
6.852: Distributed Algorithms

Fall, 2009


Class 17




Today’s plan

• Atomic objects: 

– Basic definitions 
– Canonical atomic objects 
– Atomic objects vs. shared variables 

• Reading: Sections 13.1-13.2 
• Next time: 

– More atomic objects: 
• Atomic snapshots 
• Atomic read/write registers 

– Reading: Sections 13.3-13.4 



Shared memory model 
z Single I/O automaton with processes and variables


“inside”.

z Separation expressed by locality restrictions on the


actions and transitions.

z Processes and variables aren’t separate automata. 
z Doesn’t exploit I/O automaton (de)composition. 
z Can’t talk about implementing shared variables with


lower-level distributed algorithms.

z Q: Could we model each process and variable as


a separate I/O automaton?

� Split operations on variables into separate 


invocation and response actions.
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�	 But we still want an invocation/response to “look 

like” an instantaneous access.


z Define atomic objects: 
� Interface has invocation inputs and response outputs. 
� Invocation/response behavior “looks like” that of an instantaneous-access 

shared variable. 
z AKA linearizable objects [Herlihy, Wing] 



Atomic objects


Wait-free termination resp 

f-failure termination 

z Interface has invocation inputs and response outputs. 

Atomic
Object

resp

inv 
z Invocation/response behavior “looks like” that of an resp

instantaneous-access shared variable. 

inv 
z Atomic object of a given type is similar to an ordinary


shared variable of that type, but it allows concurrent

accesses by different processes.


z Still looks “as if” operations occur one at a time,

sequentially, in some order consistent with order of

invocations and responses. inv


z Fault-tolerance conditions, as for consensus: 
z 

z 

z Separating invocations and responses allows us to consider lower-level
implementations of these objects. 
z Shared-memory algorithms, or distributed network algorithms. 
z For shared memory algorithms, can develop algorithms hierarchically, using

several levels. 
z Atomic objects are important building blocks for multiprocessor systems and

distributed systems. 



Replacing variables with atomic objects

•	 Now processes and objects are all I/O automata, combined

using ordinary automata composition. 
•	 Interactions: 

–	 Processes access atomic objects via invocations, get responses. 
–	 Invocations are outputs of processes, inputs of objects. 
–	 Responses are outputs of objects, inputs of processes. 
–	 May be a gap between invocation and response. 
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Replacing variables with atomic objects 

• “Locality” is now automatic from I/O automata composition.

• More complicated than shared variables: 

– More actions (invocations/responses instead of entire accesses). 
– Algorithms have more steps, more bookkeeping. 
– More stuff to reason about. 

• More realistic system model. 
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Atomic objects

z Replace variables with atomic objects 
�can decompose system in different ways 

z what a process is depends on your point of view 
z can compose objects into larger objects 
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�but we need some restrictions to get “equivalance” 
�handling failures, in particular, is tricky 

z delay for later in lecture 
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Atomic objects: 

Basic definitions




Atomic object definitions

z Variable type: (V, v0, invs, resps, f)


� V: Set of values

� v0: Initial value

� invs: Set of invocations

� resps: Set of responses

� f: invs × V o resps × V


�	 Describes responses to an invocation and associated changes to
the variable. 

z AKA Sequential specification [Herlihy], State machine

[Lamport]


z Execution: v0, a1, b1, v1, a2, b2, v2, a3, b3, v3, a4, b4, v4,...

� vi is value; ai is invocation; bi is response

� Ends with value (if finite).

� (bi, vi) = f(ai, vi-1) for i > 0.


z Trace: a1, b1, a2, b2, a3, b3, a4, b4,... (i.e., just invocations and
responses, but no variable values) 



Atomic objects
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•	 Atomic object A of a given type is an I/O
automaton with a particular kind of
interface, satisfying some conditions: 
–	 Well-formedness 
–	 Atomicity 
–	 Liveness (termination) 

•	 External interface: 
�	 Assume “ports” 1, 2, ..., n (one for each


process).

–	 May restrict so that some invocations are


allowed on some of the ports, not all. 

–	 Also allow stop inputs on all ports, as


before.

•	 Compose with users Ui, assumed to

preserve well-formedness (alternating
invocations and responses at each port,
starting with invocation). 



Conditions satisfied by A

•	 Preserves well-formedness (alternating invocations and

responses at each port, starting with invocation). 
•	 Atomicity: 

–	 First define when a well-formed sequence E of invocations and 
responses (at all ports) is atomic. 

–	 Then A satisfies atomicity iff all well-formed executions of A u U, 
where U = 3 Ui (for any users) have atomic traces. 

•	 First suppose that all invocations have matching responses 
(that is, the sequence E is complete). 

•	 Then we say E is atomic provided that it’s possible to insert 
a serialization point (dummy event) somewhere between
each invocation and matching response, such that, if all the
invs and resps are moved to their serialization points, the 
result is a trace of the (serial) variable type. 



Atomicity for complete sequences 

•	 Suppose E is a complete well-formed sequence of invocations and 

responses. 
Then E is atomic provided that one can insert a serialization point
between each invocation and matching response, such that, if all the
invs and resps are moved to their serialization points, the result is a 
trace of the (serial) variable type. 

•	 Examples: Initial value 0. 

* 
write(8) ack	 write(8) ack 

read 0 
* 

* 

read 8 
* 

•	 read, 0, write(8), ack is correct for serial specification. 
•	 write(8), ack, read, 8 is also correct. 



Alternative definition [Herlihy]


•	 Suppose E is a complete well-formed sequence of 
invocations and responses. Then E is atomic 
provided that it can be reordered to a trace of the 
variable type, while preserving: 
– The order of events at each process, and 
– The order of any response and following invocation 

(anywhere). 
•	 Equivalent. 



Complication:

Incomplete operations


• Q:  What about sequences E containing some incomplete

operations? Which ops should get serialization points?


•	 We can’t require that we include serialization points for all 
such operations (operation might fail right after invocation). 

•	 We can’t require that we exclude all such operations
(operation might fail just before returning). 

•	 So, we leave it optional… 
•	 Require that it’s possible to: 

– Insert serialization points for all complete operations. 
– Select  some subset ) of incomplete operations (arbitrary). 
–	 For each operation in ), insert a serialization point somewhere

after the invocation, and make up a response. 
In such a way that moving all matched invs and their resps to the

serialization points yields a trace of the variable type. 



Atomic sequences, in general 

• Suppose E is any well-formed sequence of 
invocations and responses.

Then E is atomic provided that one can 

– Insert serialization points for all complete operations. 
– Select a subset ) of incomplete operations. 
– For each operation in ), insert a serialization point 

somewhere after the invocation, and make up a 
response. 

In such a way that moving all matched invs and their 
resps to the serialization points yields a trace of the 
variable type. 



More atomicity examples


• Initial value 0.


0read 

write(8) 

read 8 

write(8) 
* 

* 
* 

• read, 0 is correct for serial specification.

• write(8), ack, read, 8 is correct. 



Atomic objects

z Define acceptable behavior using trace properties 
� well-formedness (for port i) 

z alternating invocation/response (beginning with invocation) for i 
z whole trace is well-formed if well-formed for every port


� sequential

z alternating invocation/response for whole trace 
z trace for the variable type


� complete

z every invocation has matching response 
� invocation+matching response = complete operation 
� invocation without matching response = incomplete/pending operation 



Another atomicity example 
z Initial value 0. 

read 0 

write(8) 

read 0 read 0 read 0 
* *** 

z read, 0, read, 0,…(forever) is correct. 
z The write does not (cannot) get a serialization point.




Some non-atomic sequences 
• Write not seen: 

read 0 

write(8) ack 

• Out-of-order reads


read 8 read 8 read 0 read 0 

write(8)




Note on the atomicity property

•	 [Well-formedness + atomicity] is a safety property. 
•	 More precisely, let P be the trace property, for sequences of

invocations and responses, expressing: 
–	 Well-formedness for every port, plus 
– Atomicity.


Then P is a safety property.

•	 In other words, if this combination doesn’t hold, the violation 

occurs at some particular point in the sequence. 
•	 Plausible, but not completely obvious---proved in book, p.

405. 
–	 Uses Konig’s Lemma to show limit-closure. 
–	 That is, if we can assign serialization points correctly to

successively-extended finite sequences, then there is a way to
assign them to their infinite limiting sequence. 



Back to the conditions satisfied by 

an atomic object A…


• Preserves well-formedness. 
• Atomicity: 

– We just defined when a well-formed sequence E 
of invocations and responses (at all ports) is 
atomic. 

– Then A satisfies atomicity iff all well-formed 
executions of A u U, where U = 3 Ui (for any 
users) have atomic traces. 

• Liveness (termination): 



Liveness


•	 Failure-free termination (basic requirement 
for atomic objects): 
– In any fair failure-free execution of A u U, every 

invocation has a matching response. 
– “Fair” here refers to fairness in the underlying 


I/O automata model---A keeps taking steps.

•	 Definition: A is an atomic object if it satisfies 

well-formedness, atomicity, and failure-free 
termination (for all U). 



Other liveness conditions

•	 As for consensus, we sometimes consider other

liveness conditions, expressing fault-tolerance 
properties. 

•	 Wait-free termination: In any fair execution of A u 
U, every invocation on a non-failing port gets a 
response. 

•	 f-failure termination, 0 d f d n: In any fair
execution of A u U in which failures occur on d f 
ports, every invocation on a non-failing port gets a 
response. 



Example: A wait-free atomic object

•	 Variable type: 

–	 Natural numbers, initial value 0. 
–	 read and increment operations. 

•	 Atomic object supports read and increment ops on all ports.

•	 Implement with an n-process shared-memory system. 
•	 Shared read/write registers 

– x(i), 1 d i d n, natural number, initially 0.

– x(i)  writable by i, readable by all.


•	 To implement incrementi: Process i increments its own 
variable x(i). 
–	 Can do this using a write operation, by remembering the previous

value written. 
•	 To implement readi: Process i reads all the shared variables,

one at a time, in any order, and returns the sum. 

• Q:  Why does this work? 



Read/Increment algorithm

• incrementi: Increment x(i). 
•	 readi: Read all the shared variables, one at a time, in any order, and return 

the sum. 

•	 Proof: 
– Well-formed, wait-free: Immediate.

– Atomic:  Say where to put the serialization points.


• For  increment: At the actual write step. 
• For complete  read: 

–	 Must be somewhere between invocation and response. 
–	 Returns a value v such that v t the sum of the x’s at the beginning, but v 
d the sum at the end. 

–	 Since the sum increases by one at a time, there is some point where sum 
of the x’s = v. 

–	 Put the serialization point there. 
•	 For incomplete read: Don’t bother. 

•	 Correctness depends on restricted form of the operations. 



Canonical Atomic Object 

Automata




Canonical atomic object 

automaton


•	 Describe the set of traces acceptable for a wait-free atomic
object as the fair traces of a particular canonical object 
automaton; see Section 13.1.2. 

•	 Could generalize to f-failure termination (see later). 
•	 Canonical object automaton keeps internal copy of the

variable, plus delay buffers for invocations and responses. 
•	 Behavior: 3 kinds of steps: 

–	 Invoke: Invocation arrives, gets put into in-buffer. 
–	 Perform: Invoked operation gets performed on the internal copy of

the variable, response gets put into resp-buffer. 
–	 Respond: Response returned to user. 

•	 Internal perform step is convenient, even though we’re
interested only in specifying external behavior. 

•	 Perform step corresponds to serialization point. 



Canonical atomic object 

automaton


• Liveness: 
– One task for each port i. 
– Use the usual I/O automata convention that 

tasks keep getting turns to take steps. 
– To model the effects of failures, we include a 

specially dummyi action in each task i, which 
gets enabled when stopi occurs. 



Canonical atomic object 

automaton


•	 Equivalent to the original specification for a wait-
free atomic object, in a precise sense. 

•	 Can be used to prove correctness of algorithms
that implement atomic objects, e.g., using
simulation relations. 

•	 Theorem 1: Every fair trace of the canonical
automaton (with well-formed U) satisfies the
properties that define a wait-free atomic object. 

•	 Theorem 2: Every trace allowed by a wait-free
atomic object (with well-formed U) is a fair trace
of the canonical automaton. 



Canonical atomic object 

automaton


z An equivalent definition as an automaton C 
� external actions as before 
� internal actions: perform(a,i) 
� state variables: 

z val: V, initially v0 
z inv_buffer: set of (i,a), initially empty 
z resp_buffer: set of (i,b), initially empty


� transitions:

z inv(a,i) adds (i,a) to inv_buffer 
z perform(a,i) removes (i,a) from inv_buffer, applies a to val, and

puts (i,b) into resp_buffer, where b is the response from applying
a to val 

z resp(b,i) takes (i,b) removes resp_buffer

� one task for each i




Canonical atomic object 

automaton


z For C and U as defined previously: 
�£ � traces(C×U) iff £ is well-formed and atomic 
�£ � fairtraces(C×U) iff £ is well-formed, atomic
and complete 

z Proof 
�well-formedness 
�atomicity 
�completeness 
�need to show both directions 

z An automaton A is atomic if it implements C. 



Atomic Objects 

vs.


Shared Variables




Atomic objects vs. shared vars

•	 Atomic objects aren’t the same as shared

variables. 
•	 But an important basic result says we can

substitute atomic objects for shared
variables in a shared-memory system, and
the resulting system “behaves the same”. 

•	 Enables hierarchical construction of shared-

memory systems. 

•	 The substitution: 
– Given  A, a shared-memory system, and 
–	 For each shared variable x of A, given an atomic object Bx (same

type, interface corresponding to the allowed connections). 
–	 Trans is the composition of I/O automata, one for each process

and variable. 
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Atomic objects vs. shared vars 
•	 Given shared-memory system A, and

for each shared variable x of A, given
atomic object Bx. 

•	 Trans is the composition of I/O
automata, one for each process and
variable: 
– For  variable x, use atomic object Bx.

– For  process i, use automaton Pi, where:
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•	 Inputs of Pi are inputs of A on port i, responses

of all the Bxs on port i, and stopi.


•	 Outputs of Pi are outputs of A on port i and

invocations to all the Bxs on port i. 


•	 Steps of Pi simulate those of process i of A 

directly, except when process i of A accesses x, 

Then Pi invokes the operation on Bx, then

blocks, waiting for a response. When response

arrives, Pi resumes simulating process i. 




Atomic objects vs. shared vars


• A note on failure actions: 
– stopi is an input both to Pi, and to all objects Bx 

that Pi is connected to. 

Pi Bx 

External port i 
actions 

invs and resps 
on object port i 

stopi 



What is preserved by this 

transformation?


•	 Theorem: For any execution D of Trans u U, there is an 
execution Dc of A u U (that is, of the original shared-memory
system) such that: 
–	 D | U = Dc | U (looks the same to the users), and 
– stopI events occur for the same i in D and Dc (the same processes

fail). 
•	 Technicality: Need a little assumption about A---that at any

point, for each i, either process i or the user at i is enabled
to do something, but not both. 

•	 Proof: Given D, construct Dc: 
–	 Introduce serialization points and responses for operations of Bx in 
D, as guaranteed by the atomicity definition. 

–	 Then commute the invocation and responses events with other
events until they appear next to their serialization points. 



What is preserved?

•	 Theorem: For any execution D of Trans u U, there is an

execution Dc of A u U such that: 
– D | U = Dc | U and

– stopI events occur for the same i in D and Dc.


•	 Proof: Given D, construct Dc: 
–	 Introduce ser. pts. and responses for operations of Bx in D. 
–	 Commute invocation and responses events with other events until

they appear next to their serialization points. 
–	 OK as far as the B s are concerned. x 
–	 What about the Pis? We aren’t allowed to reorder events of the 

same Pi. 
–	 But no such reordering happens, because: 

• Pi blocks when it performs invocations, and 
•	 No inputs arrive at Pi from U while Pi is waiting for a response to an

invocation (by the technical assumption---it’s the system’s turn). 
–	 Result is still an execution of Trans u U (using composition results),

but now it’s one with all invocations and responses occurring in
consecutive pairs. 

–	 Now replace the pairs with single access steps. 



Liveness

•	 Construction also preserves liveness: 
•	 Can show that D fair implies Dc fair, that is, that a fair 

execution of Trans u U emulates a fair execution of A u U. 
•	 The difficulty: Objects sometimes don’t respond to

invocations, whereas shared variable accesses always
return. So the objects could introduce new blocking. 

•	 We need an assumption that implies that the objects don’t
introduce new blocking. 

•	 E.g., can assume that the Bx objects are wait-free. 
•	 E.g., can assume that at most f failures occur in D and each 

Bx guarantees f-failure termination. 
–	 “The failures that happen are tolerated by the objects.” 
–	 Ensures that the objects always respond to non-failed processes. 



Application 1 of Trans results 

•	 Implementing atomic objects using other 
atomic objects: 
– Suppose A is itself an atomic object 


implementation, using shared memory.

– Say A and all the Bxs guarantee f-failure 

termination. 
– Then Trans also implements an atomic object 

(of the same type), and guarantees f-failure 
termination. 



Application 2 of Trans results

• Building shared-memory 


systems hierarchically.

–	 Suppose the Bxs are  

themselves shared-memory 
systems implementing atomic 
objects. 

–	 Then Trans yields a 2-level 
system: 

–	 If we compose each Pi at the 
top level with all the i-port 
agent processes within the Bx 
implementations, we get an 
actual shared-memory system 
(processes and variables). 
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Combining the two applications

•	 Building shared-memory

implementations of atomic
objects hierarchically. 
–	 Same as Application 2, but top

level system is itself an atomic
object implementation, as in
Application 1. 

–	 Shows how to combine 
shared-memory
implementations of atomic
objects at two levels to get a
single shared-memory
implementation of the top-level
atomic object. 

–	 Used implicitly in the research
literature. 
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Algorithms to implement 

atomic objects




Read-Modify-Write Atomic Object


•	 Can we implement a general RMW
atomic object using just read/write
shared variables? 

•	 Non-fault-tolerant implementation: 
–	 Use lockout-free mutex algorithm,

e.g., one of Peterson’s. 
–	 Simulate the RMW variable using a

read/write register. 
–	 Access the register only within critical

region, using a read followed by a
write. 

•	 Q: Fault-tolerant implementation? 
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Read-Modify-Write Atomic Object 

•	 Fault-tolerant implementation? 
•	 Say,1-failure termination. 
•	 Theorem: There is no shared memory system using only

read/write shared variables that implements a general
RMW atomic object and guarantees 1-failure termination. 

•	 Proof: By contradiction. 
–	 Suppose there is, system B. 
–	 Let A be a RMW-based agreement algorithm that uses 1 shared

RMW variable and guarantees 1-failure termination. 
• Earlier, we saw how to guarantee wait-free termination. 

–	 Substitute B for the RMW shared variables in A. 
–	 Resulting system solves agreement in read/write model, with 1­

failure termination. 
–	 Contradicts impossibility result for consensus. 



Next time:


•	 More algorithms to implement atomic 
objects: 
– Atomic snapshots 
– Atomic read/write registers 

•	 Reading: Sections 13.3-13.4 
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