
6.852: Distributed Algorithms
Fall, 2009

Class 18

Today’s plan
• Atomic objects:

– Atomic snapshots of shared memory: Snapshot
atomic objects.

– Read/write atomic objects
• Reading: Sections 13.3-13.4
• Next:

– Wait-free synchronization.
– Reading:

• [Herlihy, Wait-free synchronization]
• [Attiya, Welch, Chapter 15]

Well, that was the plan for next
time, but:

• We have an amended plan: Move classes 21 and
22 before 19 and 20.

• So really, next time:
– Shared-memory multiprocessor computation
– Techniques for implementing concurrent objects:

− Coarse-grained mutual exclusion
− Locking techniques
− Lock-free algorithms

Reading:
− [Herlihy, Shavit] Chapter 9

Last time
• Defined Atomic Objects.

Atomic object of a given type is similar to
an ordinary shared variable of that type,
but it allows concurrent accesses by
different processes.
Still looks “as if” operations occur one at
a time, sequentially, in some order
consistent with order of invocations and
responses.
Correctness conditions:

Well-formedness, atomicity.
Fault-tolerance conditions:

Wait-free termination
f-failure termination

Atomic
Object

inv

resp

resp

inv

resp

inv

Atomic sequences
• Suppose β is any well-formed

sequence of invocations and
responses. Then β is atomic
provided that one can
– Insert serialization points for all

complete operations.
– Select a subset Φ of incomplete

operations.
– For each operation in Φ, insert a

serialization point somewhere after the
invocation, and make up a response.

In such a way that moving all matched
invocations and their responses to the
serialization points yields a trace of the
variable type.

Atomic
Object

inv

resp

resp

inv

resp

inv

Canonical atomic object automaton

• Canonical object automaton keeps internal copy of
the variable, plus delay buffers for invocations and
responses.

• 3 kinds of steps:
– Invoke: Invocation arrives, gets put into in-buffer.
– Perform: Invoked operation gets performed on the

internal copy of the variable, response gets put into
resp-buffer.

– Respond: Response returned to user.
• Perform step corresponds to serialization point.

Canonical atomic object automaton

• Equivalent to the original specification for a wait-
free atomic object, in a precise sense.

• Can be used to prove correctness of algorithms
that implement atomic objects, e.g., using
simulation relations.

• Theorem 1: Every fair trace of the canonical
automaton (with well-formed U) satisfies the
properties that define a wait-free atomic object.

• Theorem 2: Every trace allowed by a wait-free
atomic object (with well-formed U) is a fair trace
of the canonical automaton.

Atomic objects vs. shared variables
• Can substitute atomic objects for shared

variables in a shared-memory system, and
the resulting system “behaves the same”.

• Theorem: For any execution α of Trans ×
U, there is an execution α′ of A × U (the
original shared-memory system) such that:
– α | U = α′ | U (looks the same to the users), and
– stopI events occur for the same i in α and α′

(same processes fail).

p1

p2

pn

x1

x2

A

• Needs a technical assumption.
• Construction also preserves liveness:

– α fair implies α′ fair.
– Provided that the atomic objects don’t introduce new blocking.

• E.g., wait-free.
• E.g., at most f failures for A and each atomic object guarantees f-

failure termination.

Can use Trans to justify:

• Implementing fault-tolerant
atomic objects using other
fault-tolerant atomic
objects.

• Building shared-memory
systems, including shared-
memory implementations of
fault-tolerant atomic objects,
hierarchically.

P1

P2

Pn

P1x

P2x

Pnx

P1x

P2x

Pnx

Snapshot Atomic Objects

Snapshot Atomic Objects
• Most common shared-memory model:

– Single-writer multi-reader read/write
shared variables,

– Each process writes to one variable,
others read it.

• Limitation: Process can read only one
variable at a time.

• Atomic snapshot object adds
capability for one process to read
everyone’s variables in one step.

p1

p2

pn

x1

x2

A
U1

U2

Un xn

• We will:
– Define atomic snapshot objects.
– Show that they do not add any power: they can be implemented

using only simple read/write shared variables, with wait-free
termination!

Variable type for snapshot objects
• Assume a lower-level value domain W

(for the individual processes to write),
with initial value w0.

• Value domain for the snapshot object:
Vectors v of fixed length m, with values
in W.

• Initial value: (w0, w0, w0, …,w0).
• Invocations and responses:

– update(i,w):
• Writes value w into component i.
• Reponds “ack”.

– snap:
• Responds with the entire vector.

• External interface: m “update ports”, p
“snapshot ports”.

• Each update port i is for updates of
vector component i, update(i,w)i.

update
ports

snapshot
ports

1

m+1

m

m+p

2

m+2

Implementing snapshot atomic objects
• Goal: Implement an atomic snapshot

object using a shared-memory system,
one process per port, with only single-
writer multi-reader shared variables.

• Unbounded-variable algorithm [Afek,
Attiya, Dolev, Gafni,…]

• Also a bounded-variable version.
• Shared variables:

– For each update port i, shared variable x(i),
written by update process i, read by everyone.

– Each x(i) holds:
• val, an element of W.
• tag, a natural number.
• Some other stuff, we’ll see shortly.

• Processes use these separate read/write
variables to implement a single snapshot
atomic object.

update
ports

snapshot
ports

1

m+1

m

m+p

2

m+2

Idea 1
• update(w,i)i:

– To write w to vector component i, update process i writes it in x(i).val.
– Adds a tag that uniquely identifies the update (a sequence number,

starting with 1).
• snap:

– Read all the x(i)s, one at a time.
– Read them all again.
– If the two read passes yield the same tags, then return the vector of

x(i).val values.
• The vector actually appears in the memory at some point in real time.
• That can be the serialization point for the snap.

– If not, then keep trying, until two consecutive read passes yield the
same tags.

– This is correct, if it completes.
– But the snap might never complete, because of continuing concurrent

updates.

Idea 2 (Clever)
• Suppose the snap sees the same x(i) variable with four different tag

values t1, t2, t3, t4.
• Then it knows that the interval of the update operation that wrote t3 is

entirely contained in the interval of the snap.
• Why:

– Since the snap sees t1, i’s update with tag t2 doesn’t finish before the snap
starts.

– So i’s update with tag t3 starts after the snap starts.
– Since the snap sees t4, i’s update with tag t4 must start before the snap

finishes.
– So i’s update with tag t3 finishes before the snap finishes.

• So, modify update process i:
– Before it writes to x(i), executes its own embedded-snap subroutine, which

is just like a snap.
– When it writes (val, tag) to x(i), also writes the result of its embedded-snap.

• Now, a snap that sees four different tags t1, t2, t3, t4, in x(i) returns the
recorded value of the embedded-snap associated with t3.

• Embedded-snap behaves the same.

In more detail:
• x(i) contains:

– val in W, initially w0
– tag, a natural number, initially 0
– view, a vector indexed by { 1,…,m } of W, initially (w0)m.

• snap:
– Repeatedly read all x(i)s (any order) until one of the following:

• 2 passes yield the same x(i).tag for every i.
– Then return the common vector of x(i).val values.

• For some i, four distinct x(i).tags are seen.
– Then return x(i).view from the third x(i).tag.

• update(i,w):
– Perform embedded-snap, same as snap.
– Write to x(i):

• val := w
• tag := next sequence number (local count)
• view := vector returned by embedded snap

– Return ack.

Correctness
• Theorem: This algorithm implements a wait-free

snapshot atomic object.

• Proof:
– Well-formedness: Clear.
– Wait-free termination: Easy---always returns by one

case or the other.
– Atomicity:

• Show we can insert serialization points appropriately.
• By Lemma 13.10, it’s enough to consider executions in which all

operations complete.
• So, fix an execution α of the algorithm + users, and assume that

all operations complete in α.
• Insert serialization points:

– For update: Just after the write step.
– For snap: We need a more complicated rule:

Serialization points for snaps
• Assign serialization points to all snaps/embedded-snaps.
• For every snap/embedded-snap that terminates by

performing two read passes with the same tags (type 1):
– Choose any point between end of the first pass and beginning of

the second pass.
• For all the snap/embedded-snaps that terminate by finding

four distinct tags for some x(i) (type 2):
– Insert serialization points 1 by 1, in order of operation completion.
– For each snap/embedded-snap π in turn:

• The vector returned comes from some embedded-snap φ (from some
update) whose interval is completely contained within the interval of π:

• By the ordering, φ has already been assigned a serialization point.
• Insert serialization point for π right after that for φ.

π

φ

Correctness of serialization points

• All serialization points are in the required intervals:
– updates:

• Obvious.
– Type 1 snaps/embedded-snaps (terminate with two identical read

phases):
• Obvious.

– Type 2 snaps/embedded-snaps (terminate with four distinct
values):

• Argue inclusion by induction on the number of response events.
• Use the containment property.

• Result of shrinking operations to their serialization points is
a serial trace:
– Because each snap returns the “correct” vector at its serialization

point (result of all writes up to that point).
– Easy for Type 1 snaps.
– For Type 2 snaps, use induction on number of response events.

Complexity

• Shared memory size:
– m variables, each of unbounded size (because of

x(i).tag).
– m variables for length m vector.

• Time for snapshot:
– ≤ (3m+1) m shared memory accesses
– O(m2 l) time

• Time for update:
– Also O(m2 l), because of embedded-snap.

Algorithm using bounded variables

• Also by [Afek, Attiya, Dolev, Gafni,…], based on ideas by
Peterson.

• Uses bounded tags.
• Involves a slightly tricky handshake protocol.
• See [Book, Section 13.3.3].

• Other snapshot algorithms have been developed,
improving further on complexity, more complicated.

• Moral: Wait-free snapshot atomic objects can be
implemented from simple wait-free read/write registers.

• So they don’t add extra computing power.

Read/Write Atomic Objects

Read/write atomic objects
• Consider implementing an atomic m-

writer, p-reader register, using lower-
level primitives.

• Q: What lower-level primitives?
• Try 1-writer, 1-reader registers.
• Several published algorithms, some

quite complicated.
• Show a simple one, with unbounded

tags [Vitanyi, Awerbuch].
• Caution: Bounded-tag algorithm in that

paper is incorrect.

write
ports

read
ports

1

m+1

m

m+p

2

m+2

Vitanyi-Awerbuch algorithm
• m-writer, p-reader read/write atomic objects from 1-writer,

1-reader read/write registers.
• Use n2 shared variables, n = m + p:
• Caps for high-level operations
• x(i,j) has:

– val in V, initially v0
– tag, a natural number, initially 0
– index, a write process number, initially 1

1
2
…
m
m+1
m+2
…
n

WRITE procs
read

READ procs
read

1, 2, …, m, m+1, m+2,…, n

WRITE procs
write

READ procs
write

x(i,j)
read by i,
written by j

Vitanyi-Awerbuch algorithm
• WRITE(v)i:

– Process i reads all variables in its row.
– Let k = largest tag it sees.
– Writes to each variable in its column:

• val := v, tag := k+1, index := i
– Responds “ack”.

• READi:
– Process i reads all variables in its row.
– Let (v,k,j) be a triple with maximum (tag,index) (lexicographic

order).
– “Propagates” this information by writing to each variable in its

column:
• val := v, tag := k, index := j

– Finally, responds v.

Correctness
• Theorem: Vitanyi-Awerbuch implements a wait-free m-writer

p-reader read/write atomic object.
• Well-formed, wait-free: Easy.
• Atomicity:

– Proceed as in snapshot proof, describing exactly where to put the
serialization points?

– But not so obvious where to put them:
• E.g., each WRITE and READ does many write steps.
• Contrast: Each update in snapshot algorithm does just one write step.
• Placement of serialization points seems to be sensitive to “races”

between processes reading their rows and other processes writing their
columns.

– Use a different proof method:
• Define a partial ordering of the high-level operations, based on

(tag,index), and prove that the partial order satisfies certain conditions:

A useful lemma
• Let β be a (finite or infinite) sequence of invocations and

responses for a read/write atomic object, that is well-formed
for each i, and that contains no incomplete operations.

• Let Π be the set of operations in β.
• Suppose there is an irreflexive partial order < of Π

satisfying:
1. For any operation π in Π, there are only finitely many operations φ

such that φ < π.
2. If the response for π precedes the invocation for φ in β, then we don’t

have φ < π.
3. If π is a WRITE in Π and φ is any operation in Π then either π < φ or

φ < π.
4. Value returned by each READ is the one written by the last

preceding WRITE, according to <. (Or v0, if there is no such
WRITE.)

• Then β satisfies the atomicity property.

Proof of lemma
• Insert serialization points using the rule:

– Insert serialization point for π just after the latest of the invocations for π and
for all operations φ with φ < π.

– Condition 1 implies this is well-defined.
– Order contiguous serialization points consistently with <.

• Claim 1: The order of the serialization points is consistent with the <
ordering on Π; that is, if φ < π then the serialization point for φ precedes
the serialization point for π.

• Claim 2: The serialization point for each π is in the interval of π.
– Obviously after the invocation of π.
– Could it be after the response of π?
– No: If it were, then the invocation for some φ < π would come after the

response of π, violating Condition 2.
• Claim 3: Each READ returns the value of the WRITE whose

serialization point comes right before the READ’s serialization point.
– Condition 3 says all WRITES are ordered w.r.t. everything.
– Condition 4 says that the READ returns the result written by the last

preceding WRITE in <.
– Since order of ser. pts. is consistent with <, that’s the right value to return.

Using lemma to show atomicity for
[Vitanyi, Awerbuch] algorithm

• Consider any execution α of V-A, assume no incomplete
operations.

• Construct a partial order based on (tag,index) pairs:
– π < φ iff

• π writes (or propagates) a smaller tag pair than φ, or
• π and φ write (or propagate) the same tag pair, π is a WRITE and φ is a

READ.
– That is, iff

• tagpair(π) < tagpair(φ), or
• tagpair(π) = tagpair(φ), π is a WRITE and φ is a READ.

• Show this satisfies the Properties 1-4.
• Condition 1 follows from Condition 2 and the fact that there

are no incomplete operations.
• Show Condition 2:

Condition 2
• Claim: The (tag,index) pairs in any particular

variable x(i,j) never decrease during α.
• Proof of Claim 1:

– x(i,j) is written only by process j.
– j’s high-level operations are sequential.
– Each operation of j involves reading row j, choosing a

tag pair ≥ the maximum one it sees, then writing it to
column j.

– Among the variables j reads is the diagonal x(j,j), so j’s
chosen pair is ≥ the one in x(j,j).

– Since x(i,j) contains the same pair as x(j,j), j’s chosen
pair is also ≥ the one in x(i,j).

– Writes x(i,j) with this tag pair, nondecreasing.

Condition 2
• Condition 2: If the response for π precedes the

invocation for φ in β, then we can’t have φ < π.
• Proof:

– Suppose we have:
– Then before the response event, π has written tagpair(π)

to its entire column.
– So (by Claim 1), φ reads a tagpair ≥ tagpair(π).
– Then (by the way the algorithm works), φ chooses a tag

pair, tagpair(φ), that is ≥ tagpair(π); furthermore, if φ is a
WRITE, then tagpair(φ) > tagpair(π).

– Then we can’t have φ < π:
• Since tagpair(φ) ≥ tagpair(π), the only way we could have φ < π

is if tagpair(φ) = tagpair(π), φ is a WRITE and π is a READ (by
definition of <).

• But in this case, tagpair(φ) > tagpair(π), contradiction.

π φ

Condition 3
• Condition 3: WRITEs are ordered with respect to

each other and with respect to all READs.
• Proof:

– Follows because all WRITEs get distinct tagpairs.
– Why distinct?

• Different ports: Different indices.
• Same port i:

– WRITEs on port i are sequential.
– Each WRITE by i reads its previous tag in its own diagonal

variable x(i,i) and chooses a larger tag.

• Condition 4: LTTR
• Apply the Lemma, implies that V-A satisfies

atomicity, as needed.

Complexity

• Shared memory size:
– n2 variables, each of unbounded size (because

of x(i).tag).
• Time for read:

– ≤ 2 (m + p) shared memory accesses
– O((m + p) l) time

• Time for write:
– Also O((m + p) l)

More on read/write atomic objects
• [Vitanyi, Awerbuch] algorithm is not too costly in

time, but uses unbounded variables.
• Q: Can we implement multi-writer multi-reader

atomic objects in terms of single-writer single-
reader registers, using bounded variables?

• A: Yes. Several published algorithms:
– [Burns, Peterson]
– [Dolev, Shavit]
– [Vidyasankar]
– …
– Bounded-tag algorithm in [Vitanyi, Awerbuch]

incorrect.
• Fairly complicated, costly.
• Usually divide the problem into:

– 1-writer multi-reader from 1-writer 1-reader.
– Multi-writer multi-reader from 1-writer multi-reader.

write
ports

read
ports

1

m+1

m

m+p

2

m+2

Bloom algorithm
• A simple special case, illustrates:

– Typical difficulties that arise
– Interesting proof methods

• 2-writer multi-reader register from
1-writer multi-reader registers

• Shared variables:
– x(1), x(2), with:

• val in V, initially v0
• tag in {0,1}, initially 0

– x(1) written by WRITER 1, read by
everyone

– x(2) written by WRITER 2, read by
everyone

WRITE
ports

READ
ports

1

2

3

4

write

write

Bloom algorithm
• WRITE(v)1:

– Read x(2).tag, say b
– Write:

• x(1).val := v,
• x(1).tag := 1 - b

– Tries to make tags unequal.
• WRITE(v)2:

– Read x(1).tag, say b
– Write:

• x(2).val := v,
• x(2).tag := b

– Tries to make tags equal.
• READ:

– Read both registers.
– If tags are unequal then reread and return x(1).val.
– If tags are equal then reread and return x(2).val.

WRITE
ports

READ
ports

1

2

3

4

write

write

Correctness

• Well-formedness, wait-freedom: Clear
• Atomicity:

– Could use:
• Explicit serialization points, or
• Partial-order lemma

– Instead, use a simulation relation, mapping the
algorithm to a simpler unbounded-tag version

Unbounded-tag algorithm
• Shared variables:

– x(1), x(2), with:
• val in V, initially v0
• tag, a natural number;

initially x(1).tag = 0, x(2).tag = 1
• WRITE(v)1:

– Read x(2).tag, say t
– Write x(1).val := v, x(1).tag := t + 1

• WRITE(v)2:
– Read x(1).tag, say t
– Write x(2).val := v, x(2).tag := t + 1

• READ:
– Read both registers, get tags t1 and t2.
– If | t1 - t2 | ≤ 1 then reread the register x(i) with the higher tag and

return x(i).val.
– Else reread and return either (choose nondeterministically)

WRITE
ports

READ
ports

1

2

3

4

write

write

Why the nondeterministic choice?

• Extra generality needed to make the simulation
relation from the Bloom algorithm work correctly.

• The integer algorithm works even with the
nondeterministic choice.

• The nondeterminism doesn’t significantly
complicate the integer algorithm.

• Doesn’t complicate the proof at all; in fact, makes
it a little easier to see what’s needed.

Proof for integer algorithm
• Invariant:

– x(1).tag is always even
– x(2).tag is always odd
– | x(1).tag – x(2).tag | = 1

• Well-formedness, wait-freedom: Clear
• Atomicity:

– E.g., use the partial-order lemma.
– Define the partial order < using the tags:

• Order WRITEs by the tags they write.
• Break ties (must be sequential operations by the same WRITER) in

temporal order.
• Insert each READ just after the WRITE whose value it gets.

– Check Conditions 1-4 of the partial order lemma.

E.g., Condition 2
• Condition 2: If the response for π precedes the

invocation for φ in β, then we can’t have φ < π.
• Proof:

– Suppose we have:
– Consider cases based on the types of π and φ.
– Most interesting case: π is a WRITE, φ is a READ.
– Suppose WRITE π is done by WRITER i, writes tag t.
– Must show we can’t have φ < π.
– That is, we must show that READ φ must return either

the result written by WRITE π or one by some other
WRITE ψ with π < ψ.

π φ

Proof of Condition 2, cont’d

• Show φ must return either the result written by π or one by
some other WRITE ψ with π < ψ.

• When READ φ is invoked, x(i).tag ≥ t, by monotonicity.
• At that point, x(2-i).tag ≥ t – 1, by invariant.
• Only possible problem: φ returns the value of a WRITE

with tag t – 1.
• Suppose it does; then φ must see x(2-i).tag = t – 1 on its

initial read of x(2-i), and also on the third read.
• What might φ see for x(i).tag on its initial read of x(i)?
• 2 possibilities:

– φ sees x(i).tag = t.
• Then it would reread x(i), contradiction.

– φ sees x(i).tag > t.
• Then by the time it sees this, x(2-i).tag is already > t – 1.
• So φ couldn’t see x(2-i).tag = t-1 on the third read, contradiction.

π φ

WRITE by i, tag t READ

Where are we?

• Integer version of Bloom
algorithm (IB) implements a 2-
writer multi-reader atomic object
from 1-writer multi-reader
registers.

• Now show that the original
Boolean Bloom algorithm (BB)
implements the integer version.

• Use a simulation relation from
BB to IB.

WRITE
ports

READ
ports

1

2

3

4

write

write

Simulation relation from BB to IB

• If s is a state of Boolean Bloom system, u a state of
IntegerBloom system, then define (s,u) in R exactly if:
– Each occurrence of a tag in BB is exactly the second low-order bit

of the corresponding tag occurrence in IB.
– All other state components are identical in the two systems.

• Note this is multivalued: Each state of BB corresponds to
many states of IB.

• Example: 0000

0001 0011 0101

01000010x(1).tag:

x(2).tag:
add 1 add 1 add 1 add 1

0

0 1 0

01x(1).tag:

x(2).tag:
set ≠ set = set ≠ set =

Integer
Bloom

Boolean
Bloom

R is a simulation relation
• Proof:

– Start states related:
• Second low-order bit of 0000 is 0
• Second low-order bit of 0001 is 0

– Step condition:
• For any step (s, π, s′) in BB, and any state u of IB such that (s,u)

in R, the corresponding step of IB is almost the same:
– Same kind of action, same process, same register…

• Must show:
– The IB step is enabled, and
– The state correspondence is preserved.

• Key facts:
– The write step of a WRITE preserves the state correspondence.
– The third read of a READ is always enabled in IB (on same

register).

First key fact
• The write step of a WRITE operation preserves the state

correspondence.
• Proof:

– E.g., a WRITE by process 1.
– Writes to x(1).tag:

• 1-b, where b is the value read from x(2).tag, in BB.
• t+1, where t is the value read from x(2).tag, in IB.

– By relation R on the pre-states, b is the second low-order bit of t.
– We need to show that 1-b is the second low-order bit of t+1.
– Follows because:

• t is odd (by an invariant, process 2’s tag is always odd), and
• Incrementing an odd number always flips the second low-order bit.

– Example:
• t = 101, b = 0
• t + 1 = 110, 1-b = 1

– Argument for process 2 is similar.

Second key fact
• IB allows reading the same third register as BB.
• Proof:

– Choice of register is based on the tags read in the first
two reads.

• In BB: Read x(1).tag = b1, x(2).tag = b2.
• In IB: Read x(1).tag = t1, x(2).tag = t2.
• By state correspondence, b1 and b2 are the second low-order bits

of t1 and t2, respectively.
– Consider cases:

• t1 = t2 + 1
– Then IB reads from x(1) on third read.
– Since t1 is even and t2 is odd, second low-order bits are unequal.
– Thus, b1 ≠ b2, and so BB also reads from x(1) on third read.

• t2 = t1 + 1
– Symmetric, both read from x(2) on the third read.

• Neither of these holds.
– Then IB allows either to be read.

Now where are we?
• Argued simulation relation from Bloom to IB.
• Implies every trace of Bloom is a trace of IB.
• Earlier, showed that IB satisfies atomicity.
• Trace inclusion implies that Bloom also

satisfies atomicity.

• Theorem: The Bloom algorithm implements
a 2-writer multi-reader atomic object from 1-
writer multi-reader registers.

• Unfortunately…
• This algorithm doesn’t appear to extend to

three or more writers.
• Algorithms exists that do this, but they are

much more complicated.

WRITE
ports

READ
ports

1

2

3

4

write

write

Next time…

• Wait-free computability
• The wait-free consensus hierarchy
• Reading:

– [Herlihy, Wait-free synchronization],
– [Attiya, Welch, Chapter 15]

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Well, that was the plan for next time, but:
	Last time
	Atomic sequences
	Canonical atomic object automaton
	Canonical atomic object automaton
	Atomic objects vs. shared variables
	Can use Trans to justify:
	Snapshot Atomic Objects
	Snapshot Atomic Objects
	Variable type for snapshot objects
	Implementing snapshot atomic objects
	Idea 1
	Idea 2 (Clever)
	In more detail:
	Correctness
	Serialization points for snaps
	Correctness of serialization points
	Complexity
	Algorithm using bounded variables
	Read/Write Atomic Objects
	Read/write atomic objects
	Vitanyi-Awerbuch algorithm
	Vitanyi-Awerbuch algorithm
	Correctness
	A useful lemma
	Proof of lemma
	Using lemma to show atomicity for [Vitanyi, Awerbuch] algorithm
	Condition 2
	Condition 2
	Condition 3
	Complexity
	More on read/write atomic objects
	Bloom algorithm
	Bloom algorithm
	Correctness
	Unbounded-tag algorithm
	Why the nondeterministic choice?
	Proof for integer algorithm
	E.g., Condition 2
	Proof of Condition 2, cont’d
	Where are we?
	Simulation relation from BB to IB
	R is a simulation relation
	First key fact
	Second key fact
	Now where are we?
	Next time…

