
6.852: Distributed Algorithms

Fall, 2009


Class 11




Today’s plan

z Lower bound on time for global synchronization. 
z Logical time 
z Applications of logical time 
z Weak logical time and vector timestamps 
z Reading: 

z Section 16.6, Chapter 18 
z [Lamport 1978:  Time, Clocks, and the Ordering of Events

in a Distributed System] 
z [Mattern] 

z Next: 
z Consistent global snapshots 
z Stable property detection 
z Reading: Chapter 19 



Lower Bound on Time for 

Global Synchronization




Lower bound on time

•	 Synchronizers emulate synchronous algorithms in a local sense: 

–	 Looks the same to individual users, 
–	 Not to the combination of all users---can reorder events at different users.


•	 Good enough for many applications (e.g., data management). 
•	 Not for others (e.g., embedded systems). 

•	 Now show that global synchronization is inherently more costly
than local synchronization, in terms of time complexity. 

•	 Approach: 
–	 Define a particular global synchronization problem, the k-Session Problem. 
–	 Show this problem has a fast synchronous algorithm, that is, a fast


algorithm using GlobSynch.

• Time O( k d ), assuming GlobSynch takes steps ASAP. 

– Prove that  all asynchronous distributed algorithms for this problem are slow. 
• Time  :( k diam d ). 

–	 Implies GlobSynch has no fast distributed implementation. 
•	 In contrast, synchronizers yield fast distributed impls of LocSynch.




k-Session Problem

•	 Session:  

–	 Any sequence of flash events 

containing at least one flashi

event for each location i.


flash1 
flashn 

flash2 

•	 k-Session problem: 
–	 Perform at least k separate sessions (in every fair execution), 

and eventually halt. 

•	 Original motivation: 
–	 Synchronization needed to perform parallel matrix computations 

that require enough interleaving of process steps, but tolerate 
extra steps. 



Example: Boolean matrix computation


• n = m3 processes compute the transitive closure of m u m Boolean 
matrix M. 

• pi,j,k repeatedly does: 
–	 read M(i,k), read M(k,j) 
–	 If both are 1 then write 1 in M(i,j) 

•	 Each flashi,j,k in abstract session problem represents a chance for 
pi,j,k to read or write a matrix entry. 

•	 With enough interleaving ( O (log n) sessions ), this is guaranteed 
to compute transitive closure. 

flash1 
flashn 

flash2 



Synchronous solution 

• Fast algorithm using GlobSynch:  
– Just flash once at every round. 
– k sessions done in time O( k d ), assuming 

GlobSynch takes steps ASAP. 

GlobSynch 

U1 
U2 Un 

flash1 flashn 

flash2 



Consider distributed algorithm A that solves the k-session problem. 
Consists of process automata and FIFO send/receive channel 

A 

flash1 
flashn 

flash2 

Asynchronous lower bound 
• 
• 

automata. 

• Assume: 
–	 d = upper bound on time to deliver any message (don’t count pileups) 
–	 l = local processing time, l << d 

• Define time measure T(A): 
–	 Timed execution D: Fair execution with times labeling events, subject

to upper bound of d on message delay, l for local processing. 
– T(D) = time of last flash in D

– T(A)  = supremum, over all timed executions D, of T(D).




Lower bound

•	 Theorem 2: If A solves the k-session problem then T(A) t (k-1) diam d.

•	 Factor of diam worse than the synchronous algorithm. 

•	 Definition:  Slow timed execution: All message deliveries take exactly
the upper bound time d. 

•	 Proof: By contradiction. 
– Suppose T(A) < (k-1) diam d.

– Fix  D, any slow timed execution of A.

–	 D contains at least k sessions. 
–	 D contains no flash event at a time t (k-1) diam d. 
–	 So we can decompose D = D1 D2 …Dk-1 Ds, where: 

Dc 
• Time of last event in Dc is < (k-1) diam d. 
• No flash events occur in Ds. 
• Difference between the times of the first and last events in each Dr is < diam d. 



Lower bound, cont’d

•	 Now reorder events in D, while preserving dependencies:


–	 Events of same process. 
–	 Send and corresponding receive. 

•	 Reordered execution will have < k sessions, contradiction.

•	 Fix processes, j0 and j1, with dist(j0,j1) = diam (maximum 

distance apart). 
•	 Reorder within each Dr separately: 

–	 For D1: Reorder to E1 = J1 G1, where: 
• J1 contains no event of j0, and 
• G1 contains no event of j1. 

–	 For D2: Reorder to E2 = J2 G2, where: 
• J1 contains no event of j1, and 
• G1 contains no event of j0. 

–	 Alternate thereafter. 



Lower bound, cont’d

•	 If the reordering yields a fair execution of A (ignore 

timing here), then we get a contradiction, because it 
contains d k-1 sessions: 
–	 No session entirely within J1, (no event of j0). 
–	 No session entirely within G1 J2 (no event of j1). 
– No session entirely within G2 J3 (no event of j0).

– … 

–	 Thus, every session must span some Jr - Gr boundary. 
–	 But, there are only k-1 such boundaries. 

•	 So, it remains only to construct the reordering. 



Constructing the reordering

• WLOG, consider Dr for r odd. 
• Need Er = Jr Gr, where Jr contains no event of j0, Gr no event of j1. 

• If Dr contains no event of j0 then don’t reorder, just define Jr = Dr, Gr = O. 
• Similarly if Dr contains no event of j1. 
• So assume D contains at least one event of each.r 
• Let S be the first event of j0, M the last event of j1 in Dr. 

• Claim: M does not depend on S. 
• Why:  Insufficient time for messages to travel from j0 to j1: 

– Execution D is slow (message deliveries take time d). 
– Time between S and M is < diam d.

– j0 and j1 are diam apart.


• Then, we can reorder Dr to Er, in which S comes after M. 
• Consequently, in Er, all events of j1 precede all events of j0. 
• Define Jr to be the part ending with M, Gr the rest. 



Logical Time




[Lamport: Time, clocks,…] 
z Winner of first Dijkstra Prize, 2000. 

“Jim Gray once told me that he heard two different 
opinions of this paper: that's it trivial and that it's 
brilliant. I can't argue with the former, and I'm 
disinclined to argue with the latter.” –Lamport 



Logical time

z An important abstraction, which simplifies


programming for asynchronous networks

z Imposes a single total order on events occurring at all

locations. 
z Processes know the order. 
z Assign logical times (elements of some totally

ordered set T, e.g., the real numbers) to all events in
an execution of an asynchronous network system,
subject to some properties that make the logical times
“look like real times”. 

z Applications: 
� Global snapshot

� Replicated state machines, mutual exclusion,…




Logical time


Message system 

P1 

user 
interface 

send, 
receive 

P2 Pn 

z Consider a send/receive system A with FIFO channels,
based on a strongly connected digraph. 

z Events of A: 
� User interface events 
� Send and receive events 
� Internal events of process automata 

z Q: What conditions should logical times satisfy? 



Logical time

z For execution D, function ltime from events in D to totally-ordered set

T is a logical time assignment if: 
1. ltimes are distinct: ltime(e1) � ltime(e2) if e1 � e2. 

2. ltimes of events at each process are monotonically increasing. 

3. ltime(send) < ltime(receive) for same message. 

4. For any t, the number of events e with ltime(e) < t is finite. (No “Zeno”
behavior.) 

z Properties 2 and 3 say that ltimes are consistent with dependencies
between events. But we can reorder independent events at different 
processes. 

z Under these conditions, ltime “looks like” real time, to all the 
processes individually: 

z Theorem: For every fair execution D with an ltime function, there is
another fair execution Dc with events in ltime order such that 
D | Pi = Dc | Pi for all i. 



Logical time 
z Function ltime from events in D to T is a logical time assignment if:


1. ltimes are distinct: ltime(e1) � ltime(e2) if e1 � e2 

2. ltimes of events at each process are monotonically increasing. 

3. ltime(send) < ltime(receive) for same message 

4. For any t, the number of events e with ltime(e) < t is finite. 

z Theorem: For every fair execution D with an ltime function, there is
another fair execution Dc with events in ltime order such that 
D | Pi = Dc | Pi for all i. 

z Proof: 
� Use properties of ltime. 
� Reorder actions of D in order of ltimes; a unique such sequence exists, by 

Properties 1 and 4. 
� By Properties 2, and 3, this reordering preserves dependencies, so we can

fill in the states to give the needed execution Dc. 
� Indistinguishable to each process because we preserve all dependencies. 



Logical time

z For execution D, function ltime from events in D to T is a 

logical time assignment if: 
1. ltimes are distinct: ltime(e1) � ltime(e2) if e1 � e2 

2. ltimes of events at each process are monotonically increasing.


3. ltime(send) < ltime(receive) for same message 

4. For any t, the number of events e with ltime(e) < t is finite. 

z Combination of dependencies described in Properties 2
and 3 often called causality, or Lamport causality. 

z Common way to represent dependencies: Causality Diagram: 



Logical time
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Lamport’s algorithm for generating 

logical times


•	 Based on timestamping algorithm by Johnson and Thomas. 
•	 Each process maintains a local nonnegative integer clock variable,

used to count steps. 
• clock  is initially 0. 
•	 Every event of the process (send, receive, internal, or user interface) 

increases clock: 
–	 When process does an internal or user interface step, increments clock. 
–	 When process sends, first increments clock, then piggybacks the new

value c on the message, as a timestamp. 
–	 When process receives a message with timestamp c,  increases clock 

to be max( clock, c ) + 1. 

•	 Using the clocks to generate logical time for events: 
� ltime of an event is (c,i), where 

� c = clock value immediately after the event 
� i = process index, to break ties


� Order the (c,i) pairs lexicographically.




Lamport’s algorithm generates 

logical times


1.	 Events’ ltimes are unique. 
•	 Because clock at each process is increased at every step 

and we use process indices as tiebreakers. 
2.	 Events of each individual process have strictly 

increasing ltimes. 
•	 The rules ensure this. 

3.	 ltime(send) < ltime(receive) for same message. 
•	 By the way the receiver determines the clock after the 

receive event. 
4.	 Non-Zeno. 

•	 Because every event increases the local clock by at least 1 
and there are only finitely many processes. 



Welch’s algorithm

z What if we already have clocks? 

� Monotonically non-decreasing, unbounded.

� Can't change the clock (e.g., maintained by a separate


algorithm, or arrive from some external time source).

z Welch’s algorithm: 

� Idea: Instead of advancing the clock in response to received
timestamps, simply delay the receipt of “early” messages. 

� Messages carry clock value from sender. 
� Receiver puts incoming messages in a FIFO buffer. 
� At each locally-controlled step, first remove from buffer all

messages whose timestamp < current clock, and process them,
in same order in which they appear in the buffer. 

� Logical time of event is (c,i,k), order lexicographically. 
z c = local clock value when event “occurs” 

� receive event is said to “occur” when message is removed from 
buffer, not when it first arrives. 

z i = process index, first-order tiebreaker 
z k = sequence number, second-order tiebreaker 



Logical time in broadcast systems

z Analogous definition and theorem: 

z For execution D, function ltime from events in D to T is a 
logical time assignment if: 
1. ltimes are distinct: ltime(e1) � ltime(e2) if e1 � e2. 

2. ltimes of events at each process are monotonically increasing. 

3. ltime(bcast) < ltime(receive) for same message. 

4. For any t, the number of events e with ltime(e) < t is finite. 

z Theorem: For every fair execution D with an ltime function, 
there is another fair execution Dc with events in ltime order 
such that D | Pi = Dc | Pi for all i. 



Applications of Logical Time




Applications of logical time:

Banking system


•	 Distributed banking system with $10 $10 $10 
transfers (no external deposits or 

$4

$5withdrawals). $10 

• Assume:  
–	 Asynchronous send/receive system. 
–	 Each process has an account with


money � 0.

–	 Processes can send money at any $8time to anyone. 

•	 Send message with value, subtract 

value from account.


•	 Add value received in message to 
account. 

–	 Add “dummy” $0 transfers (heartbeat 

messages).




Banking system


one or more processes; processes

awaken upon receiving either such a

signal or a message from another 

process.


•	 Require:  
–	 Each process should output local 


balance, so that the total of the 

balances = correct amount of money in

the system.


•	 Well-defined because there are no 

deposits/withdrawals.


–	 Don’t “interfere” with underlying money 

transfer, just “observe” it.


• Algorithm triggered by input signal to 
 $10 $10$10 

$5 

$4 

$8 

$10 



Banking system algorithm

z Assume logical-time algorithm, which assigns logical

times to all banking system events. 
z Algorithm assumes agreed-upon logical time value t. 

� Each process determines value of its money at logical time t. 
z Specifically, after all events with ltime � t and before all events with 

ltime > t. 
� Each process determines, for each incoming channel, the

amount of money in transit at time t. 
z Specifically, in messages sent at ltime � t and received at ltime > t. 
z Start counting from when local clock > t, stop when message 

timestamp > t. 
z Q: What if local clock > t when node wakes up?


� Keep logs just in case, or

� Retry with different values of t.




Applications of logical time:

Global snapshot


•	 Generalizes banking system. 
• Assume:  

–	 Arbitrary asynchronous send/receive system A that sends 
infinitely many messages on each channel. 

•	 Require: 
–	 Global snapshot of system state (nodes and channels) at some 

point after a triggering input. 
–	 Should not interfere with the system’s operation. 

•	 Useful for debugging, system backups, detecting 
termination. 

•	 Use same strategy as for bank audit: 
–	 Select logical time, all snap at that time (nodes and channels). 
–	 Combining all these results give global snapshot of an 


“equivalent” execution.




Applications of logical time:

Replicated state machines (RSMs)

•	 Important use of logical time. 
•	 A focal point of Lamport's paper. 
•	 Allows a distributed system to simulate a single 

centralized state machine. 
z Centralized state machine: 
�	 V: Set of possible states 
�	 v0: Initial state 
�	 invs: Set of possible invocations 
�	 resps: Set of possible responses 
�	 trans: invs u V o resps u V: Transition function 

z Same formal definition as shared variable,

defined in Chapter 9 (see next week).




Replicated State Machines

• Users of distributed system submit invocations, get 

responses in well-formed manner (blocking invocations). 

U1 Un 

U2 

Distributed system 
Emulates state machine 

•	 Want system to look like “atomic” version of the centralized 
state machine (defined in Chapter 13). 

•	 Allows possible delays before and after actually operating on 
the state machine). 

•	 Could weaken requirement to “sequential consistency”, 
same idea but allows reordering of events at different nodes. 



RSM algorithm

•	 Assume broadcast network. 
•	 First attempt: 

– Originator of an invocation broadcasts the invocation 
to all processes (including itself). 

– All processes (including the originator) perform the 
transition on their copies when they receive the 
messages. 

– When originator performs the transition, determines 
response to pass to the user. 

•	 Not quite right---all processes should peform the 
transitions in the same order. 

•	 So, use logical time to order the invocations. 



RSM algorithm

•	 Assume logical times. 
•	 Originator of an invocation bcasts the invocation to all 

processes, including itself; attaches the logical time of the
bcast event. 

•	 Each process maintains state variables: 
– X:  Copy of machine state. 
– inv-buffer: Invocations it has heard about and their timestamps 

• Timestamp = logical time of bcast event. 
– known-time: Vector of largest logical times for each process


• For itself:  Logical time of last local event. 
• For each other node j:  Timestamp of last message received from j. 

•	 Process may perform invocation S from its inv-buffer, on
its copy X of the machine state, when S has the smallest 
timestamp of any invocation in inv-buffer, and known-
time(j) � timestamp(S) for all j. 

•	 After performing S, remove it from inv-buffer. 
• If  S originated locally, then also respond to the user. 



Correctness

•	 Liveness:  Termination for each operation 

–	 LTTR. Depends on logical times growing unboundedly and all
nodes sending infinitely many messages. 

• Safety:  Atomicity (each operation “appears to be performed”
at a point in its interval, as in a centralized machine): 
z Each process applies operations in the same (logical time) order. 

z FIFO channels ensure that no invocations are “late”. 
z Each operation “appears to be performed” at a point in its interval: 

z Define a serialization point for each operation S---a point in S’s interval 
where we can “pretend” S occurred. 

z Namely, serialization point for S is the earliest point when all processes
have reached the logical time t of S’s bcast event. 

z Claim this point is within S’s interval: 
z It’s not before the invocation, because the originating process doesn’t

reach time t until after the invocation arrives. 
z It’s not after the response, because the originator waits for all known-times

to reach t before applying the operation and responding to the user. 



Safety, cont’d

•	 Safety:  Atomicity (each operation “appears to be

performed” at a point in its interval, as in a centralized 
machine): 
–	 Each process applies operations in the same (logical time) order. 
–	 Define serialization point for each operation S to be the earliest 

point when all processes have reached the logical time t of S’s 
bcast event. 

–	 This point is within S’s interval. 
–	 The order of the serialization points is the same as the logical

time order, which is the same as the order in which the 
operations are performed on all copies. 

–	 So, responses are consistent with the order of serialization 
points. 

–	 That is, it looks to all the users as if the operations occurred at 
their serialization points---as in a centralized machine. 



Special handling of reads 
•	 Don't bcast---just perform them locally. 
•	 Now, doesn’t satisfy atomicity. 
•	 Satisfies weaker property, sequential

consistency. 



No serialization points…

P1 P2 

P3 

Ser.pt, where 
everyone has 
reached t 

W1, 
ltime = t 

Nowhere to put serialization 
points for reads. 

R2 

Learns everyone has 
reached t. 
Performs W on its 
local copy. 

Performs R2 
locally. 
Gets newly 
written value. 

R3 

Learns everyone has 
reached t. 
Performs W on its 
local copy. 

Performs R3 
locally. 
Gets old 
value. 



Application of RSM:

Distributed mutual exclusion


•	 Distributed mutual exclusion problem: 
– Users at different locations submit requests for a 

resource from time to time. 
–	System grants requests, so that: 

• No two users get the resource at the same time, and 
• Every request is eventually granted. 

–	Users must return the resource. 

•	 Solve distributed mutual 
exclusion using a
distributed simulation of 
a centralized state 
machine. 

•	 See book, p. 609-610. 

U1 Un 

U2 

Distributed system 
solving mutual exclusion 

request, 
return 

grant, 
ack 



Distributed mutual exclusion

• Use one emulated FIFO queue state machine: 

– State contains a FIFO queue of process indices. 
– Operations:  

• add(i), i a process index: Adds i to end of queue.

• head: Returns head of queue, or “empty”. 
• remove(i): Removes all occurrences of i from the queue. 

M1 Mn 

M2 

Emulation of FIFO queue 
state machine 

U1 

U2 
Un 

request, 
return 

add, 
head, 
remove 



Distributed mutual exclusion 
•	 Given (emulated) shared queue, mutex processes 

cooperate to implement mutual exclusion. 
•	 Process i operates as follows: 

– To  request the resource: 
•	 Invoke add(i), adding i to the end of the queue. 
•	 Repeatedly invoke head, until the response yields index i. 
•	 Then grant the resource to its user. 

–	 To return the resource: 
•	 Invoke remove(i). 
•	 Return ack to user. 

•	 Complete distributed mutual exclusion algorithm: 
–	 Use Lamport’s logical time algorithm to give logical times.

–	 Use RSM algorithm, based on logical time, to emulate the 

shared queue. 
–	 Use mutex algorithm above, based on shared queue. 



Weak Logical Time and

Vector Timestamps




Weak Logical Time

z Logical time imposes a total ordering on events, assigning

them values from a totally-ordered set T. 
z Sometimes we don’t need to order all events---it may be

enough to order just the ones that are causally dependent. 
z Mattern (also Fidge) developed an alternative notion of logical

time based on a partial ordering of events, assigning them
values from a partially-ordered set P. 

z Weak logical time: 
z Properties 1-4 same as before---the only difference is that the ltimes

don’t need to be totally ordered. 
z In fact, Mattern’s partially-ordered set P is designed to 

represent causality exactly: 
z Timestamps of two events are ordered in P if and only if the two events 

are causally related (related by the causality ordering). 
z Might be useful in distributed debugging: A log of local executions with

weak logical times could be observed after the fact, used to infer
causality relationships among events. 



Algorithm for weak logical time

z Based on vector timestamps: vectors of nonnegative integers

indexed by processes. 
z Each process maintains a local vector clock, called clock.

z When an event occurs at process i, it increments its own

component of its clock, which is clock(i), and assigns the new
clock to be the vector timestamp of the event. 

z Whenever process i sends a message, it attaches the vector
timestamp of the send event. 

z When i receives a message, it first increases its clock to the 
component-wise maximum of the existing clock and the 
incoming vector timestamp. Then it increments its clock(i) as 
usual, and assigns the new vector clock to the receive event. 

z A process’ vector clock represents the latest known “tick 
values” for all processes. 

z Partially ordered set P: 
z The vector timestamps, ordered based on d in all components.

z V d Vc if and only if V(i) d Vc(i) for all i. 



Key theorems about vector clocks

•	 Theorem 1: The vector clock assignment is a weak

logical time assignment. 
•	 That is, if event S causally precedes event Sc, then the 

logical times are ordered, in the same order. 
•	 Proof: LTTR. 

–	 Not too surprising. 
–	 True for direct causality, use induction on number of direct 

causality relationships. 
•	 Claim this assignment exactly captures causality: 
•	 Theorem 2: If the vector timestamp V of event S is 

(component-wise) d the vector timestamp Vc of event Sc, 
then S causally precedes Sc. 

•	 Proof: Prove the contrapositive: Assume S does not 
causally precede Sc and show that V is not d Vc. 



Proof of Theorem 2

•	 Theorem 2: If the vector timestamp V of event S is 

(component-wise) d the vector timestamp Vc of event Sc, 
then S causally precedes Sc. 

•	 Proof: Prove the contrapositive: Assume S does not 
causally precede Sc and show that V is not d Vc. 
– Assume S does not causally precede Sc.

– Say  S is an event of process i, Sc of process j.

–	 We must have j z i. 
–	 i increases its clock(i) for event S, say to value t. 
–	 Without causality, there is no way for this tick value t for i to 

propagate to j before Sc occurs. 
–	 So, when Sc occurs at process j, j’s clock(i) < t. 
–	 So V is not d Vc. 



Another theorem about vector 

timestamps [Mattern]


•	 Relates timestamps to consistent cuts of causality graph.

• Cut:  A point between events at each process. 

–	 Specify a cut by a vector giving the number of preceding steps at 
each node. 

•	 Consistent cut: “Closed under causality”: If event S 
causally precedes event Sc and Sc is before the cut, then 
so is S. 

• Example:  

Not 
consistent 

Consistent 
cut 



The theorem

•	 Consider any particular cut. 
•	 Let Vi be the vector clock of process i exactly at i’s cut-point. 
•	 Then V = max(V1, V2,…,Vn) gives the maximum information

obtainable by combining everyone knowledge at the cut-
points. 
–	 Component-wise max. 

•	 Theorem 3: The cut is consistent iff, for every i, V(i) = Vi(i). 
•	 That is, the maximum information about i that is known by 

anyone at the cut is the same as what i knows about itself at
its cut point. 

i j
•	 “No one else knows more about i than i itself knows.” 

•	 Rules out j receiving a message before 
its cut point that i sent after its cut point;
in that case, j would have more
information about i than i had about itself. 



The theorem

•	 Let Vi be the vector clock of process i exactly at i’s cut-point, 

V = max(V1, V2,…,Vn). 
•	 Theorem 3: The cut is consistent iff, for every i, V(i) = Vi(i). 
•	 Stated slightly differently: 
•	 Theorem 3: The cut is consistent iff, for every i and j, Vj(i) d 

Vi(i). 

• Q:  What is this good for? 



Application: Debugging

•	 Theorem 3: The cut is consistent iff Vj(i) d Vi(i) for every

i and j. 
•	 Example: Debugging 

–	 Each node keeps a log of its local execution, with vector 
timestamps for all events. 

–	 Collect information, find a cut for which Vj(i) d Vi(i) for every i
and j. (Mattern gives an algorithm…) 

–	 By Theorem 3, this is a consistent cut. 
–	 Such a cut yields states for all processes and info about 

messages sent and not received. 
–	 Put this together, get a “consistent” global state (we will study 

this next time). 
–	 Use this to check correctness properties for the execution, 

e.g., invariants. 



Next time 
z Consistent global snapshots 
z Stable property detection 
z Reading: Chapter 19 
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