6.852: Distributed Algorithms
Fall, 2009

Class 17

Today’s plan

e Atomic objects:
— Basic definitions
— Canonical atomic objects
— Atomic objects vs. shared variables

 Reading: Sections 13.1-13.2

e Nexttime:

— More atomic objects:
« Atomic snapshots
« Atomic read/write registers

— Reading: Sections 13.3-13.4

Shared memory model

Single I/O automaton with processes and variables
“Inside”.
. Separation expressed by locality restrictions on the
actions and transitions.
« Processes and variables aren’t separate automata.
« Doesn’t exploit I/O automaton (de)composition.

. Can't talk about implementing shared variables with
lower-level distributed algorithms.

Q: Could we model each process and variable as
a separate 1/0O automaton?

- Split operations on variables into separate
iInvocation and response actions.

- But we still want an invocation/response to “look
like” an instantaneous access.

Define atomic objects:
- Interface has invocation inputs and response outputs.

- Invocation/response behavior “looks like” that of an instantaneous-access
shared variable.

. AKA linearizable objects [Herlihy, Wing]

Atomic objects

Interface has invocation inputs and response outputs.

Invocation/response behavior “looks like” that of an
Instantaneous-access shared variable.

Atomic object of a given type is similar to an ordinary
shared variable of that type, but it allows concurrent 'eSP | Atomic
accesses by different processes. Object

Still looks “as if” operations occur one at a time,
sequentially, in some order consistent with order of
Invocations and responses.
Fault-tolerance conditions, as for consensus:

. Wait-free termination

. f-failure termination

Separating invocations and responses allows us to consider lower-level
implementations of these objects.

. Shared-memory algorithms, or distributed network algorithms.
« For shared memory algorithms, can develop algorithms hierarchically, using
several levels.
Atomic objects are important building blocks for multiprocessor systems and
distributed systems.

Replacing variables with atomic objects

 Now processes and objects are all I/O automata, combined
using ordinary automata composition.

e [nteractions:
— Processes access atomic objects via invocations, get responses.
— Invocations are outputs of processes, inputs of objects.
— Responses are outputs of objects, inputs of processes.
— May be a gap between invocation and response.

Replacing variables with atomic objects

« “Locality” Is now automatic from I/O automata composition.

 More complicated than shared variables:
— More actions (invocations/responses instead of entire accesses).
— Algorithms have more steps, more bookkeeping.
— More stuff to reason aboult.

 More realistic system model.

Atomic objects

« Replace variables with atomic objects

-can decompose system in different ways
« What a process is depends on your point of view
« Can compose objects into larger objects

~but we need some restrictions to get “equivalance”

~handling failures, in particular, Is tricky
. delay for later in lecture

Atomic objects:
Basic definitions

Atomic object definitions

Variable type: (V, v,, invs, resps, f)
- V: Set of values
- Vg Initial value
- Invs: Set of invocations
— resps:. Set of responses
- fiinvs X V — resps x V
- Describes responses to an invocation and associated changes to
the variable.

AKA Sequential specification [Herlihy], State machine
[Lamport]

Exec_utlon: vo,_ a_l, bl, _’1’ az,_bz, V,, a,, b3, Vs, 4y, b4, V...
- v;is value; a is invocation; b, is response

- Ends with value (if finite).

- (b, v) =f(a, v,_,) fori>0.

I? I |
Trace: a, b, a, b,, a,, b, a, b,,... (l.e., Justinvocations and
responses, but no variable values)

Atomic objects

« Atomic object A of a given type is an I/O
automaton with a particular kind of
interface, satisfying some conditions:

— Well-formedness

— Atomicity

— Liveness (termination)
o External interface:

~ Assume “ports” 1, 2, ..., n (one for each AT
process). | Object

— May restrict so that some invocations are : A
allowed on some of the ports, not all.

— Also allow stop inputs on all ports, as
before.

« Compose with users U, assumed to
preserve well-formedness (alternating
Invocations and responses at each port,
starting with invocation).

Conditions satisfied by A

Preserves well-formedness (alternating invocations and
responses at each port, starting with invocation).
Atomicity:
— First define when a well-formed sequence [3 of invocations and
responses (at all ports) is atomic.
— Then A satisfies atomicity iff all well-formed executions of A x U,
where U =I1 U, (for any users) have atomic traces.
First suppose that all invocations have matching responses
(that Is, the sequence B Is complete).

Then we say [Is atomic provided that it's possible to insert
a serialization point (dummy event) somewhere between
each invocation and matching response, such that, if all the
INvs and resps are moved to their serialization points, the
result is a trace of the (serial) variable type.

Atomicity for complete sequences

Suppose B is a complete well-formed sequence of invocations and
responses.

Then B is atomic provided that one can insert a serialization point
between each invocation and matching response, such that, if all the
Invs and resps are moved to their serialization points, the result is a
trace of the (serial) variable type.

Examples: Initial value 0.

read 0 read 8
*

*
write(8) ack write(8) ack

*

read, O, write(8), ack is correct for serial specification.
write(8), ack, read, 8 is also correct.

Alternative definition [Herlihy]

e Suppose B Is a complete well-formed sequence of
Invocations and responses. Then (3 Is atomic
provided that it can be reordered to a trace of the
variable type, while preserving:

— The order of events at each process, and
— The order of any response and following invocation
(anywhere).

e Equivalent.

Complication:
Incomplete operations

Q: What about sequences 3 containing some incomplete
operations? Which ops should get serialization points?

We can’t require that we include serialization points for all
such operations (operation might fail right after invocation).

We can’t require that we exclude all such operations
(operation might fail just before returning).

So, we leave it optional...

Require that it's possible to:
— Insert serialization points for all complete operations.
— Select some subset ® of incomplete operations (arbitrary).

— For each operation in @, insert a serialization point somewhere
after the invocation, and make up a response.

In such a way that moving all matched invs and their resps to the
serialization points yields a trace of the variable type.

Atomic sequences, In general

e Suppose B is any well-formed sequence of
Invocations and responses.

Then B Is atomic provided that one can
— Insert serialization points for all complete operations.
— Select a subset ® of incomplete operations.

— For each operation in @, insert a serialization point
somewhere after the invocation, and make up a
response.

In such a way that moving all matched invs and their
resps to the serialization points yields a trace of the
variable type.

More atomicity examples

e |nitial value O.

read 0 read 3

* *

*

write(8) write(8)

e read, O Is correct for serial specification.
o write(8), ack, read, 8 Is correct.

Atomic objects

 Define acceptable behavior using trace properties

-well-formedness (for port 1)
. alternating invocation/response (beginning with invocation) for |
« whole trace is well-formed if well-formed for every port

-sequential

. alternating invocation/response for whole trace
. trace for the variable type

-complete

. every invocation has matching response
- Invocation+matching response = complete operation
- invocation without matching response = incomplete/pending operation

Another atomicity example

o Initial value 0.

read 0O read 0 read 0 read 0
* * * *

write(8)

. read, 0, read, O,...(forever) Is correct.
« The write does not (cannot) get a serialization point.

Some non-atomic seguences

 Write not seen:

read 0
write(8) ack
e Qut-of-order reads
read 8 read 8 read 0 read

0

write(8)

Note on the atomicity property

[Well-formedness + atomicity] is a safety property.

More precisely, let P be the trace property, for sequences of
Invocations and responses, expressing:

— Well-formedness for every port, plus

— Atomicity.

Then P Is a safety property.

In other words, If this combination doesn’t hold, the violation
occurs at some particular point in the sequence.

Plausible, but not completely obvious---proved in book, p.
405.
— Uses Konig’'s Lemma to show limit-closure.

— That is, if we can assign serialization points correctly to
successively-extended finite sequences, then there is a way to
assign them to their infinite limiting sequence.

Back to the conditions satisfied by
an atomic object A...

e Preserves well-formedness.
o Atomicity:

— We just defined when a well-formed sequence 3
of invocations and responses (at all ports) is
atomic.

— Then A satisfies atomicity iff all well-formed
executions of A x U, where U =TT U, (for any
users) have atomic traces.

e Liveness (termination):

LIveness

 Failure-free termination (basic requirement
for atomic objects):

— In any fair failure-free execution of A x U, every
Invocation has a matching response.

— “Fair” here refers to fairness in the underlying
/O automata model---A keeps taking steps.
e Definition: A Is an atomic object if it satisfies
well-formedness, atomicity, and failure-free
termination (for all U).

Other liveness conditions

e As for consensus, we sometimes consider other

liveness conditions, expressing fault-tolerance
properties.

« Walt-free termination: In any fair execution of A x
U, every invocation on a non-failing port gets a
response.

 f-faillure termination, 0 <f<n: In any fair
execution of A x U In which failures occur on < f

ports, every invocation on a non-failing port gets a
response.

Example: A wait-free atomic object

Variable type:
— Natural numbers, initial value 0.
— read and increment operations.

Atomic object supports read and increment ops on all ports.
Implement with an n-process shared-memory system.
Shared read/write registers

— X(1), 1 <1< n, natural number, initially O.

— X(1) writable by I, readable by all.

To implement increment;: Process I increments its own
variable x(i).

— Can do this using a write operation, by remembering the previous
value written.

To implement read;: Process I reads all the shared variables,
one at a time, In any order, and returns the sum.

Q: Why does this work?

Read/Increment algorithm

e increment: Increment x(i).

 read: Read all the shared variables, one at a time, in any order, and return
the sum.

e Proof:
— Well-formed, wait-free: Immediate.

— Atomic: Say where to put the serialization points.
* Forincrement: At the actual write step.

* For complete read:
— Must be somewhere between invocation and response.

— Returns a value v such that v > the sum of the x’s at the beginning, but v
< the sum at the end.

— Since the sum increases by one at a time, there is some point where sum
of the X's = v.

— Put the serialization point there.
« For incomplete read: Don’t bother.

e Correctness depends on restricted form of the operations.

Canonical Atomic Object
Automata

Canonical atomic object
automaton

Describe the set of traces acceptable for a wait-free atomic
object as the fair traces of a particular canonical object
automaton,; see Section 13.1.2.

Could generalize to f-failure termination (see later).

Canonical object automaton keeps internal copy of the
variable, plus delay buffers for invocations and responses.

Behavior: 3 kinds of steps:

— Invoke: Invocation arrives, gets put into in-buffer.

— Perform: Invoked operation gets performed on the internal copy of
the variable, response gets put into resp-buffer.

— Respond: Response returned to user.

Internal perform step Is convenient, even though we'’re
Interested only in specifying external behavior.

Perform step corresponds to serialization point.

Canonical atomic object
automaton

e Liveness:
— One task for each port |.

— Use the usual I/O automata convention that
tasks keep getting turns to take steps.

— To model the effects of failures, we include a
specially dummy; action in each task I, which
gets enabled when stop, occurs.

Canonical atomic object
automaton

Equivalent to the original specification for a wait-
free atomic object, in a precise sense.

Can be used to prove correctness of algorithms
that implement atomic objects, e.g., using
simulation relations.

Theorem 1: Every fair trace of the canonical
automaton (with well-formed U) satisfies the
properties that define a wait-free atomic object.

Theorem 2: Every trace allowed by a wait-free
atomic object (with well-formed U) Is a fair trace
of the canonical automaton.

Canonical atomic object
automaton

« An equivalent definition as an automaton C
- external actions as before
- Internal actions: perform(a,li)

- state variables:
o val: V, initially v,
. iInv_buffer: set of (i,a), initially empty
. resp_buffer: set of (i,b), initially empty
~transitions:
. inv(a,i) adds (i,a) to inv_buffer
 perform(a,i) removes (i,a) from inv_buffer, applies a to val, and

puts (i,b) into resp_buffer, where b is the response from applying
a to val

« resp(b,i) takes (i,b) removes resp buffer
-one task for each |

Canonical atomic object

automaton

« For C and U as defined previously:

-® [l traces(CxU) Iff ® is well-formed and atomic

-® [fairtraces(CxU) iff ® is well-formed, atomic
and complete

« Proof
-well-formedness
—atomicity
-completeness
-need to show both directions

« An automaton A is atomic If it implements C.

Atomic Objects
VS.
Shared Variables

Atomic objects vs. shared vars

Atomic objects aren’t the same as shared
variables.

But an important basic result says we can
substitute atomic objects for shared
variables in a shared-memory system, and
the resulting system “behaves the same”.

Enables hierarchical construction of shared-
memory systems.

The substitution:
— Given A, a shared-memory system, and

— For each shared variable x of A, given an atomic object B, (same
type, interface corresponding to the allowed connectlons)

— Trans is the composition of /O automata, one for each process
and variable.

Atomic objects vs. shared vars

« Given shared-memory system A, and
for each shared variable x of A, given
atomic object B,.

* Trans is the composition of I/O
automata, one for each process and
variable:

— For variable x, use atomic object B,.

— For process I, use automaton P;, where:

* Inputs of P; are inputs of A on port i, responses
of all the B, .S on port i, and stop..

 Outputs of P are outputs of A on port i and
invocations to all the B .S on port I.

« Steps of P, simulate those of process i of A
directly, except when process | of A accesses X,
Then P;invokes the operation on B, then
blocks, Waltlng for a response. When response
arrives, P, resumes simulating process i.

Atomic objects vs. shared vars

e A note on faillure actions:

— stop; Is an input both to P;, and to all objects B,
that P, Is connected to.

invs and resps
on object port i

=

External port |
actions

What Is preserved by this
transformation?

« Theorem: For any execution a of Trans x U, there is an
execution o' of A x U (that is, of the original shared-memory
system) such that:

— o | U =a'| U (looks the same to the users), and
— ?t_ci)p, events occur for the same i in o and o’ (the same processes
all).

 Technicality: Need a little assumption about A---that at any

point, for each I, either process i or the user at i is enabled
to do something, but not both.

e Proof: Given a, construct o':

— Introduce serialization points and responses for operations of B, in
o, as guaranteed by the atomicity definition.

— Then commute the invocation and responses events with other
events until they appear next to their serialization points.

What Is preserved?

« Theorem: For any execution a of Trans x U, there is an
execution a’ of A x U such that:

o|lU=a|Uand
stop, events occur for the same i in o and o'.

e Proof: Given a, construct o';

Introduce ser. pts. and responses for operations of B, In a.

Commute invocation and responses events with other events until
they appear next to their serialization points.

OK as far as the B,s are concerned.

What about the P;s? We aren’t allowed to reorder events of the
same P,.
But no such reordering happens, because:

« P, blocks when it performs invocations, and

. No Inputs arrive at P; from U while P, is waiting for a response to an
Invocation (by the technical assumptlon———lt S the system’s turn).

Result is still an execution of Trans x U (using composition results),
but now it's one with all invocations and responses occurring in
consecutive pairs.

Now replace the pairs with single access steps.

LIveness

Construction also preserves liveness:

Can show that o fair implies o' fair, that is, that a fair
execution of Trans x U emulates a fair execution of A x U.

The difficulty: Objects sometimes don’t respond to
Invocations, whereas shared variable accesses always
return. So the objects could introduce new blocking.

We need an assumption that implies that the objects don’t
Introduce new blocking.

E.g., can assume that the B, objects are wait-free.

E.g., can assume that at most f failures occur in oo and each
B, guarantees f-failure termination.

— “The failures that happen are tolerated by the objects.”
— Ensures that the objects always respond to non-failed processes.

Application 1 of Trans results

* Implementing atomic objects using other
atomic objects:

— Suppose A is itself an atomic object
Implementation, using shared memory.

— Say A and all the B, s guarantee f-failure
termination.

— Then Trans also implements an atomic object
(of the same type), and guarantees f-failure
termination.

Application 2 of Trans results

e Building shared-memory
systems hierarchically.

— Suppose the B,s are
themselves shared-memory
systems implementing atomic
objects.

— Then Trans yields a 2-level -
system:

— If we compose each P; at the
top level with all the i-port
agent processes within the B,
Implementations, we get an
actual shared-memory system
(processes and variables).

Combining the two applications

* Building shared-memory
Implementations of atomic
objects hierarchically.

— Same as Application 2, but top
level system is itself an atomic
object implementation, as In
Application 1.

— Shows how to combine
shared-memory
Implementations of atomic
objects at two levels to get a
single shared-memory
Implementation of the top-level
atomic object.

— Used implicitly in the research
literature.

Algorithms to implement
atomic objects

Read-Modify-Write Atomic Object

e Can we implement a general RMW RMW(h

atomic object using just read/write @
shared variables?
* Non-fault-tolerant implementation: @
— Use lockout-free mutex algorithm,
e.g., one of Peterson’s. @

— Simulate the RMW variable using a
read/write register.

— Access the register only within critical
region, using a read followed by a
write.

o Q: Fault-tolerant implementation?

Read-Modify-Write Atomic Object

Fault-tolerant implementation?
Say,1-failure termination.

Theorem: There is no shared memory system using only
read/write shared variables that implements a general
RMW atomic object and guarantees 1-failure termination.

Proof: By contradiction.

Suppose there is, system B.

Let A be a RMW-based agreement algorithm that uses 1 shared
RMW variable and guarantees 1-failure termination.

« Earlier, we saw how to guarantee wait-free termination.
Substitute B for the RMW shared variables in A.

Resulting system solves agreement in read/write model, with 1-
failure termination.

Contradicts impossibility result for consensus.

Next time:

 More algorithms to implement atomic
objects:
— Atomic snapshots
— Atomic read/write registers

 Reading: Sections 13.3-13.4

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

