
6.852: Distributed Algorithms

Fall, 2009

Class 17

Today’s plan

• Atomic objects:

– Basic definitions
– Canonical atomic objects
– Atomic objects vs. shared variables

• Reading: Sections 13.1-13.2
• Next time:

– More atomic objects:
• Atomic snapshots
• Atomic read/write registers

– Reading: Sections 13.3-13.4

Shared memory model
z Single I/O automaton with processes and variables

“inside”.

z Separation expressed by locality restrictions on the

actions and transitions.

z Processes and variables aren’t separate automata.
z Doesn’t exploit I/O automaton (de)composition.
z Can’t talk about implementing shared variables with

lower-level distributed algorithms.

z Q: Could we model each process and variable as

a separate I/O automaton?

� Split operations on variables into separate

invocation and response actions.

p1

p2

pn

x1

x2

A

�	 But we still want an invocation/response to “look

like” an instantaneous access.

z Define atomic objects:
� Interface has invocation inputs and response outputs.
� Invocation/response behavior “looks like” that of an instantaneous-access

shared variable.
z AKA linearizable objects [Herlihy, Wing]

Atomic objects

Wait-free termination resp

f-failure termination

z Interface has invocation inputs and response outputs.

Atomic
Object

resp

inv
z Invocation/response behavior “looks like” that of an resp

instantaneous-access shared variable.

inv
z Atomic object of a given type is similar to an ordinary

shared variable of that type, but it allows concurrent

accesses by different processes.

z Still looks “as if” operations occur one at a time,

sequentially, in some order consistent with order of

invocations and responses. inv

z Fault-tolerance conditions, as for consensus:
z

z

z Separating invocations and responses allows us to consider lower-level
implementations of these objects.
z Shared-memory algorithms, or distributed network algorithms.
z For shared memory algorithms, can develop algorithms hierarchically, using

several levels.
z Atomic objects are important building blocks for multiprocessor systems and

distributed systems.

Replacing variables with atomic objects

•	 Now processes and objects are all I/O automata, combined

using ordinary automata composition.
•	 Interactions:

–	 Processes access atomic objects via invocations, get responses.
–	 Invocations are outputs of processes, inputs of objects.
–	 Responses are outputs of objects, inputs of processes.
–	 May be a gap between invocation and response.

p1

p2

pn

x1

x2

A
U1

U2

Un

p1

p2

pn

x1

x2

A
U1

U2

Un

Replacing variables with atomic objects

• “Locality” is now automatic from I/O automata composition.

• More complicated than shared variables:

– More actions (invocations/responses instead of entire accesses).
– Algorithms have more steps, more bookkeeping.
– More stuff to reason about.

• More realistic system model.

p1

p2

pn

x1

x2

A
U1

U2

Un

p1

p2

pn

x1

x2

A
U1

U2

Un

Atomic objects

z Replace variables with atomic objects
�can decompose system in different ways

z what a process is depends on your point of view
z can compose objects into larger objects

p1

p2

pn

x1

x2

A
U1

U2

Un

p1

p2

pn

x1

x2

U1

U2

Un

�but we need some restrictions to get “equivalance”
�handling failures, in particular, is tricky

z delay for later in lecture

p1

p2

pn

x1

x2

A
U1

U2

Un

p1

p2

pn

x1

x2

U1

U2

Un

Atomic objects:

Basic definitions

Atomic object definitions

z Variable type: (V, v0, invs, resps, f)

� V: Set of values

� v0: Initial value

� invs: Set of invocations

� resps: Set of responses

� f: invs × V o resps × V

�	 Describes responses to an invocation and associated changes to
the variable.

z AKA Sequential specification [Herlihy], State machine

[Lamport]

z Execution: v0, a1, b1, v1, a2, b2, v2, a3, b3, v3, a4, b4, v4,...

� vi is value; ai is invocation; bi is response

� Ends with value (if finite).

� (bi, vi) = f(ai, vi-1) for i > 0.

z Trace: a1, b1, a2, b2, a3, b3, a4, b4,... (i.e., just invocations and
responses, but no variable values)

Atomic objects

Atomic
Object

A

inv

resp

resp

inv

resp

inv

•	 Atomic object A of a given type is an I/O
automaton with a particular kind of
interface, satisfying some conditions:
–	 Well-formedness
–	 Atomicity
–	 Liveness (termination)

•	 External interface:
�	 Assume “ports” 1, 2, ..., n (one for each

process).

–	 May restrict so that some invocations are

allowed on some of the ports, not all.

–	 Also allow stop inputs on all ports, as

before.

•	 Compose with users Ui, assumed to

preserve well-formedness (alternating
invocations and responses at each port,
starting with invocation).

Conditions satisfied by A

•	 Preserves well-formedness (alternating invocations and

responses at each port, starting with invocation).
•	 Atomicity:

–	 First define when a well-formed sequence E of invocations and
responses (at all ports) is atomic.

–	 Then A satisfies atomicity iff all well-formed executions of A u U,
where U = 3 Ui (for any users) have atomic traces.

•	 First suppose that all invocations have matching responses
(that is, the sequence E is complete).

•	 Then we say E is atomic provided that it’s possible to insert
a serialization point (dummy event) somewhere between
each invocation and matching response, such that, if all the
invs and resps are moved to their serialization points, the
result is a trace of the (serial) variable type.

Atomicity for complete sequences

•	 Suppose E is a complete well-formed sequence of invocations and

responses.
Then E is atomic provided that one can insert a serialization point
between each invocation and matching response, such that, if all the
invs and resps are moved to their serialization points, the result is a
trace of the (serial) variable type.

•	 Examples: Initial value 0.

*
write(8) ack	 write(8) ack

read 0
*

*

read 8
*

•	 read, 0, write(8), ack is correct for serial specification.
•	 write(8), ack, read, 8 is also correct.

Alternative definition [Herlihy]

•	 Suppose E is a complete well-formed sequence of
invocations and responses. Then E is atomic
provided that it can be reordered to a trace of the
variable type, while preserving:
– The order of events at each process, and
– The order of any response and following invocation

(anywhere).
•	 Equivalent.

Complication:

Incomplete operations

• Q: What about sequences E containing some incomplete

operations? Which ops should get serialization points?

•	 We can’t require that we include serialization points for all
such operations (operation might fail right after invocation).

•	 We can’t require that we exclude all such operations
(operation might fail just before returning).

•	 So, we leave it optional…
•	 Require that it’s possible to:

– Insert serialization points for all complete operations.
– Select some subset) of incomplete operations (arbitrary).
–	 For each operation in), insert a serialization point somewhere

after the invocation, and make up a response.
In such a way that moving all matched invs and their resps to the

serialization points yields a trace of the variable type.

Atomic sequences, in general

• Suppose E is any well-formed sequence of
invocations and responses.

Then E is atomic provided that one can

– Insert serialization points for all complete operations.
– Select a subset) of incomplete operations.
– For each operation in), insert a serialization point

somewhere after the invocation, and make up a
response.

In such a way that moving all matched invs and their
resps to the serialization points yields a trace of the
variable type.

More atomicity examples

• Initial value 0.

0read

write(8)

read 8

write(8)
*

*
*

• read, 0 is correct for serial specification.

• write(8), ack, read, 8 is correct.

Atomic objects

z Define acceptable behavior using trace properties
� well-formedness (for port i)

z alternating invocation/response (beginning with invocation) for i
z whole trace is well-formed if well-formed for every port

� sequential

z alternating invocation/response for whole trace
z trace for the variable type

� complete

z every invocation has matching response
� invocation+matching response = complete operation
� invocation without matching response = incomplete/pending operation

Another atomicity example
z Initial value 0.

read 0

write(8)

read 0 read 0 read 0
* ***

z read, 0, read, 0,…(forever) is correct.
z The write does not (cannot) get a serialization point.

Some non-atomic sequences
• Write not seen:

read 0

write(8) ack

• Out-of-order reads

read 8 read 8 read 0 read 0

write(8)

Note on the atomicity property

•	 [Well-formedness + atomicity] is a safety property.
•	 More precisely, let P be the trace property, for sequences of

invocations and responses, expressing:
–	 Well-formedness for every port, plus
– Atomicity.

Then P is a safety property.

•	 In other words, if this combination doesn’t hold, the violation

occurs at some particular point in the sequence.
•	 Plausible, but not completely obvious---proved in book, p.

405.
–	 Uses Konig’s Lemma to show limit-closure.
–	 That is, if we can assign serialization points correctly to

successively-extended finite sequences, then there is a way to
assign them to their infinite limiting sequence.

Back to the conditions satisfied by

an atomic object A…

• Preserves well-formedness.
• Atomicity:

– We just defined when a well-formed sequence E
of invocations and responses (at all ports) is
atomic.

– Then A satisfies atomicity iff all well-formed
executions of A u U, where U = 3 Ui (for any
users) have atomic traces.

• Liveness (termination):

Liveness

•	 Failure-free termination (basic requirement
for atomic objects):
– In any fair failure-free execution of A u U, every

invocation has a matching response.
– “Fair” here refers to fairness in the underlying

I/O automata model---A keeps taking steps.

•	 Definition: A is an atomic object if it satisfies

well-formedness, atomicity, and failure-free
termination (for all U).

Other liveness conditions

•	 As for consensus, we sometimes consider other

liveness conditions, expressing fault-tolerance
properties.

•	 Wait-free termination: In any fair execution of A u
U, every invocation on a non-failing port gets a
response.

•	 f-failure termination, 0 d f d n: In any fair
execution of A u U in which failures occur on d f
ports, every invocation on a non-failing port gets a
response.

Example: A wait-free atomic object

•	 Variable type:

–	 Natural numbers, initial value 0.
–	 read and increment operations.

•	 Atomic object supports read and increment ops on all ports.

•	 Implement with an n-process shared-memory system.
•	 Shared read/write registers

– x(i), 1 d i d n, natural number, initially 0.

– x(i) writable by i, readable by all.

•	 To implement incrementi: Process i increments its own
variable x(i).
–	 Can do this using a write operation, by remembering the previous

value written.
•	 To implement readi: Process i reads all the shared variables,

one at a time, in any order, and returns the sum.

• Q: Why does this work?

Read/Increment algorithm

• incrementi: Increment x(i).
•	 readi: Read all the shared variables, one at a time, in any order, and return

the sum.

•	 Proof:
– Well-formed, wait-free: Immediate.

– Atomic: Say where to put the serialization points.

• For increment: At the actual write step.
• For complete read:

–	 Must be somewhere between invocation and response.
–	 Returns a value v such that v t the sum of the x’s at the beginning, but v
d the sum at the end.

–	 Since the sum increases by one at a time, there is some point where sum
of the x’s = v.

–	 Put the serialization point there.
•	 For incomplete read: Don’t bother.

•	 Correctness depends on restricted form of the operations.

Canonical Atomic Object

Automata

Canonical atomic object

automaton

•	 Describe the set of traces acceptable for a wait-free atomic
object as the fair traces of a particular canonical object
automaton; see Section 13.1.2.

•	 Could generalize to f-failure termination (see later).
•	 Canonical object automaton keeps internal copy of the

variable, plus delay buffers for invocations and responses.
•	 Behavior: 3 kinds of steps:

–	 Invoke: Invocation arrives, gets put into in-buffer.
–	 Perform: Invoked operation gets performed on the internal copy of

the variable, response gets put into resp-buffer.
–	 Respond: Response returned to user.

•	 Internal perform step is convenient, even though we’re
interested only in specifying external behavior.

•	 Perform step corresponds to serialization point.

Canonical atomic object

automaton

• Liveness:
– One task for each port i.
– Use the usual I/O automata convention that

tasks keep getting turns to take steps.
– To model the effects of failures, we include a

specially dummyi action in each task i, which
gets enabled when stopi occurs.

Canonical atomic object

automaton

•	 Equivalent to the original specification for a wait-
free atomic object, in a precise sense.

•	 Can be used to prove correctness of algorithms
that implement atomic objects, e.g., using
simulation relations.

•	 Theorem 1: Every fair trace of the canonical
automaton (with well-formed U) satisfies the
properties that define a wait-free atomic object.

•	 Theorem 2: Every trace allowed by a wait-free
atomic object (with well-formed U) is a fair trace
of the canonical automaton.

Canonical atomic object

automaton

z An equivalent definition as an automaton C
� external actions as before
� internal actions: perform(a,i)
� state variables:

z val: V, initially v0
z inv_buffer: set of (i,a), initially empty
z resp_buffer: set of (i,b), initially empty

� transitions:

z inv(a,i) adds (i,a) to inv_buffer
z perform(a,i) removes (i,a) from inv_buffer, applies a to val, and

puts (i,b) into resp_buffer, where b is the response from applying
a to val

z resp(b,i) takes (i,b) removes resp_buffer

� one task for each i

Canonical atomic object

automaton

z For C and U as defined previously:
�£ � traces(C×U) iff £ is well-formed and atomic
�£ � fairtraces(C×U) iff £ is well-formed, atomic
and complete

z Proof
�well-formedness
�atomicity
�completeness
�need to show both directions

z An automaton A is atomic if it implements C.

Atomic Objects

vs.

Shared Variables

Atomic objects vs. shared vars

•	 Atomic objects aren’t the same as shared

variables.
•	 But an important basic result says we can

substitute atomic objects for shared
variables in a shared-memory system, and
the resulting system “behaves the same”.

•	 Enables hierarchical construction of shared-

memory systems.

•	 The substitution:
– Given A, a shared-memory system, and
–	 For each shared variable x of A, given an atomic object Bx (same

type, interface corresponding to the allowed connections).
–	 Trans is the composition of I/O automata, one for each process

and variable.

p1

p2

pn

x1

x2

A

Atomic objects vs. shared vars
•	 Given shared-memory system A, and

for each shared variable x of A, given
atomic object Bx.

•	 Trans is the composition of I/O
automata, one for each process and
variable:
– For variable x, use atomic object Bx.

– For process i, use automaton Pi, where:

p1

p2

pn

A

Bx1

Bx2

•	 Inputs of Pi are inputs of A on port i, responses

of all the Bxs on port i, and stopi.

•	 Outputs of Pi are outputs of A on port i and

invocations to all the Bxs on port i.

•	 Steps of Pi simulate those of process i of A

directly, except when process i of A accesses x,

Then Pi invokes the operation on Bx, then

blocks, waiting for a response. When response

arrives, Pi resumes simulating process i.

Atomic objects vs. shared vars

• A note on failure actions:
– stopi is an input both to Pi, and to all objects Bx

that Pi is connected to.

Pi Bx

External port i
actions

invs and resps
on object port i

stopi

What is preserved by this

transformation?

•	 Theorem: For any execution D of Trans u U, there is an
execution Dc of A u U (that is, of the original shared-memory
system) such that:
–	 D | U = Dc | U (looks the same to the users), and
– stopI events occur for the same i in D and Dc (the same processes

fail).
•	 Technicality: Need a little assumption about A---that at any

point, for each i, either process i or the user at i is enabled
to do something, but not both.

•	 Proof: Given D, construct Dc:
–	 Introduce serialization points and responses for operations of Bx in
D, as guaranteed by the atomicity definition.

–	 Then commute the invocation and responses events with other
events until they appear next to their serialization points.

What is preserved?

•	 Theorem: For any execution D of Trans u U, there is an

execution Dc of A u U such that:
– D | U = Dc | U and

– stopI events occur for the same i in D and Dc.

•	 Proof: Given D, construct Dc:
–	 Introduce ser. pts. and responses for operations of Bx in D.
–	 Commute invocation and responses events with other events until

they appear next to their serialization points.
–	 OK as far as the B s are concerned. x
–	 What about the Pis? We aren’t allowed to reorder events of the

same Pi.
–	 But no such reordering happens, because:

• Pi blocks when it performs invocations, and
•	 No inputs arrive at Pi from U while Pi is waiting for a response to an

invocation (by the technical assumption---it’s the system’s turn).
–	 Result is still an execution of Trans u U (using composition results),

but now it’s one with all invocations and responses occurring in
consecutive pairs.

–	 Now replace the pairs with single access steps.

Liveness

•	 Construction also preserves liveness:
•	 Can show that D fair implies Dc fair, that is, that a fair

execution of Trans u U emulates a fair execution of A u U.
•	 The difficulty: Objects sometimes don’t respond to

invocations, whereas shared variable accesses always
return. So the objects could introduce new blocking.

•	 We need an assumption that implies that the objects don’t
introduce new blocking.

•	 E.g., can assume that the Bx objects are wait-free.
•	 E.g., can assume that at most f failures occur in D and each

Bx guarantees f-failure termination.
–	 “The failures that happen are tolerated by the objects.”
–	 Ensures that the objects always respond to non-failed processes.

Application 1 of Trans results

•	 Implementing atomic objects using other
atomic objects:
– Suppose A is itself an atomic object

implementation, using shared memory.

– Say A and all the Bxs guarantee f-failure

termination.
– Then Trans also implements an atomic object

(of the same type), and guarantees f-failure
termination.

Application 2 of Trans results

• Building shared-memory

systems hierarchically.

–	 Suppose the Bxs are

themselves shared-memory
systems implementing atomic
objects.

–	 Then Trans yields a 2-level
system:

–	 If we compose each Pi at the
top level with all the i-port
agent processes within the Bx
implementations, we get an
actual shared-memory system
(processes and variables).

P1

P2

Pn

P1x

P2x

Pnx

P1x

P2x

Pnx

Combining the two applications

•	 Building shared-memory

implementations of atomic
objects hierarchically.
–	 Same as Application 2, but top

level system is itself an atomic
object implementation, as in
Application 1.

–	 Shows how to combine
shared-memory
implementations of atomic
objects at two levels to get a
single shared-memory
implementation of the top-level
atomic object.

–	 Used implicitly in the research
literature.

P1

P2

Pn

P1x

P2x

Pnx

P1x

P2x

Pnx

Algorithms to implement

atomic objects

Read-Modify-Write Atomic Object

•	 Can we implement a general RMW
atomic object using just read/write
shared variables?

•	 Non-fault-tolerant implementation:
–	 Use lockout-free mutex algorithm,

e.g., one of Peterson’s.
–	 Simulate the RMW variable using a

read/write register.
–	 Access the register only within critical

region, using a read followed by a
write.

•	 Q: Fault-tolerant implementation?

p1

p2

pn

x1

x2

RMW(h)

Read-Modify-Write Atomic Object

•	 Fault-tolerant implementation?
•	 Say,1-failure termination.
•	 Theorem: There is no shared memory system using only

read/write shared variables that implements a general
RMW atomic object and guarantees 1-failure termination.

•	 Proof: By contradiction.
–	 Suppose there is, system B.
–	 Let A be a RMW-based agreement algorithm that uses 1 shared

RMW variable and guarantees 1-failure termination.
• Earlier, we saw how to guarantee wait-free termination.

–	 Substitute B for the RMW shared variables in A.
–	 Resulting system solves agreement in read/write model, with 1­

failure termination.
–	 Contradicts impossibility result for consensus.

Next time:

•	 More algorithms to implement atomic
objects:
– Atomic snapshots
– Atomic read/write registers

•	 Reading: Sections 13.3-13.4

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

