
6.852: Distributed Algorithms
Fall, 2009

Class 16

Today’s plan
• Generalized resource allocation
• Asynchronous shared-memory systems with failures.
• Consensus in asynchronous shared-memory systems.
• Impossibility of consensus [Fischer, Lynch, Paterson]
• Reading: Chapter 11, Chapter 12
• Next: Chapter 13

Generalized resource allocation
Mutual exclusion: Problem of allocating a single non-sharable resource.
Can generalize to more resources, some sharing.

Exclusion specification E (for a given set of users):
Any collection of sets of users, closed under superset.
Expresses which users are incompatible, can’t coexist in the critical section.

Example: k-exclusion (any k users are ok, but not k+1)
E = { E : |E| > k }

Example: Reader-writer locks
Relies on classification of users as readers vs. writers.

E = { E : |E| > 1 and E contains a writer }

Example: Dining Philosophers [Dijkstra]
E = { E : E includes a pair of neighbors }

Resource specifications
• Some exclusion specs can be described conveniently in

terms of requirements for concrete resources.
• Resource specification: Different users need different

subsets of resources
– Can't share: Users with intersecting sets exclude each other.

Example: Dining Philosophers
E = { E : E includes a pair of neighbors }
– Forks (resources) between adjacent philosophers; each needs both

adjacent forks in order to eat.
– Only one can hold a particular fork at a time, so adjacent

philosophers must exclude each other.
• Not every exclusion problem can be expressed in this way.

– E.g., k-exclusion cannot.

Resource allocation problem, for a
given exclusion spec E

• Same shared-memory architecture as for mutual exclusion
(processes and shared variables, no buses, no caches).

• Well-formedness: As before.
• Exclusion: No reachable state in which the set of users in

C is a set in E.
• Progress: As before.
• Lockout-freedom: As before.
• But these don’t capture concurrency requirements.
• Any lockout-free mutual exclusion algorithm also satisfies

E (provided that E doesn’t contain any singleton sets).
• Can add concurrency conditions, e.g.:

– Independent progress: If i ∈T and every j that could conflict with i
remains in R, then eventually i → C.

– Time bound: Obtain better bounds from i → T to i → C, even in the
presence of conflicts, than we get for mutual exclusion.

Dining Philosophers
• Dijkstra’s paper posed the problem, gave a

solution using strong shared-memory model.
– Globally-shared variables, atomic access to all of shared memory.
– Not very distributed.

• More distributed version: Assume the only shared
variables are on the edges between adjacent philosophers.
– Correspond to forks.
– Use RMW shared variables.

• Impossibility result: If all processes are identical and refer
to forks by local names “left” and “right”, and all shared
variables have the same initial values, then we can’t
guarantee DP exclusion + progress.

• Proof: Show we can’t break symmetry:
– Consider subset of executions that work in synchronous rounds,

prove by induction on rounds that symmetry is preserved.
– Then by progress, someone → C.
– So all do, violating DP exclusion.

Dining Philosophers
• Example: Simple symmetric algorithm where

all wait for R fork first, then L fork.

– Guarantees DP exclusion, because processes wait for both forks.
– But progress fails---all might get R, then deadlock.

• So we need something to break symmetry.
• Solutions:

– Number forks around the table, pick up smaller numbered fork first.
– Right/left algorithm (Burns):

• Classify processes as R or L (need at least one of each).
• R processes pick up right fork first, L processes pick up left fork first.
• Yields DP exclusion, progress, lockout freedom, independent progress,

and good time bound (constant, for alternating R and L).
Generalize to solve any resource problem
− Nodes represent resources.
− Edge between resources if some user needs both.
− Color graph; order colors.
− All processes acquire resources in order of colors.

Asynchronous shared-memory
systems with failures

Asynchronous shared-memory
systems with failures

• Process stopping failures.
• Architecture as for mutual

exclusion.
– Processes + shared variables, one

system automaton.
– Users

• Add stopi inputs.
– Effect is to disable all future non-input

actions of process i.
• Fair executions:

– Every process that doesn’t fail gets
infinitely many turns to perform locally-
controlled steps.

– Just ordinary fairness---stop means
that nothing further is enabled.

– Users also get turns.

p1

p2

pn

x1

x2

A
U1

U2

Un

stop1

stop2

stopn

Consensus in asynchronous
shared-memory systems with

failures

Consensus in Asynchronous
Shared-Memory Systems

• Recall: Consensus in synchronous networks.
– Algorithms for stopping failures:

• FloodSet, FloodMin, Optimizations: f+1 rounds, any number of
processes, low communication

– Lower bounds: f+1 rounds
– Algorithms for Byzantine failures

• EIG: f+1 rounds, n > 3f, exponential communication
– Lower bounds: f+1 rounds, n > 3f

• Asynchronous networks: Impossible
• Asynchronous shared memory:

– Read/write variables: Impossible
– Read-modify-write variables: Simple algorithms

• Impossibility results hold even if n is large and f is just 1.

Consequences of impossibility
results

• Can’t solve problems like transaction commit, agreement
on choice of leader, fault diagnosis,…in the purely
asynchronous model with failures.

• But these problems must be solved…
• Can strengthen the assumptions:

– Rely on timing assumptions: Upper and lower bounds on message
delivery time, on step time.

– Probabilistic assumptions
• And/or weaken the guarantees:

– Allow a small probability of violating safety properties, or of not
terminating.

– Conditional termination, based on stability for a “sufficiently long”
interval of time.

• We’ll see some of these strategies.
• But, first, the impossibility result!

Architecture
• V, set of consensus values

• Interaction between user Ui and
process (agent) pi:
– User Ui submits initial value v with

init(v)i.
– Process pi returns decision v with

decide(v)i.
– I/O handled slightly differently from

synchronous setting, where we
assumed I and O in local variables.

– Assume each user performs at most
one init(v)i in an execution.

• Shared variable types:
– Read/write registers (for now)

p1

p2

pn

x1

x2

A
U1

U2

Un

stop1

stop2

stopn

piUi

init(v)i

decide(v)i

Problem requirements 1
• Well-formedness:

– At most one decide(*)i, appears, and only if there’s a previous
init(*)i.

• Agreement:
– All decision values are identical.

• Validity:
– If all init actions that occur contain the same v, then that v is the

only possible decision value.
– Stronger version: Any decision value is an initial value.

• Termination:
– Failure-free termination (most basic requirement):
– In any fair failure-free (ff) execution in which init events occur on all

“ports”, decide events occur on all ports.
• Basic problem requirements: Well-formedness,

agreement, validity, failure-free termination.

Problem requirements 2:
Fault-tolerance

• Failure-free termination:
– In any fair failure-free (ff) execution in which init events occur on all ports,

decide events occur on all ports.
• Wait-free termination (strongest condition):

– In any fair execution in which init events occur on all ports, a decide event
occurs on every port i for which no stopi occurs.

– Similar to wait-free doorway in Lamport’s Bakery algorithm: says i finishes
regardless of whether the other processes stop or not.

• Also consider tolerating limited number of failures.
• Should be easier to achieve, so impossibility results are stronger.
• f-failure termination, 0 ≤ f ≤ n:

– In any fair execution in which init events occur on all ports, if there are stop
events on at most f ports, then a decide event occurs on every port i for
which no stopi occurs.

• Wait-free termination = n-failure termination = (n-1)-failure termination.
• 1-failure termination: The interesting special case we will consider in

our proof.

Impossibility of agreement
• Main Theorem [Fischer, Lynch, Paterson], [Loui, Abu-

Amara]:
– For n ≥ 2, there is no algorithm in the read/write shared memory

model that solves the agreement problem and guarantees 1-failure
termination.

• Simpler Theorem [Herlihy]:
– For n ≥ 2, there is no algorithm in the read/write shared memory

model that solves the agreement problem and guarantees wait-free
termination.

• Let’s prove the simpler theorem first.

Restrictions (WLOG)

• V = { 0, 1 }
• Algorithms are deterministic:

– Unique start state.
– From any state, any process has ≤ 1 locally-controlled

action enabled.
– From any state, for any enabled action, there is exactly

one new state.
• Non-halting:

– Every non-failed process always has some locally-
controlled action enabled, even after it decides.

Terminology
• Initialization:

– Sequence of n init steps, one per port, in index order: init(v1)1,
init(v2)2,…init(vn)n

• Input-first execution:
– Begins with an initialization.

• A finite execution α is:
– 0-valent, if 0 is the only decision value appearing in α or any

extension of α, and 0 actually does appear in α or some extension.
– 1-valent, if 1 is the only decision value appearing in α or any

extension of α, and 1 actually does appear in α or some extension.
– Univalent, if α is 0-valent or 1-valent.
– Bivalent, if each of 0, 1 occurs in some extension of α.

Univalence and Bivalence

univalent

0-valent

α

0
0 0

bivalent

α

0
1 1

1-valent

α

1
1 1

Exhaustive classification

• Lemma 1:
– If A solves agreement with ff-termination, then

each finite ff execution of A is either univalent or
bivalent.

• Proof:
– Can extend to a fair execution, in which

everyone is required to decide.

Bivalent initialization
• From now on, fix A to be an algorithm solving agreement

with (at least) 1-failure termination.
– Could also satisfy stronger conditions, like f-failure termination, or

wait-free termination.

• Lemma 2: A has a bivalent initialization.
• That is, the final decision value cannot always be

determined from the inputs only.
• Contrast: In non-fault-tolerant case, final decision can be

determined from the inputs only; e.g., take majority.

• Proof:
– Same argument used (later) by [Aguilera, Toueg].
– Suppose not. Then all initializations are univalent.
– Define initializations α0 = all 0s, α1 = all 1s.
– α0 is 0-valent, α1 is 1-valent, by validity.

Bivalent initialization
• A solves agreement with 1-failure termination.
• Lemma 2: A has a bivalent initialization.
• Proof, cont’d:

– Construct chain of initializations, spanning from α0
to α1, each differing in the initial value of just one
process.

– There must be 2 consecutive initializations, say α
and α′, where α is 0-valent and α′ is 1-valent.

– Differ in initial value of some process i.
– Consider a fair execution extending α, in which i

fails right after α.
– All but i must eventually decide, by 1-failure

termination; since α is 0-valent, all must decide 0.
– Extend α′ in the same way, all but i still decide 0, by

indistinguishability.
– Contradicts 1-valence of α′.

α

0

stopi

all but i

α′

0

stopi

all but i

Impossibility for wait-free termination

• Simpler Theorem [Herlihy]:
– For n ≥ 2, there is no algorithm in the read/write shared

memory model that solves the agreement problem and
guarantees wait-free termination.

• Proof:
– We already assumed A solves agreement with 1-failure

termination.
– Now assume, for contradiction, that A (also) satisfies

wait-free termination.
– Proof is based on pinpointing exactly how a decision

gets determined, that is, how the execution moves from
bivalence to univalence.

• Definition: A decider execution α is a finite,
failure-free, input-first execution such that:
– α is bivalent.
– For every i, ext(α,i) is univalent.

• Lemma 3: A (with wait-free termination) has
a decider execution.

Impossibility for wait-free termination

Extension of α with one step of i

α

1 n2

bivalent

univalent

• Lemma 3: A (with w-f termination) has a decider.
• Proof:

– Suppose not. Then any bivalent ff input-first execution
has a 1-step bivalent ff extension.

– Start with a bivalent initialization (Lemma 2), and
produce an infinite ff execution α all of whose prefixes
are bivalent.

• At each stage, start with a bivalent ff input-first execution
and extend by one step to another bivalent ff execution.

• Possible by assumption.

Impossibility for wait-free termination

– α must contain infinitely many steps of some process, say i.
– Claim i must decide in α:

• Add stop events for all processes that take only finitely many steps.
• Result is a fair execution α′.
• Wait-free termination says i must decide in α′.
• α is indistinguishable from α′, by i, so i must decide in α also.

– Contradicts bivalence.

α

1 n2

bivalent

univalent

Impossibility for wait-free termination

• Proof of theorem, cont’d:
– Fix a decider, α.
– Since α is bivalent and all 1-step extensions

are univalent, there must be two processes,
say i and j, leading to 0-valent and 1-valent
states, respectively.

– Case analysis yields a contradiction:
1. i’s step is a read
2. j’s step is a read
3. Both writes, to different variables.
4. Both writes, to the same variable.

α

1 n2

bivalent

univalent

α

i j

0-valent 1-valent

bivalent

Case 1: i’s step is a read
• Run all but i after ext(α,j).
• Looks like a fair execution in which i fails.
• So all others must decide; since ext(α,j), is 1-valent, they decide 1.
• Now run the same extension, starting with j’s step, after ext(α,i).
• They behave the same, decide 1.

– Cannot see i’s read.
• Contradicts 0-valence of ext(α,i).

α

i j

0-valent 1-valent

bivalent

all but i

1

α

i

bivalent

j

all but i

1

0-valent

Case 2: j’s step is a read

• Symmetric.

j

α

1-valent

bivalent

i

0-valent

all but j

0

α

i

bivalent

1-valenti

0-valent

all but j

0

j

Case 3: Writes to different
shared variables

• Then the two steps are completely
independent.

• They could be performed in either order,
and the result should be the same.

• ext(α,ij) and ext(α,ji) are indistinguishable
to all processes, and end up in the same
system state.

• But ext(α,ij) is 0-valent, since it extends
the 0-valent execution ext(α,i) .

• And ext(α,ji) is 1-valent, since it extends
the 1-valent execution ext(α,j) .

• Contradictory requirements.

j

α

1-valent

bivalent

i

0-valent
ij

Case 4: Writes to the same
shared variable x.

• Run all but i after ext(α,j); they must decide.
• Since ext(α,j), is 1-valent, they decide 1.
• Run the same extension, starting with j’s step, after ext(α,i).

α

i j

0-valent 1-valent

bivalent

all but i

1

α

i

bivalent

j

all but i

1

0-valent

• They behave the same,
decide 1.
– Cannot see i’s write to x.
– Because j’s write overwrites it.

• Contradicts 0-valence of
ext(α,i).

Impossibility for wait-free
termination

• So we have proved:

• Simpler Theorem: [Herlihy]
– For n ≥ 2, there is no algorithm in the read/write

shared memory model that solves the
agreement problem and guarantees wait-free
termination.

Impossibility for 1-failure temination

• Q: Why doesn’t the previous proof yield impossibility for
1-failure termination?

• Lemma 2 (bivalent initialization) works for f = 1.
• In proof of Lemma 3 (existence of decider), wait-free

termination is used to say that a process i must decide in
any fair execution in which i doesn’t fail.

• 1-failure termination makes a termination guarantee only
when at most one process fails.

• Main Theorem:
– For n ≥ 2, there is no algorithm in the read/write shared memory

model that solves the agreement problem and guarantees 1-
failure termination.

Impossibility for 1-failure temination

• From now on, assume A satisfies 1-failure
termination, not necessarily wait-free
termination (weaker requirement).

• Initialization lemma still works:
– Lemma 2: A has a bivalent initialization.

• New key lemma, replacing Lemma 3:

• Lemma 4: If α is any bivalent, ff, input-first
execution of A, and i is any process, then
there is some ff-extension α′ of α such that
ext(α′,i) is bivalent.

bivalent

i

α

bivalent
α′

Lemma 4 ⇒ Main Theorem
• Lemma 4: If α is any bivalent, ff, input-first

execution of A, and i is any process, then
there is some ff-extension α′ of α such that
ext(α′,i) is bivalent.

• Proof of Main Theorem:
– Construct a fair, ff, input-first execution in which

no process ever decides, contradicting the basic
ff-termination requirement.

– Start with a bivalent initialization.
– Then cycle through the processes round-robin: 1,

2, …, n, 1, 2, …
– At each step, say for i, use Lemma 4 to extend

the execution, including at least one step of i,
while maintaining bivalence and avoiding failures.

bivalent

i

α

bivalent
α′

Proof of Lemma 4
• Lemma 4: If α is any bivalent, ff, input-first

execution of A, and i is any process, then
there is some ff-extension α′ of α such that
ext(α′,i) is bivalent.

• Proof:
– By contradiction. Suppose there is some

bivalent, ff, input-first execution α of A and some
process i, such that for every ff extension α′ of α,
ext(α′,i) is univalent.

– In particular, ext(α,i) is univalent, WLOG 0-valent.
– Since α is bivalent, there is some extension of α

in which someone decides 1, WLOG failure-free.

bivalent

i

α

bivalent
α′

α

bivalent

i

0-valent

Proof of Lemma 4
– There is some ff-extension of α

in which someone decides 1.
– Consider letting i take one step

at each point along the “spine”.
– By assumption, results are all

univalent.
– 0-valent at the beginning, 1-

valent at the end.
– So there are two consecutive

results, one 0-valent and the
other 1-valent:

– A new kind of “decider”.

α

bivalent

i

0-valent

1 i

i

i

i

i

1-valent

univalent

univalent

univalent

univalent

i

i 0-valent

1-valent

j

New “Decider”

• Claim: j ≠ i.
• Proof:

– If j = i then:
• 1 step of i yields 0-valence
• 2 steps of i yield 1-valence

– But process i is deterministic, so this
can’t happen.

• “Child” of a 0-valent state can’t be 1-valent.

• The rest of the proof is a case
analysis, as before…

0-valent

1-valent

i

i

j

Case 1: i’s step is a read
• Run j after i.
• Executions ending with ji and ij are indistinguishable to

everyone but i (because this is a read step of i).
• Run all processes except i in the same order after both ji

and ij.
• In each case, they must decide, by 1-failure termination.
• After ji, they decide 1.
• After ij, they decide 0.
• But indistinguishable, contradiction!

0-valent

1-valent

i

i

j

j

1-valent

i

i

j
0-valent

j

1-valent

i

i

j
0-valent

all but iall but i

1 0

Case 2: j’s step is a read
• Executions ending with ji and i are indistinguishable to

everyone but j (because this is a read step of j).
• Run all processes except j in the same order after ji and i.
• In each case, they must decide, by 1-failure termination.
• After ji, they decide 1.
• After i, they decide 0.
• But indistinguishable, contradiction!

0-valent

1-valent

i

i

j

0-valent

1-valent

i

i

j

all but j

1

all but j

0

Case 3: Writes to different
shared variables

• As for the wait-free case.
• The steps of i and j are

independent, could be performed in
either order, indistinguishable to
everyone.

• But the execution ending with ji is
1-valent, whereas the execution
ending with ij is 0-valent.

• Contradiction.

i

0-valent

j

ji
1-valent

Case 4: Writes to the same
shared variable x.

• As for Case 2.
• Executions ending with ji and i are indistinguishable to

everyone but j (because i overwrites the write step of j).
• Run all processes except j in the same order after ji and i.
• After ji, they decide 1.
• After i, they decide 0.
• Indistinguishable, contradiction!

0-valent

1-valent

i

i

j

0-valent

1-valent

i

i

j

all but j

1

all but j

0

Impossibility for 1-failure
termination

• So we have proved:

• Main Theorem: [Fischer, Lynch, Paterson]
[Loui, Abu-Amara]
– For n ≥ 2, there is no algorithm in the read/write

shared memory model that solves the
agreement problem and guarantees 1-failure
termination.

Shared memory vs. networks

• Result also holds in asynchronous
networks---revisit shortly.

• [Fischer, Lynch, Paterson 82, 85] proved
first for networks.

• [Loui, Abu-Amara 87] extended result and
proof to shared memory.

Significance of FLP impossibility result

• For distributed computing practice:
– Reaching agreement is sometimes important in practice:

• Agreeing on aircraft altimeter readings.
• Database transaction commit.

– FLP shows limitations on the kind of algorithm one can look for.

• For distributed computing theory:
– Variations:

• [Loui, Abu-Amara 87] Read/write shared memory.
• [Herlihy 91] Stronger fault-tolerance requirement (wait-free

termination); simpler proof.
– Circumventing the impossibility result:

• Strengthening the assumptions.
• Weakening the requirements/guarantees.

Strengthening the assumptions
• Using limited timing information [Dolev, Dwork,

Stockmeyer 87].
– Bounds on message delays, processor step time.
– Makes the model more like the synchronous model.

• Using randomness [Ben-Or 83][Rabin 83].
– Allow random choices in local transitions.
– Weakens guarantees:

• Small probability of a wrong decision, or
• Small probability of not terminating, in any bounded time

(Probability of not terminating approaches 0 as time approaches
infinity.)

Weakening the requirements
• Agreement, validity must always hold.
• Termination required if system behavior “stabilizes”:

– No new failures.
– Timing (of process steps, messages) within “normal” bounds.

• Good solutions, both theoretically and in practice.
• [Dwork, Lynch, Stockmeyer 88]: Dijkstra Prize, 2007

– Keeps trying to choose a leader, who tries to coordinate agreement.
– Coordination attempts can fail.
– Once system stabilizes, unique leader is chosen, coordinates agreement.
– Tricky part: Ensuring failed attempts don’t lead to inconsistent decisions.

• [Lamport 89] Paxos algorithm.
– Improves on [DLS] by allowing more concurrency.
– Refined, engineered for practical use.

• [Chandra, Hadzilacos, Toueg 96] Failure detectors (FDs)
– Services that encapsulate use of time for detecting failures.
– Develop similar algorithms using FDs.
– Studied properties of FDs, identified weakest FD to solve consensus.

Extension to k-consensus
• At most k different decisions may occur overall.
• Solvable for k-1 process failures but not for k

failures.
– Algorithm for k-1 failures: [Chaudhuri 93].
– Impossibility result:

• [Herlihy, Shavit 93], [Borowsky, Gafni 93], [Saks, Zaharoglu 93]
• Godel Prize, 2004.
• Techniques from algebraic topology: Sperner’s Lemma.
• Similar to those used for lower bound on rounds for k-

agreement, in synchronous model.

• Open question (currently active):
– What is the weakest failure detector to solve k-

consensus with k failures?

Importance of read/write data type

• Consensus impossibility result doesn’t hold for more
powerful data types.

• Example: Read-modify-write shared memory
– Very strong primitive.
– In one step, can read variable, do local computation, and write

back a value.
– Easy algorithm:

• One shared variable x, value in V ∪ {⊥}, initially ⊥.
• Each process i accesses x once.
• If it sees:

– ⊥, then it changes the value in x to its own initial value and decides on
that value.

– Some v in V, then decides on that value.

• Read/write registers are similar to asynchronous FIFO
reliable channels---we’ll see the precise connection later.

Next time…

• Atomic objects
• Reading: Chapter 13

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Generalized resource allocation
	Resource specifications
	Resource allocation problem, for a given exclusion spec E
	Dining Philosophers
	Dining Philosophers
	Asynchronous shared-memory systems with failures
	Asynchronous shared-memory systems with failures
	Consensus in asynchronous shared-memory systems with failures
	Consensus in Asynchronous Shared-Memory Systems
	Consequences of impossibility results
	Architecture
	Problem requirements 1
	Problem requirements 2: Fault-tolerance
	Impossibility of agreement
	Restrictions (WLOG)
	Terminology
	Univalence and Bivalence
	Exhaustive classification
	Bivalent initialization
	Bivalent initialization
	Impossibility for wait-free termination
	Impossibility for wait-free termination
	Impossibility for wait-free termination
	Impossibility for wait-free termination
	Case 1: i’s step is a read
	Case 2: j’s step is a read
	Case 3: Writes to different shared variables
	Case 4: Writes to the same shared variable x.
	Impossibility for wait-free termination
	Impossibility for 1-failure temination
	Impossibility for 1-failure temination
	Lemma 4  Main Theorem
	Proof of Lemma 4
	Proof of Lemma 4
	New “Decider”
	Case 1: i’s step is a read
	Case 2: j’s step is a read
	Case 3: Writes to different shared variables
	Case 4: Writes to the same shared variable x.
	Impossibility for 1-failure termination
	Shared memory vs. networks
	Significance of FLP impossibility result
	Strengthening the assumptions
	Weakening the requirements
	Extension to k-consensus
	Importance of read/write data type
	Next time…

