’t significantly
complicate the integer algorithm.

Doesn’t complicate the proof at all; in fact, makes
It a little easier to see what’s needed.

Proof for integer algorithm

e Invariant:
— X(1).tag Is always even
— X(2).tag Is always odd
— | x(1).tag — x(2).tag | = 1

 Well-formedness, wait-freedom: Clear
e Atomicity:

— E.g., use the partial-order lemma.

— Define the partial order < using the tags:

* Order WRITESs by the tags they write.

» Break ties (must be sequential operations by the same WRITER) in
temporal order.

* Insert each READ just after the WRITE whose value it gets.
— Check Conditions 1-4 of the partial order lemma.

E.g., Condition 2

e Condition 2: If the response for © precedes the
iInvocation for ¢ in 3, then we can’t have ¢ < m.

* Proof:
— Suppose we have:
— Consider cases based on the types of © and ¢.
— Most interesting case: nis a WRITE, ¢ iIs a READ.
— Suppose WRITE = is done by WRITER 1, writes tag t.
— Must show we can’t have ¢ < .

— That is, we must show that READ ¢ must return either
the result written by WRITE = or one by some other
WRITE y with T < .

T I 1 ¢

Proof of Condition 2, cont’d

| | ¢
WRITE by i, tag t READ

Show ¢ must return either the result written by © or one by
some other WRITE y with t < .
When READ ¢ Is invoked, x(i).tag > t, by monotonicity.
At that point, x(2-i).tag > t — 1, by invariant.
Only possible problem: ¢ returns the value of a WRITE
with tag t — 1.
Suppose it does; then ¢ must see x(2-1).tag =t—1 on its
Initial read of x(2-1), and also on the third read.
What might ¢ see for x(i).tag on its initial read of x(i)?
2 possibilities:
— ¢ sees x(i).tag = t.
 Then it would reread x(i), contradiction.
— ¢ sees x(i).tag > t.
* Then by the time it sees this, x(2-i).tag is already >t — 1.
* So ¢ couldn’t see x(2-i).tag = t-1 on the third read, contradiction.

Where are we?

 Integer version of Bloom
algorithm (IB) implements a 2-
writer multi-reader atomic object
from 1-writer multi-reader
registers.

 Now show that the original
Boolean Bloom algorithm (BB)
Implements the integer version.

e Use a simulation relation from
BB to IB.

1
WRITE
ports

READ
ports 4

Simulation relation from BB to IB

If s Is a state of Boolean Bloom system, u a state of
IntegerBloom system, then define (s,u) in R exactly if:

— Each occurrence of a tag in BB is exactly the second low-order bit
of the corresponding tag occurrence in IB.

— All other state components are identical in the two systems.

Note this is multivalued: Each state of BB corresponds to
many states of IB.

Example: x(1)tag: 0000 0010 0100
:Br‘ltoegrf]r addl " add1| /a1 \pddl
x(2)tag: 0001 0011 0101

X(1).tag: 0 0

1
Boolean i
Bloom Set%v Set:\ /‘Set;t \;s,et_

X(2).tag:

R IS a simulation relation

Proof:

— Start states related:
 Second low-order bit of 0000 is 0
 Second low-order bit of 0001 is O

— Step condition:
« For any step (s, &, ') in BB, and any state u of IB such that (s,u)
In R, the corresponding step of IB is almost the same:

— Same kind of action, same process, same register...

* Must show:
— The IB step is enabled, and
— The state correspondence is preserved.

» Key facts:
— The write step of a WRITE preserves the state correspondence.

— The third read of a READ is always enabled in IB (on same
reqgister).

First key fact

The write step of a WRITE operation preserves the state
correspondence.

Proof:
— E.g., a WRITE by process 1.
— Writes to x(1).tag:
« 1-b, where b is the value read from x(2).tag, in BB.
e t+1, where t is the value read from x(2).tag, in IB.
— By relation R on the pre-states, b is the second low-order bit of t.
— We need to show that 1-b is the second low-order bit of t+1.
— Follows because:

* tisodd (by an invariant, process 2’s tag is always odd), and
* Incrementing an odd number always flips the second low-order bit.
— Example:
ot =101, b
1-

0
« t+1=110, =

b=1

— Argument for process 2 is similar.

Second key fact

 |B allows reading the same third register as BB.
e Proof:

— Choice of register is based on the tags read in the first
two reads.
« In BB: Read x(1).tag = by, x(2).tag = b,.
« InIB: Read x(1).tag =t;, X(2).tag = t,.

* By state correspondence, b, andb, are the second low-order bits
of t,and t, respectively.

— Consider cases:

e t,=t,+1
— Then IB reads from x(1) on third read.
— Since t, is even and t, is odd, second low-order bits are unequal.
— Thus, b, # b,, and so BB also reads from x(1) on third read.

e t,=10,+1
— Symmetric, both read from x(2) on the third read.

* Neither of these holds.
— Then IB allows either to be read.

Now where are we?

Argued simulation relation from Bloom to IB.
Implies every trace of Bloom is a trace of IB.

Earlier, showed that IB satisfies atomicity.

Trace inclusion implies that Bloom also
satisfies atomicity.

Theorem: The Bloom algorithm implements
a 2-writer multi-reader atomic object from 1-
writer multi-reader registers.

Unfortunately...

This algorithm doesn’t appear to extend to
three or more writers.

Algorithms exists that do this, but they are
much more complicated.

1
WRITE
ports

READ
ports 4

Next time...

* Wait-free computability
* The walt-free consensus hierarchy
 Reading:
— [Herlihy, Walt-free synchronization],
— [Attiya, Welch, Chapter 15]

MIT OpenCourseWare
Ihttp://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Well, that was the plan for next time, but:
	Last time
	Atomic sequences
	Canonical atomic object automaton
	Canonical atomic object automaton
	Atomic objects vs. shared variables
	Can use Trans to justify:
	Snapshot Atomic Objects
	Snapshot Atomic Objects
	Variable type for snapshot objects
	Implementing snapshot atomic objects
	Idea 1
	Idea 2 (Clever)
	In more detail:
	Correctness
	Serialization points for snaps
	Correctness of serialization points
	Complexity
	Algorithm using bounded variables
	Read/Write Atomic Objects
	Read/write atomic objects
	Vitanyi-Awerbuch algorithm
	Vitanyi-Awerbuch algorithm
	Correctness
	A useful lemma
	Proof of lemma
	Using lemma to show atomicity for [Vitanyi, Awerbuch] algorithm
	Condition 2
	Condition 2
	Condition 3
	Complexity
	More on read/write atomic objects
	Bloom algorithm
	Bloom algorithm
	Correctness
	Unbounded-tag algorithm
	Why the nondeterministic choice?
	Proof for integer algorithm
	E.g., Condition 2
	Proof of Condition 2, cont’d
	Where are we?
	Simulation relation from BB to IB
	R is a simulation relation
	First key fact
	Second key fact
	Now where are we?
	Next time…

