
6.852: Distributed Algorithms
Fall, 2009

Class 16



Today’s plan
• Generalized resource allocation
• Asynchronous shared-memory systems with failures.
• Consensus in asynchronous shared-memory systems.
• Impossibility of consensus [Fischer, Lynch, Paterson]
• Reading:  Chapter 11, Chapter 12
• Next:  Chapter 13



Generalized resource allocation
Mutual exclusion:  Problem of allocating a single non-sharable resource.
Can generalize to more resources, some sharing.

Exclusion specification E (for a given set of users):
Any collection of sets of users, closed under superset.
Expresses which users are incompatible, can’t coexist in the critical section.

Example:  k-exclusion (any k users are ok, but not k+1)
E = { E : |E| > k }

Example:  Reader-writer locks 
Relies on classification of users as readers vs. writers.

E = { E : |E| > 1 and E contains a writer }

Example:  Dining Philosophers [Dijkstra]
E = { E : E includes a pair of neighbors }



Resource specifications
• Some exclusion specs can be described conveniently in 

terms of requirements for concrete resources.
• Resource specification: Different users need different 

subsets of resources
– Can't share:  Users with intersecting sets exclude each other.

Example: Dining Philosophers
E = { E : E includes a pair of neighbors }
– Forks (resources) between adjacent philosophers; each needs both

adjacent forks in order to eat.
– Only one can hold a particular fork at a time, so adjacent 

philosophers must exclude each other.
• Not every exclusion problem can be expressed in this way.

– E.g., k-exclusion cannot.



Resource allocation problem, for a 
given exclusion spec E

• Same shared-memory architecture as for mutual exclusion 
(processes and shared variables, no buses, no caches).

• Well-formedness: As before.
• Exclusion: No reachable state in which the set of users in 

C is a set in E.
• Progress: As before.
• Lockout-freedom: As before.
• But these don’t capture concurrency requirements.
• Any lockout-free mutual exclusion algorithm also satisfies 

E (provided that E doesn’t contain any singleton sets).
• Can add concurrency conditions, e.g.:

– Independent progress: If i ∈T and every j that could conflict with i 
remains in R, then eventually i → C.  

– Time bound: Obtain better bounds from i → T to i → C, even in the 
presence of conflicts, than we get for mutual exclusion.



Dining Philosophers 
• Dijkstra’s paper posed the problem, gave a                   

solution using strong shared-memory model.
– Globally-shared variables, atomic access to all of shared memory.
– Not very distributed.

• More distributed version:  Assume the only shared 
variables are on the edges between adjacent philosophers.
– Correspond to forks.
– Use RMW shared variables.

• Impossibility result: If all processes are identical and refer 
to forks by local names “left” and “right”, and all shared 
variables have the same initial values, then we can’t 
guarantee DP exclusion + progress.

• Proof: Show we can’t break symmetry:  
– Consider subset of executions that work in synchronous rounds, 

prove by induction on rounds that symmetry is preserved.
– Then by progress, someone → C.
– So all do, violating DP exclusion.



Dining Philosophers 
• Example: Simple symmetric algorithm where   

all wait for R fork first, then L fork.  
                  

– Guarantees DP exclusion, because processes wait for both forks.
– But progress fails---all might get R, then deadlock.

• So we need something to break symmetry.
• Solutions:

– Number forks around the table, pick up smaller numbered fork first.
– Right/left algorithm (Burns):

• Classify processes as R or L (need at least one of each).
• R processes pick up right fork first, L processes pick up left fork first.
• Yields DP exclusion, progress, lockout freedom, independent progress, 

and good time bound (constant, for alternating R and L).
Generalize to solve any resource problem
− Nodes represent resources.
− Edge between resources if some user needs both.
− Color graph; order colors.
− All processes acquire resources in order of colors.



Asynchronous shared-memory 
systems with failures



Asynchronous shared-memory 
systems with failures

• Process stopping failures.
• Architecture as for mutual 

exclusion.
– Processes + shared variables, one 

system automaton.
– Users

• Add stopi inputs.
– Effect is to disable all future non-input 

actions of process i.
• Fair executions:

– Every process that doesn’t fail gets 
infinitely many turns to perform locally-
controlled steps.

– Just ordinary fairness---stop means 
that nothing further is enabled.

– Users also get turns.
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Consensus in asynchronous 
shared-memory systems with 

failures



Consensus in Asynchronous 
Shared-Memory Systems

• Recall:  Consensus in synchronous networks.
– Algorithms for stopping failures:

• FloodSet, FloodMin, Optimizations:  f+1 rounds, any number of 
processes, low communication

– Lower bounds:  f+1 rounds
– Algorithms for Byzantine failures

• EIG:  f+1 rounds, n > 3f, exponential communication
– Lower bounds:  f+1 rounds, n > 3f

• Asynchronous networks:  Impossible
• Asynchronous shared memory:

– Read/write variables:  Impossible
– Read-modify-write variables:  Simple algorithms

• Impossibility results hold even if n is large and f is just 1.



Consequences of impossibility 
results

• Can’t solve problems like transaction commit, agreement 
on choice of leader, fault diagnosis,…in the purely 
asynchronous model with failures.

• But these problems must be solved…
• Can strengthen the assumptions:

– Rely on timing assumptions:  Upper and lower bounds on message 
delivery time, on step time.

– Probabilistic assumptions 
• And/or weaken the guarantees:

– Allow a small probability of violating safety properties, or of not 
terminating.

– Conditional termination, based on stability for a “sufficiently long”
interval of time.

• We’ll see some of these strategies.
• But, first, the impossibility result!



Architecture
• V, set of consensus values

• Interaction between user Ui and 
process (agent) pi:
– User Ui submits initial value v with 

init(v)i.
– Process pi returns decision v with 

decide(v)i.
– I/O handled slightly differently from 

synchronous setting, where we 
assumed I and O in local variables.

– Assume each user performs at most 
one init(v)i in an execution.

• Shared variable types:
– Read/write registers (for now)
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Problem requirements 1
• Well-formedness:

– At most one decide(*)i, appears, and only if there’s a previous 
init(*)i.

• Agreement:
– All decision values are identical.

• Validity:
– If all init actions that occur contain the same v, then that v is the 

only possible decision value.
– Stronger version:  Any decision value is an initial value.

• Termination:
– Failure-free termination (most basic requirement):
– In any fair failure-free (ff) execution in which init events occur on all 

“ports”, decide events occur on all ports.
• Basic problem requirements: Well-formedness, 

agreement, validity, failure-free termination.



Problem requirements 2:         
Fault-tolerance

• Failure-free termination:
– In any fair failure-free (ff) execution in which init events occur on all ports, 

decide events occur on all ports.
• Wait-free termination (strongest condition):

– In any fair execution in which init events occur on all ports, a decide event 
occurs on every port i for which no stopi occurs.

– Similar to wait-free doorway in Lamport’s Bakery algorithm:  says i finishes 
regardless of whether the other processes stop or not.

• Also consider tolerating limited number of failures.
• Should be easier to achieve, so impossibility results are stronger.
• f-failure termination, 0 ≤ f ≤ n:

– In any fair execution in which init events occur on all ports, if there are stop 
events on at most f ports, then a decide event occurs on every port i for 
which no stopi occurs.

• Wait-free termination = n-failure termination = (n-1)-failure termination.
• 1-failure termination: The interesting special case we will consider in 

our proof.



Impossibility of agreement
• Main Theorem [Fischer, Lynch, Paterson], [Loui, Abu-

Amara]:
– For n ≥ 2, there is no algorithm in the read/write shared memory 

model that solves the agreement problem and guarantees 1-failure 
termination.

• Simpler Theorem [Herlihy]: 
– For n ≥ 2, there is no algorithm in the read/write shared memory 

model that solves the agreement problem and guarantees wait-free 
termination.

• Let’s prove the simpler theorem first.



Restrictions (WLOG)

• V = { 0, 1 }
• Algorithms are deterministic:

– Unique start state.
– From any state, any process has ≤ 1 locally-controlled 

action enabled.
– From any state, for any enabled action, there is exactly 

one new state.
• Non-halting:

– Every non-failed process always has some locally-
controlled action enabled, even after it decides.



Terminology
• Initialization:

– Sequence of n init steps, one per port, in index order:  init(v1)1, 
init(v2)2,…init(vn)n

• Input-first execution:  
– Begins with an initialization.

• A finite execution α is:
– 0-valent, if 0 is the only decision value appearing in α or any 

extension of α, and 0 actually does appear in α or some extension.
– 1-valent, if 1 is the only decision value appearing in α or any 

extension of α, and 1 actually does appear in α or some extension.
– Univalent, if α is 0-valent or 1-valent.
– Bivalent, if each of 0, 1 occurs in some extension of α.



Univalence and Bivalence
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Exhaustive classification

• Lemma 1:  
– If A solves agreement with ff-termination, then 

each finite ff execution of A is either univalent or 
bivalent.

• Proof:
– Can extend to a fair execution, in which 

everyone is required to decide.



Bivalent initialization
• From now on, fix A to be an algorithm solving agreement 

with (at least) 1-failure termination.
– Could also satisfy stronger conditions, like f-failure termination, or 

wait-free termination.

• Lemma 2: A has a bivalent initialization.
• That is, the final decision value cannot always be 

determined from the inputs only.
• Contrast:  In non-fault-tolerant case, final decision can be 

determined from the inputs only; e.g., take majority.

• Proof:
– Same argument used (later) by [Aguilera, Toueg].
– Suppose not.  Then all initializations are univalent.
– Define initializations α0 = all 0s, α1 = all 1s.
– α0  is 0-valent, α1 is 1-valent, by validity.



Bivalent initialization
• A solves agreement with 1-failure termination.
• Lemma 2: A has a bivalent initialization.
• Proof, cont’d:

– Construct chain of initializations, spanning from α0 
to α1, each differing in the initial value of just one 
process.

– There must be 2 consecutive initializations, say α
and α′, where α is 0-valent and α′ is 1-valent.

– Differ in initial value of some process i.
– Consider a fair execution extending α, in which i 

fails right after α.  
– All but i must eventually decide, by 1-failure 

termination; since α is 0-valent, all must decide 0.
– Extend α′ in the same way, all but i still decide 0, by 

indistinguishability.
– Contradicts 1-valence of α′.
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Impossibility for wait-free termination

• Simpler Theorem [Herlihy]:
– For n ≥ 2, there is no algorithm in the read/write shared 

memory model that solves the agreement problem and 
guarantees wait-free termination.

• Proof:
– We already assumed A solves agreement with 1-failure 

termination.
– Now assume, for contradiction, that A (also) satisfies 

wait-free termination.
– Proof is based on pinpointing exactly how a decision 

gets determined, that is, how the execution moves from 
bivalence to univalence. 



• Definition: A decider execution α is a finite, 
failure-free, input-first execution such that:
– α is bivalent.
– For every i, ext(α,i) is univalent.

• Lemma 3: A (with wait-free termination) has 
a decider execution.

Impossibility for wait-free termination

Extension of α with one step of i
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• Lemma 3: A (with w-f termination) has a decider.
• Proof:

– Suppose not.  Then any bivalent ff input-first execution 
has a 1-step bivalent ff extension.

– Start with a bivalent initialization (Lemma 2), and 
produce an infinite ff execution α all of whose prefixes 
are bivalent.

• At each stage, start with a bivalent ff input-first execution 
and extend by one step to another bivalent ff execution.

• Possible by assumption. 

Impossibility for wait-free termination

– α must contain infinitely many steps of some process, say i.
– Claim i must decide in α:

• Add stop events for all processes that take only finitely many steps.
• Result is a fair execution α′.
• Wait-free termination says i must decide in α′.
• α is indistinguishable from α′, by i, so i must decide in α also.

– Contradicts bivalence.
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Impossibility for wait-free termination

• Proof of theorem, cont’d:
– Fix a decider, α.
– Since α is bivalent and all 1-step extensions 

are univalent, there must be two processes, 
say i and j, leading to 0-valent and 1-valent 
states, respectively.

– Case analysis yields a contradiction:
1. i’s step is a read
2. j’s step is a read
3. Both writes, to different variables.
4. Both writes, to the same variable.
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Case 1:  i’s step is a read      
• Run all but i after ext(α,j).
• Looks like a fair execution in which i fails.
• So all others must decide; since ext(α,j), is 1-valent, they decide 1.
• Now run the same extension, starting with j’s step, after ext(α,i).
• They behave the same, decide 1.

– Cannot see i’s read.
• Contradicts 0-valence of ext(α,i). 
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Case 2:  j’s step is a read      

• Symmetric.
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Case 3:  Writes to different    
shared variables      

• Then the two steps are completely 
independent.

• They could be performed in either order, 
and the result should be the same.

• ext(α,ij) and ext(α,ji) are indistinguishable 
to all processes, and end up in the same 
system state.

• But ext(α,ij) is 0-valent, since it extends 
the 0-valent execution ext(α,i) .

• And ext(α,ji) is 1-valent, since it extends 
the 1-valent execution ext(α,j) .

• Contradictory requirements.
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Case 4:  Writes to the same   
shared variable x.     

• Run all but i after ext(α,j); they must decide.
• Since ext(α,j), is 1-valent, they decide 1.
• Run the same extension, starting with j’s step, after ext(α,i).
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• They behave the same, 
decide 1.
– Cannot see i’s write to x.
– Because j’s write overwrites it.

• Contradicts 0-valence of 
ext(α,i). 



Impossibility for wait-free 
termination

• So we have proved:

• Simpler Theorem: [Herlihy]
– For n ≥ 2, there is no algorithm in the read/write 

shared memory model that solves the 
agreement problem and guarantees wait-free 
termination.



Impossibility for 1-failure temination

• Q: Why doesn’t the previous proof yield impossibility for 
1-failure termination?

• Lemma 2 (bivalent initialization) works for f = 1.
• In proof of Lemma 3 (existence of decider), wait-free 

termination is used to say that a process i must decide in 
any fair execution in which i doesn’t fail.

• 1-failure termination makes a termination guarantee only 
when at most one process fails.

• Main Theorem:
– For n ≥ 2, there is no algorithm in the read/write shared memory 

model that solves the agreement problem and guarantees 1-
failure termination.



Impossibility for 1-failure temination

• From now on, assume A satisfies 1-failure 
termination, not necessarily wait-free 
termination (weaker requirement).

• Initialization lemma still works: 
– Lemma 2: A has a bivalent initialization.

• New key lemma, replacing Lemma 3:

• Lemma 4: If α is any bivalent, ff, input-first 
execution of A, and i is any process, then 
there is some ff-extension α′ of α such that 
ext(α′,i) is bivalent.
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Lemma 4 ⇒ Main Theorem
• Lemma 4: If α is any bivalent, ff, input-first 

execution of A, and i is any process, then 
there is some ff-extension α′ of α such that 
ext(α′,i) is bivalent.

• Proof of Main Theorem:
– Construct a fair, ff, input-first execution in which 

no process ever decides, contradicting the basic 
ff-termination requirement.

– Start with a bivalent initialization.
– Then cycle through the processes round-robin:  1, 

2, …, n, 1, 2, …
– At each step, say for i, use Lemma 4 to extend 

the execution, including at least one step of i, 
while maintaining bivalence and avoiding failures.
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Proof of Lemma 4
• Lemma 4: If α is any bivalent, ff, input-first 

execution of A, and i is any process, then 
there is some ff-extension α′ of α such that 
ext(α′,i) is bivalent.

• Proof:
– By contradiction.  Suppose there is some 

bivalent, ff, input-first execution α of A and some 
process i, such that for every ff extension α′ of α, 
ext(α′,i) is univalent.

– In particular, ext(α,i) is univalent, WLOG 0-valent.
– Since α is bivalent, there is some extension of α

in which someone decides 1, WLOG failure-free.
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Proof of Lemma 4
– There is some ff-extension of α

in which someone decides 1.
– Consider letting i take one step 

at each point along the “spine”.
– By assumption, results are all 

univalent.
– 0-valent at the beginning, 1-

valent at the end.
– So there are two consecutive 

results, one 0-valent and the 
other 1-valent:

– A new kind of “decider”.

α

bivalent

i

0-valent

1 i

i

i

i

i

1-valent

univalent

univalent

univalent

univalent

i

i 0-valent

1-valent

j



New “Decider”

• Claim: j ≠ i.
• Proof:  

– If j = i then:
• 1 step of i yields 0-valence 
• 2 steps of i yield 1-valence

– But process i is deterministic, so this 
can’t happen.

• “Child” of a 0-valent state can’t be 1-valent.

• The rest of the proof is a case 
analysis, as before…
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Case 1:  i’s step is a read      
• Run j after i.
• Executions ending with ji and ij are indistinguishable to 

everyone but i (because this is a read step of i).
• Run all processes except i in the same order after both ji

and ij.
• In each case, they must decide, by 1-failure termination.
• After ji, they decide 1.
• After ij, they decide 0.
• But indistinguishable, contradiction!
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Case 2:  j’s step is a read      
• Executions ending with ji and i are indistinguishable to 

everyone but j (because this is a read step of j).
• Run all processes except j in the same order after ji and i.
• In each case, they must decide, by 1-failure termination.
• After ji, they decide 1.
• After i, they decide 0.
• But indistinguishable, contradiction!
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Case 3:  Writes to different    
shared variables      

• As for the wait-free case.
• The steps of i and j are 

independent, could be performed in 
either order, indistinguishable to 
everyone.

• But the execution ending with ji is 
1-valent, whereas the execution 
ending with ij is 0-valent.

• Contradiction.
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Case 4:  Writes to the same   
shared variable x.     

• As for Case 2.
• Executions ending with ji and i are indistinguishable to 

everyone but j (because i overwrites the write step of j).
• Run all processes except j in the same order after ji and i.
• After ji, they decide 1.
• After i, they decide 0.
• Indistinguishable, contradiction!
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Impossibility for 1-failure 
termination

• So we have proved:

• Main Theorem:  [Fischer, Lynch, Paterson] 
[Loui, Abu-Amara]
– For n ≥ 2, there is no algorithm in the read/write 

shared memory model that solves the 
agreement problem and guarantees 1-failure 
termination.



Shared memory vs. networks

• Result also holds in asynchronous 
networks---revisit shortly.

• [Fischer, Lynch, Paterson 82, 85] proved 
first for networks.

• [Loui, Abu-Amara 87] extended result and 
proof to shared memory.



Significance of FLP impossibility result

• For distributed computing practice:   
– Reaching agreement is sometimes important in practice:

• Agreeing on aircraft altimeter readings.
• Database transaction commit.

– FLP shows limitations on the kind of algorithm one can look for.

• For distributed computing theory:
– Variations:

• [Loui, Abu-Amara 87] Read/write shared memory.
• [Herlihy 91] Stronger fault-tolerance requirement (wait-free 

termination);  simpler proof.
– Circumventing the impossibility result:

• Strengthening the assumptions.
• Weakening the requirements/guarantees.



Strengthening the assumptions
• Using limited timing information [Dolev, Dwork, 

Stockmeyer 87].
– Bounds on message delays, processor step time.
– Makes the model more like the synchronous model.

• Using randomness [Ben-Or 83][Rabin 83]. 
– Allow random choices in local transitions.
– Weakens guarantees: 

• Small probability of a wrong decision, or
• Small probability of not terminating, in any bounded time 

(Probability of not terminating approaches 0 as time approaches 
infinity.)



Weakening the requirements
• Agreement, validity must always hold.
• Termination required if system behavior “stabilizes”:

– No new failures.
– Timing (of process steps, messages) within “normal” bounds.

• Good solutions, both theoretically and in practice.
• [Dwork, Lynch, Stockmeyer 88]:  Dijkstra Prize, 2007

– Keeps trying to choose a leader, who tries to coordinate agreement.  
– Coordination attempts can fail.  
– Once system stabilizes, unique leader is chosen, coordinates agreement. 
– Tricky part:  Ensuring failed attempts don’t lead to inconsistent decisions.

• [Lamport 89] Paxos algorithm.  
– Improves on [DLS] by allowing more concurrency.
– Refined, engineered for practical use.

• [Chandra, Hadzilacos, Toueg 96] Failure detectors (FDs)
– Services that encapsulate use of time for detecting failures.  
– Develop similar algorithms using FDs.
– Studied properties of FDs, identified weakest FD to solve consensus.



Extension to k-consensus
• At most k different decisions may occur overall.
• Solvable for k-1 process failures but not for k 

failures.
– Algorithm for k-1 failures:   [Chaudhuri 93].
– Impossibility result:  

• [Herlihy, Shavit 93], [Borowsky, Gafni 93], [Saks, Zaharoglu 93]
• Godel Prize, 2004.
• Techniques from algebraic topology:  Sperner’s Lemma.
• Similar to those used for lower bound on rounds for k-

agreement, in synchronous model. 

• Open question (currently active):
– What is the weakest failure detector to solve k-

consensus with k failures? 



Importance of read/write data type

• Consensus impossibility result doesn’t hold for more 
powerful data types.

• Example: Read-modify-write shared memory
– Very strong primitive.
– In one step, can read variable, do local computation, and write 

back a value.
– Easy algorithm:

• One shared variable x, value in V ∪ {⊥}, initially ⊥.
• Each process i accesses x once.
• If it sees:

– ⊥, then it changes the value in x to its own initial value and decides on 
that value.

– Some v in V, then decides on that value.

• Read/write registers are similar to asynchronous FIFO 
reliable channels---we’ll see the precise connection later.



Next time…

• Atomic objects
• Reading: Chapter 13
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