6.852: Distributed Algorithms
Fall, 2009

Class 16

Today’s plan

Generalized resource allocation

Asynchronous shared-memory systems with failures.
Consensus in asynchronous shared-memory systems.
Impossibility of consensus [Fischer, Lynch, Paterson]
Reading: Chapter 11, Chapter 12

Next: Chapter 13

Generalized resource allocation

Mutual exclusion: Problem of allocating a single non-sharable resource.
Can generalize to more resources, some sharing.

Exclusion specification E (for a given set of users):
« Any collection of sets of users, closed under superset.
« Expresses which users are incompatible, can’t coexist in the critical section.

Example: k-exclusion (any k users are ok, but not k+1)
E={E:|E|>k}

Example: Reader-writer locks
. Relies on classification of users as readers vs. writers.
E={E:|E|>1andE contains a writer }

Example: Dining Philosophers [Dijkstra]
E ={ E : E includes a pair of neighbors }

Resource specifications

Some exclusion specs can be described conveniently in
terms of requirements for concrete resources.

Resource specification: Different users need different
subsets of resources

— Can't share: Users with intersecting sets exclude each other.
Example: Dining Philosophers

E ={E : E includes a pair of neighbors }

— Forks (resources) between adjacent philosophers; each needs both
adjacent forks in order to eat.

— Only one can hold a particular fork at a time, so adjacent
philosophers must exclude each other.

Not every exclusion problem can be expressed in this way.
— E.g., k-exclusion cannot.

Resource allocation problem, for a
given exclusion spec E

Same shared-memory architecture as for mutual exclusion
(processes and shared variables, no buses, no caches).

Well-formedness: As before.

Exclusion: No reachable state in which the set of users In
CisasetinkE.

Progress: As before.
Lockout-freedom: As before.
But these don’t capture concurrency requirements.

Any lockout-free mutual exclusion algorithm also satisfies
E (provided that E doesn’t contain any singleton sets).

Can add concurrency conditions, e.g.:

— Independent progress: If i €T and every j that could conflict with |
remains in R, then eventually i — C.

— Time bound: Obtain better bounds fromi — Tto 1 — C, even in the
presence of conflicts, than we get for mutual exclusion.

Dining Philosophers Q\@

Dijkstra’s paper posed the problem, gave a
solution using strong shared-memory model.

— Globally-shared variables, atomic access to all of shared memory.
— Not very distributed.

More distributed version: Assume the only shared
variables are on the edges between adjacent philosophers.
— Correspond to forks.

— Use RMW shared variables.

Impossibility result: If all processes are identical and refer
to forks by local names “left” and “right”, and all shared
variables have the same Iinitial values, then we can’t
guarantee DP exclusion + progress.

Proof: Show we can’t break symmetry:

— Consider subset of executions that work in synchronous rounds,
prove by induction on rounds that symmetry is preserved.

— Then by progress, someone — C.
— So all do, violating DP exclusion.

Dining Philosophers '\.

Example: Simple symmetric algorithm where

all wait for R fork first, then L fork.

— Guarantees DP exclusion, because processes wait for both forks.
— But progress fails---all might get R, then deadlock.

So we need something to break symmetry.

Solutions:
— Number forks around the table, pick up smaller numbered fork first.

— Right/left algorithm (Burns):
» Classify processes as R or L (need at least one of each).
* R processes pick up right fork first, L processes pick up left fork first.

* Yields DP exclusion, progress, lockout freedom, independent progress,
and good time bound (constant, for alternating R and L).

Generalize to solve any resource problem

- Nodes represent resources.

- Edge between resources if some user needs both.
- Color graph; order colors.

- All processes acquire resources in order of colors.

Asynchronous shared-memory
systems with failures

Asynchronous shared-memory
systems with failures

Process stopping failures.

Architecture as for mutual
exclusion.

— Processes + shared variables, one
system automaton.

— Users

Add stop; inputs.
— Effect is to disable all future non-input
actions of process i.
Fair executions:

— Every process that doesn't fail gets
infinitely many turns to perform locally-
controlled steps.

— Just ordinary fairness---stop means
that nothing further is enabled.

— Users also get turns.

Consensus In asynchronous
shared-memory systems with
failures

Consensus In Asynchronous
Shared-Memory Systems

Recall: Consensus in synchronous networks.

— Algorithms for stopping failures:

* FloodSet, FloodMin, Optimizations: f+1 rounds, any number of
processes, low communication

— Lower bounds: f+1 rounds

— Algorithms for Byzantine failures
 EIG: f+1 rounds, n > 3f, exponential communication

— Lower bounds: f+1 rounds, n > 3f
Asynchronous networks: Impossible

Asynchronous shared memory:
— Read/write variables: Impossible
— Read-modify-write variables: Simple algorithms

Impossibility results hold even if n is large and f is just 1.

Consequences of impossibility
results

Can’t solve problems like transaction commit, agreement
on choice of leader, fault diagnosis,...in the purely
asynchronous model with failures.

But these problems must be solved...

Can strengthen the assumptions:

— Rely on timing assumptions: Upper and lower bounds on message
delivery time, on step time.

— Probabilistic assumptions

And/or weaken the guarantees:

— Allow a small probability of violating safety properties, or of not
terminating.

— Conditional termination, based on stability for a “sufficiently long”
interval of time.

We'll see some of these strategies.
But, first, the impossibility result!

Architecture

e V, set of consensus values

 Interaction between user U, and
process (agent) p::
— User U; submits initial value v with
init(v)..
— Process p; returns decision v with
decide(v).
— 1/O handled slightly differently from

synchronous setting, where we
assumed | and O in local variables.

— Assume each user performs at most init(v).
one init(v), in an execution. L,

« Shared variable types: | < i

— Read/write registers (for now) decide(v),

Problem requirements 1

Well-formedness:
— At_tr(g)ost one decide(*),, appears, and only if there’s a previous
init(*)..
Agreement:
— All decision values are identical.
Validity:
— If all init actions that occur contain the same v, then that v is the
only possible decision value.
— Stronger version: Any decision value is an initial value.
Termination:
— Failure-free termination (most basic requirement):

— In any fair failure-free (ff) execution in which init events occur on all
“ports”, decide events occur on all ports.

Basic problem requirements: Well-formedness,
agreement, validity, failure-free termination.

Problem requirements 2:
Fault-tolerance

Failure-free termination:;

— In any fair failure-free (ff) execution in which init events occur on all ports,
decide events occur on all ports.

Wait-free termination (strongest condition):

— In any fair execution in which init events occur on all ports, a decide event
occurs on every port i for which no stop, occurs.

— Similar to wait-free doorway in Lamport’s Bakery algorithm: says i finishes
regardless of whether the other processes stop or not.

Also consider tolerating limited number of failures.
Should be easier to achieve, so impossibility results are stronger.
f-failure termination, 0 < f < n:

— In any fair execution in which init events occur on all ports, if there are stop
events on at most f ports, then a decide event occurs on every port i for
which no stop, occurs.

Wait-free termination = n-failure termination = (n-1)-failure termination.

1-failure termination: The interesting special case we will consider in
our proof.

Impossibility of agreement

e Main Theorem [Fischer, Lynch, Paterson], [Loui, Abu-
Amaray.

— For n > 2, there is no algorithm in the read/write shared memory
model that solves the agreement problem and guarantees 1-failure
termination.

o Simpler Theorem [Herlihy]:

— For n > 2, there is no algorithm in the read/write shared memory
model that solves the agreement problem and guarantees wait-free
termination.

» Let’s prove the simpler theorem first.

Restrictions (WLOG)

e V={0,1}
« Algorithms are deterministic:

— Unique start state.

— From any state, any process has < 1 locally-controlled
action enabled.

— From any state, for any enabled action, there is exactly
one new state.
* Non-halting:
— Every non-failed process always has some locally-
controlled action enabled, even after it decides.

Terminology

 Initialization:
— Sequence of n init steps, one per port, in index order: init(v,),,

INit(v,),,...INit(v,),

* Input-first execution:

Begins with an initialization.

e A finite execution o IS:

O-valent, if O is the only decision value appearing in o. or any
extension of o, and O actually does appear in o or some extension.

1-valent, if 1 is the only decision value appearing in o or any
extension of o, and 1 actually does appear in o or some extension.

Univalent, if a is O-valent or 1-valent.
Bivalent, if each of O, 1 occurs in some extension of a.

Univalence and Bivalence

(00 (00
0
O-valent 1-valent bivalent
_ _/
Y

univalent

Exhaustive classification

e Lemma 1.

— If A solves agreement with ff-termination, then
each finite ff execution of A Is either univalent or
bivalent.

e Proof:

— Can extend to a fair execution, in which
everyone Is required to decide.

Bivalent initialization

From now on, fix A to be an algorithm solving agreement
with (at least) 1-failure termination.

— Could also satisfy stronger conditions, like f-failure termination, or
wait-free termination.

Lemma 2: A has a bivalent initialization.

That Is, the final decision value cannot always be
determined from the inputs only.

Contrast: In non-fault-tolerant case, final decision can be
determined from the inputs only; e.g., take majority.

Proof:

— Same argument used (later) by [Aguilera, Toueqg].
— Suppose not. Then all initializations are univalent.
— Define initializations o, = all 0s, o, = all 1s.

— 04 Is O-valent, a,is 1-valent, by validity.

Bivalent initialization

* A solves agreement with 1-failure termination.
e Lemma 2: A has a bhivalent initialization.
 Proof, cont'd:

Construct chain of initializations, spanning from o,
to a,, each differing in the initial value of just one
process.

There must be 2 consecutive initializations, say o
and o', where o is O-valent and o' is 1-valent.

Differ in initial value of some process i.

Consider a fair execution extending o, in which i
fails right after a.

All but i must eventually decide, by 1-failure
termination; since a IS 0-valent, all must decide 0.

Extend o' in the same way, all but i still decide 0, by
Indistinguishability.
Contradicts 1-valence of o'.

stop;

all but |

stop;

all but |

Impossibllity for walt-free termination

e Simpler Theorem [Herliny]:

— For n > 2, there is no algorithm in the read/write shared
memory model that solves the agreement problem and
guarantees wait-free termination.

e Proof:

— We already assumed A solves agreement with 1-failure
termination.

— Now assume, for contradiction, that A (also) satisfies
wait-free termination.

— Proof is based on pinpointing exactly how a decision
gets determined, that is, how the execution moves from
bivalence to univalence.

Impossibllity for walt-free termination

o Definition: A decider execution o Is a finite,
failure-free, input-first execution such that:

— o IS bivalent.
— For every I, ext(a,l) Is univalent.
N J

a

bivalent

Extension of o with one step of i 1

2 n

univalent

« Lemma 3. A (with wait-free termination) has
a decider execution.

Impossiblility for walt-free termination

e Lemma 3: A (with w-f termination) has a decider. T
e Proof: a
— Suppose not. Then any bivalent ff input-first execution bivalent
has a 1-step bivalent ff extension. 1
— Start with a bivalent initialization (Lemma 2), and 2 N\

produce an infinite ff execution a all of whose prefixes
are bivalent.

« At each stage, start with a bivalent ff input-first execution
and extend by one step to another bivalent ff execution.

» Possible by assumption.

o. must contain infinitely many steps of some process, say |.

Claim | must decide in o
» Add stop events for all processes that take only finitely many steps.
» Result is a fair execution o'.
« Wait-free termination says i must decide in o/'.
* « is indistinguishable from o', by I, so | must decide in o also.

Contradicts bivalence.

univalent

Impossiblility for walt-free termination

 Proof of theorem, cont’d: *
— Fix a decider, . . bivalent
2 n

— Since a Is bivalent and all 1-step extensions —- -
are univalent, there must be two processes, univalent
say | and |, leading to O-valent and 1-valent
states, respectively.

— Case analysis yields a contradiction: |
1.1's stepis aread _ blvélent
2.]'s step is a read _/K
3. Both writes, to different variables. O-valent 1-valent
4. Both writes, to the same variable.

(0

Case 1: I's step Is a read

Run all but i after ext(a,)).

Looks like a fair execution in which i fails.

So all others must decide; since ext(a.,)), Is 1-valent, they decide 1.
Now run the same extension, starting with j's step, after ext(a,i).

They behave the same, decide 1.
— Cannot see i's read. .

Contradicts 0-valence of ext(a,i).

(0

bivalent

0

bivalent

_/ j 0-valent

O-valent 1-val&nt

all but | all but

Case 2: |’s step Is a read

e Symmetric.

(0

o bivalent

bivalent _/
N -

O-valent 1-valent

1-valent

all butj all butj

Case 3: Writes to different
shared variables

Then the two steps are completely
iIndependent. o

They could be performed in either order, bivalent
and the result should be the same. .
ext(a,l) and ext(a,ji) are indistinguishable
to all processes, and end up in the same
system state.

But ext(a,lj) is 0-valent, since it extends
the O-valent execution ext(o.,i) .

And ext(a,ji) Is 1-valent, since it extends
the 1-valent execution ext(a.,j) .

Contradictory requirements.

O-valent 1-valent

Case 4: Writes to the same
shared variable X.

Run all but I after ext(a.,)); they must decide.
Since ext(a,)), Is 1-valent, they decide 1.
Run the same extension, starting with |'s step, after ext(a,i).

They behave the same,
decide 1. — o

— Cannot see i's write to x. bivalent

— Because j's write overwrites it. * i

bivalent

Contradicts 0-valence of
_/ j O-valent

ext(o,i).
O-valent 1-val&nt

all but | all but i

Impossibility for wait-free
termination

e S0 we have proved:

o Simpler Theorem: [Herlihy]

— For n > 2, there iIs no algorithm in the read/write
shared memory model that solves the
agreement problem and guarantees wait-free
termination.

Impossibility for 1-failure temination

Q: Why doesn’t the previous proof yield impossibility for
1-failure termination?
Lemma 2 (bivalent initialization) works for f = 1.

In proof of Lemma 3 (existence of decider), wait-free
termination is used to say that a process | must decide In
any fair execution in which i doesn’t fail.

1-failure termination makes a termination guarantee only
when at most one process fails.

Main Theorem:

— For n > 2, there is no algorithm in the read/write shared memory
model that solves the agreement problem and guarantees 1-
failure termination.

Impossibility for 1-failure temination

From now on, assume A satisfies 1-failure
termination, not necessarily wait-free p—
termination (weaker requirement).

a

C e .) i bivalent
Initialization lemma still works: o < T

— Lemma 2: A has a bivalent initialization.

New key lemma, replacing Lemma 3: K-\
I

bivalent

Lemma 4: If o is any bivalent, ff, input-first
execution of A, and I Is any process, then
there is some ff-extension o' of a such that
ext(a',1) Is bivalent.

Lemma 4 = Main Theorem

-

 Lemma 4: If a IS any bivalent, ff, input-first o
execution of A, and i Is any process, then
there Is some ff-extension o’ of o such that <
ext(a',i) Is bivalent.

e Proof of Main Theorem:

— Construct a fair, ff, input-first execution in which \
no process ever decides, contradicting the basic i
ff-termination requirement.

— Start with a bivalent initialization.

— Then cycle through the processes round-robin: 1,
2,..,.n1,2, ..
— At each step, say for i, use Lemma 4 to extend

the execution, including at least one step of i,
while maintaining bivalence and avoiding failures.

bivalent

bivalent

Proof of Lemma 4 _

a

« Lemma 4. If a is any bivalent, ff, input-first
execution of A, and i iIs any process, then o X
there is some ff-extension o’ of a such that
ext(a',) is bivalent.

 Proof: \

— By contradiction. Suppose there is some bivalent
bivalent, ff, input-first execution o of A and some
process i, such that for every ff extension o' of a,
ext(a',1) is univalent.

— In particular, ext(o,i) is univalent, WLOG 0-valent. _

bivalent

— Since a Is bivalent, there is some extension of o —x
i

bivalent

a

In which someone decides 1, WLOG failure-free.

O-valent

Proof of Lemma 4

a

— There I1s some ff-extension of o

In which someone decides 1. bivalent
— Consider letting | take one step N

at each point along the “spine”. | | O-Ya'ent
— By assumption, results are all N _“”"’a'e”t

univalent. i univalent

i i i univalent
— O-valent at the beginning, 1- | |
1 [univalent
valent at the end.

_ 1-valent
— So there are two consecutive
results, one O-valent and the
other 1-valent:
[O-valent

— A new kind of “decider”.

1-valent

New “Decider”

o Claim: j=1.
* Proof:
— If j = 1then: i
. O-valent
« 1 step of i yields O-valence
» 2 steps of i yield 1-valence 1-valent

— But process I is deterministic, so this
can’t happen.
o “Child” of a O-valent state can’t be 1-valent.

 The rest of the proof Is a case
analysis, as before...

Case 1: I's step Is a read

Run | after I.

Executions ending with ji and 1] are indistinguishable to
everyone but | (because this is a read step of I).

Rudn all processes except | in the same order after both ji
and ij.

In each case, they must decide, by 1-failure termination.
After ji, they decide 1.

After i, they decide O.

But indistinguishable, contradiction! J

O-valent

1-valent

O-valent) .
all but i\all but i

| O-valent

1-valent 1-valent 1 0

Case 2: |’s step Is a read

Executions ending with ji and i are indistinguishable to
everyone but j (because this is a read step of).

Run all processes except | in the same order after ji and |.
In each case, they must decide, by 1-failure termination.
After ji, they decide 1.

After i, they decide O.

But indistinguishable, contradiction!

O-valent

all but j

1-valgnt

! O-valent all but O

1-valent 1

Case 3: Writes to different
shared variables

As for the wait-free case.

The steps of i and | are
Independent, could be performed in
either order, indistinguishable to
everyone.

But the execution ending with ji is 1-valent
1-valent, whereas the execution

ending with 1j is O-valent.

Contradiction.

" 0O-valent

Case 4: Writes to the same
shared variable X.

As for Case 2.

Executions ending with ji and I are indistinguishable to
everyone but | (because | overwrites the write step of j).

Run all processes except | in the same order after ji and 1.
After ji, they decide 1.
After I, they decide 0.
Indistinguishable, contradiction!

O-valent

all but j

1-vaignt

' O-valent all but O

1-valent

Impossibility for 1-failure
termination

e S0 we have proved:

 Main Theorem: [Fischer, Lynch, Paterson]
[Loul, Abu-Amaral]

— For n > 2, there iIs no algorithm in the read/write
shared memory model that solves the
agreement problem and guarantees 1-failure
termination.

Shared memory vs. networks

e Result also holds in asynchronous
networks---revisit shortly.

 [Fischer, Lynch, Paterson 82, 85] proved
first for networks.

* [Loul, Abu-Amara 87] extended result and
proof to shared memory.

Significance of FLP impossibility result

« For distributed computing practice:
— Reaching agreement is sometimes important in practice:
« Agreeing on aircraft altimeter readings.
« Database transaction commit.
— FLP shows limitations on the kind of algorithm one can look for.

« For distributed computing theory:

— Variations:
* [Loui, Abu-Amara 87] Read/write shared memory.

» [Herliny 91] Stronger fault-tolerance requirement (wait-free
termination); simpler proof.

— Circumventing the impossibility result:
» Strengthening the assumptions.
» Weakening the requirements/guarantees.

Strengthening the assumptions

e Using limited timing information [Dolev, Dwork,
Stockmeyer 87].
— Bounds on message delays, processor step time.
— Makes the model more like the synchronous model.

* Using randomness [Ben-Or 83][Rabin 83].

— Allow random choices in local transitions.

— Weakens guarantees:
« Small probability of a wrong decision, or

« Small probability of not terminating, in any bounded time
(Probability of not terminating approaches 0 as time approaches
Infinity.)

Weakening the requirements

Agreement, validity must always hold.
Termination required if system behavior “stabilizes”:

— No new failures.

— Timing (of process steps, messages) within “normal” bounds.
Good solutions, both theoretically and in practice.

[Dwork, Lynch, Stockmeyer 88]. Dijkstra Prize, 2007
— Keeps trying to choose a leader, who tries to coordinate agreement.
— Coordination attempts can fail.
— Once system stabilizes, unique leader is chosen, coordinates agreement.
— Tricky part: Ensuring failed attempts don'’t lead to inconsistent decisions.
[Lamport 89] Paxos algorithm.
— Improves on [DLS] by allowing more concurrency.
— Refined, engineered for practical use.
[Chandra, Hadzilacos, Toueg 96] Failure detectors (FDs)
— Services that encapsulate use of time for detecting failures.
— Develop similar algorithms using FDs.
— Studied properties of FDs, identified weakest FD to solve consensus.

Extension to k-consensus

e At most k different decisions may occur overall.

o Solvable for k-1 process failures but not for k
failures.
— Algorithm for k-1 failures: [Chaudhuri 93].
— Impossibility result:
[Herlihy, Shavit 93], [Borowsky, Gafni 93], [Saks, Zaharoglu 93]
Godel Prize, 2004.

Technigues from algebraic topology: Sperner’'s Lemma.

Similar to those used for lower bound on rounds for k-
agreement, in synchronous model.

* Open guestion (currently active):

— What is the weakest failure detector to solve k-
consensus with k failures?

Importance of read/write data type

e Consensus impossibility result doesn’t hold for more
powerful data types.

« Example: Read-modify-write shared memory
— Very strong primitive.

— In one step, can read variable, do local computation, and write
back a value.

— Easy algorithm:

* One shared variable x, value in V U {l}, initially L.
» Each process i accesses x once.
o If it sees:

— 1, then it changes the value in x to its own initial value and decides on
that value.

— Some vinV, then decides on that value.

 Read/write registers are similar to asynchronous FIFO
reliable channels---we’ll see the precise connection later.

Next time...

e Atomic objects
 Reading: Chapter 13

MIT OpenCourseWare
Ihttp://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Generalized resource allocation
	Resource specifications
	Resource allocation problem, for a given exclusion spec E
	Dining Philosophers
	Dining Philosophers
	Asynchronous shared-memory systems with failures
	Asynchronous shared-memory systems with failures
	Consensus in asynchronous shared-memory systems with failures
	Consensus in Asynchronous Shared-Memory Systems
	Consequences of impossibility results
	Architecture
	Problem requirements 1
	Problem requirements 2: Fault-tolerance
	Impossibility of agreement
	Restrictions (WLOG)
	Terminology
	Univalence and Bivalence
	Exhaustive classification
	Bivalent initialization
	Bivalent initialization
	Impossibility for wait-free termination
	Impossibility for wait-free termination
	Impossibility for wait-free termination
	Impossibility for wait-free termination
	Case 1: i’s step is a read
	Case 2: j’s step is a read
	Case 3: Writes to different shared variables
	Case 4: Writes to the same shared variable x.
	Impossibility for wait-free termination
	Impossibility for 1-failure temination
	Impossibility for 1-failure temination
	Lemma 4  Main Theorem
	Proof of Lemma 4
	Proof of Lemma 4
	New “Decider”
	Case 1: i’s step is a read
	Case 2: j’s step is a read
	Case 3: Writes to different shared variables
	Case 4: Writes to the same shared variable x.
	Impossibility for 1-failure termination
	Shared memory vs. networks
	Significance of FLP impossibility result
	Strengthening the assumptions
	Weakening the requirements
	Extension to k-consensus
	Importance of read/write data type
	Next time…

