6.852: Distributed Algorithms
Fall, 2009

Class 8

Today’s plan

Basic asynchronous system model, continued
« Hierarchical proofs
. Safety and liveness properties

Asynchronous networks

Asynchronous network algorithms:
— Leader election in a ring
— Leader election in a general network

Reading: Sections 8.5.3 and 8.5.5, Chapter 14, Sections 15.1-
15.2.

Next:

— Constructing a spanning tree

— Breadth-first search

— Shortest paths

— Minimum spanning trees

— Reading: Section 15.3-15.5, [Gallager, Humblet, Spira]

Last time

Defined basic math framework for modeling
asynchronous systems.

/O automata

Executions, traces

Operations: Composition, hiding
Proof methods and concepts

— Compositional methods

— |Invariants

— Trace properties, including safety and liveness
properties.

— Hierarchical proofs

Input/output automaton

sig = (In, out, Int)

— Input, output, internal actions (disjoint)
— acts =in v out v int

—- ext =in v out

- local = out U Int

states: Not necessarily finite
start c states

trans c states x acts x states
- Input-enabled: Any input “enabled” in any state.

tasks, partition of locally controlled actions
- Used for liveness.

Channel automaton

receive(m)

send(m) — C —
~—_ .

« Reliable unidirectional FIFO channel between
two Processes.
- Fix message alphabet M.
. Signature
- Input actions: send(m), m € M
— output actions: receive(m), m € M
- no internal actions

o States
- queue: FIFO gueue of M, initially empty

Channel automaton

send(m) _— — receive(m)
<~ Cc >
o trans
- send(m)
. effect: add m to (end of) queue
- receive(m)

 precondition: m is at head of queue
. effect: remove head of queue

o tasks
_ All recelve actions in one task.

Executions

. An |/O automaton executes as follows:
- Start at some start state.
- Repeatedly take step from current state to new state.

« Formally, an execution is a finite or infinite

seqguence.
- S, M, S, M, S, M, S, T, S
- S, IS a start state

- (s, m ., S,,) Isastep (i.e., In trans)

4 s Se ... (If finite, ends in state)

+1?

A, send(a), a, send(b), ab, receive(a), b, receive(b), A

Execution fragments

« An I/O automaton executes as follows:

- Start at some start state. execution fragment |
- Repeatedly take step from c ate to new state.
. Formally, an exeettron is a sequence:

— SO T, Sl T, 52 T, S3 U S4

- Sis-a-startState

- (s, m) IS a step.

o 55

+1? Si+1

Traces

« Models external behavior, useful for defining correctness.
« A trace of an execution is the subsequence of external
actions in the execution.

- Denoted trace(a), where o is an execution.
- No states, no internal actions.

A, send(a), a, send(b), ab, receive(a), b, receive(b), A

send(a), send(b), receive(a), receive(b)

Composition of compatible automata

« Compose two automata A and B (see book for general case).
« OUt(A x B) = out(A) L out(B)

o INt(A x B) = Int(A) U int(B)

. IN(A x B) =iIn(A) U in(B) — (out(A) w out(B))

. States(A x B) = states(A) x states(B)

. start(A x B) = start(A) x start(B)

« trans(A x B): includes (s, &, ') Iff
e (S, 7, 8',) e trans(A) if © € acts(A); s, =s’, otherwise.
e (Sg 7, 8'y) € trans(B) if © € acts(B); s, =S’ otherwise.

. tasks(A x B) =tasks(A) u tasks(B)

« Notation: IT, _ A, for composition of A. : I € | (I countable)

Hierarchical proofs

Hierarchical proofs

Important strategy for proving correctness of
complex asynchronous distributed algorithms.

Define a series of automata, each implementing
the previous one (“successive refinement”).

Highest-level = Problem specification.
Then a high-level algorithm description.
Then more and more detailed versions, e.g.:

— High levels centralized, lower levels distributed.

— High levels inefficient but simple, lower levels
optimized and more complex.

— High levels with large granularity steps, lower levels
with finer granularity steps.

Reason about lower levels by relating them to
higher levels.

Similar to what we did for synchronous algorithms.

Abstract spec

High-level

algorithm
description

Detailed
Algorithm
description

Hierarchical proofs

e For synchronous algorithms (recall):
— Optimized algorithm runs side-by-side with

unoptimized version, and “invariant” proved to Abstract spec
relate the states of the two algorithms.
— Prove using induction. *
 For asynchronous algorithms, it's harder:
— Asynchronous model has more nondeterminism High-level
(in choice of new state, in order of steps). algorithm

— So, harder to determine which execs to compare. description

 One-way implementation is enough:

— For each execution of the lower-level algorithm,
there is a corresponding execution of the higher-
level algorithm.

— “Everything the algorithm does is allowed by the
spec.”

— Don’t need the other direction: doesn’'t matter if
the algorithm does everything that is allowed.

Detailed
Algorithm
description

Simulation relations

« Most common method of proving that one
automaton implements another.

« Assume A and B have the same extsig, and R is
a relation from states(A) to states(B).

« Then R Is a simulation relation from A to B
provided:

- s, e start(A) implies there exists s, e start(B) such that
S, R s;.

- If s,, s, are reachable states of A and B, s, R s, and
(s, @, S',) Is a step, then there Is an execution
fragment B starting with s, and ending with s’; such
that s’, R s'; and trace(f3) = trace(r).

Simulation relations

SB ﬁ. S S-'B
R R
1T X '
S S'a

. R Is a simulation relation from A to B provided:
- s, e start(A) implies Js; e start(B) such thats, R s.

- If s,, s, are reachable states of A and B, s, R s, and
(s, m, S',) Is a step, then 3 starting with s, and ending
with s’; such that s’, R s'; and trace(f3) = trace(r).

Simulation relations

Theorem: If there is a simulation relation from A to
B then traces(A) c traces(B).

This means all traces of A, not just finite traces.

Proof:. Fix a trace of A, arising from a (possibly
infinite) execution of A.

Create a corresponding execution of B, using an
iterative construction.

LLET 1T, m, m, TT

— S — S — S — S

S
_>S

SO,A 1,A 2,A 3,A 4,A 5,A

Simulation relations

o Theorem: If there I1s a simulation relation from
A to B then traces(A) c traces(B).

0,B

— S — S — S — S — S

SO,A 1,A 2,A 3,A 4,A 5,A

Simulation relations

o Theorem: If there I1s a simulation relation from
A to B then traces(A) c traces(B).

B..
Sos "7 S1p

R R

Mmoo M M M s
So.A Sia S A S3 A San S5 A

Simulation relations

o Theorem: If there I1s a simulation relation from
A to B then traces(A) c traces(B).

B Bow s B B Bs
SO’B J—; Sl’B > S-Z,B > 3-3’8 > S > S

Example: Channels

e Show two channels implement one.

send(m) receive(m)

:/ C \
S~ .~

send(m) L — 3 — pass(m) \receive(m) :

—~ - %‘\A/

« Rename some actions.

 Claim that D = hideg,ssmy A x B Implements C, in
the sense that traces(D) c traces(C).

Recall: Channel automaton

send(m) L c — receive(m)
\ /

o Reliable unidirectional FIFO channel.

 Signature
- Input actions: send(m), m € M
— output actions: receive(m), m € M
- no Iinternal actions
o States
- gqueue: FIFO queue of M, Initially empty

Channel automaton

send(m) _— — receive(m)
<~ Cc >
o trans
- send(m)
. effect: add m to queue
- receive(m)

 precondition: m = head(queue)
. effect: remove head of queue

o tasks
_ All recelve actions Iin one task

Composing two channel automata

send(m) L — pass(m) _— \receive(m) ‘
‘\ B / "\ A / -

« Output of B Is input of A
- Rename receive(m) of B and send(m) of A to pass(m).

» D =hide . ogm) | m vy A x Bimplements C
« Define simulation relatlon R:

- For s e states(D) and u € states(C), s R u iff u.queue is
the concatenation of s.A.queue and s.B.queue

o Proof that this is a simulation relation:

- Start condition: All queues are empty, so start states
correspond.

- Step condition: Define “step correspondence’:

Composing two channel automata

send(m) L — pass(m) _— \receive(m) ‘
"\ B / "\ A / -

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

« Step correspondence:

- For each step (s, &, s') € trans(D) and u such that s R u,
define execution fragment (3 of C:
o Starts with u, ends with u’ such that s’ R u'.
. trace(p) = trace(n)

- Here, actions in 3 happen to depend only on &, and
uniquely determine post-state.

« Same action if external, empty sequence if internal.

Composing two channel

automata
send(m) _— — pass(m) _— — receive(m)
< B > - A >

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

« Step correspondence:
- © =send(m) in D corresponds to send(m) in C
- 7w =receive(m) in D corresponds to receive(m) in C
—- © =pass(m) in D correspondsto A in C

« Verify that this works:

- Actions of C are enabled.
- Final states related by relation R.

« Routine case analysis:

Showing R Is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

e« Case: m=send(m)
— No enabling issues (input).
— Must check s’ R U'.
e Since s R u, u.queue is the concatenation of s.A.queue and
s.B.queue.

« Adding the same m to the end of u.queue and s.B.queue maintains the
correspondence.

« Case: © =receive(m)
— Enabling: Check that receive(m), for the same m, is also enabled
In u.
 We know that m is first on s.A.queue.
e Since s R u, mis first on u.queue.
e S0 enabled in u.
— s' R U": Since m removed from both s.A.queue and u.queue.

Showing R Is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

e Case: m = pass(m)

— No enabling issues (since no U
high-level steps are involved). ",
— Must check s’ R u: = =R

e Since s R u, u.queue is the
concatenation of s.A.queue and ‘
S.B.queue. S .S

« Concatenation is unchanged as a pass(m)
result of this step, so also u.queue is
the concatenation of s’.A.queue and
s'.B.queue.

Safety and liveness properties

Specifications

Trace property:

— Problem specification in terms of external behavior.

— (' sig(P), traces(P))

Automaton A satisfies trace property P If extsig(A)

= sig(P) and (two different notions, depending on
whether we’'re interested In liveness or not):

— traces(A) c traces(P), or
— fairtraces(A) c traces(P).

All the problems we’ll consider for asynchronous
systems can be formulated as trace properties.

And we’ll usually be concerned about liveness, so
will use the second notion.

Safety property S

traces(S) are nonempty, prefix-closed, and limit-closed.
“Something bad” never happens.
Violations occur at some finite point in the sequence.

Examples (we’ll see all these later):

— Consensus: Agreement, validity

» Describe as set of sequences of init and decide actions in which we
never disagree, or never violate validity.

— Graph algorithms: Correct shortest paths, correct minimum
spanning trees,...

« Outputs do not yield any incorrect answers.
— Mutual exclusion: No two grants without intervening returns.

Proving a safety property

That Is, prove that all traces of A satisfy S.

By limit-closure, it's enough to prove that all finite
traces satisfy S.

Can do this by induction on length of trace.

Using invariants:

— For most trace safety properties, can find a
corresponding invariant.

— Example: Consensus
* Record decisions in the state.
* EXxpress agreement and validity in terms of recorded decisions.

— Then prove the invariant as usual, by induction.

Liveness property L

 Every finite sequence over sig(L) has some
extension in traces(L).
 Examples:

— Temination: No matter where we are, we could still
terminate in the future.

— Some event happens infinitely often.

* Proving liveness properties:

— Measure progress toward goals, using progress
functions.

— Intermediate milestones.
— Formal reasoning using temporal logic.

— Methods less well-established than those for safety
properties.

Safety and liveness

 Theorem: Every trace property can be expressed
as the intersection of a safety and a liveness

property.

e S0, to specify a property, Iit's enough to specify
safety requirements and liveness requirements
separately.

o Typical specifications of problems for
asynchronous systems consist of:

— A list of safety properties.
— A list of liveness properties.
— Nothing else.

Asynchronous network model

Send/recelve systems

e Digraph G = (V,E), with:

— Process automata associated with nodes, and
— Channel automata associated with directed edges.

 Model processes and channels as automata, compose.

e Processes

inv(x) resp(v),

send(m), receive(m),,

User interface: inv, resp.

Problems specified in terms of
allowable traces at user interface

— Hide send/receive actions

Failure modeling, e.g.:
stop,

P;

Having explicit stop actions in
external interface allows
problems to be stated in terms of
occurrence of failures.

Channel automata

send(m),;;, — — —~receive(m)..
b O R

« Different kinds of channel with this interface:
- Reliable FIFO, as before.
- Weaker guarantees: Lossy, duplicating, reordering

. Can define channels by trace properties, using a “cause
function mapping receives to sends.
- Integrity: Cause function preserves message.
- No loss: Function is onto (surjective).
- No duplicates: Function is 1-1 (injective).
- No reordering: Function is order-preserving.

« Reliable channel satisfies all of these; weaker channels
satisfy Integrity but weaken some of the other properties.

Broadcast and multicast

« Broadcast
- Reliable FIFO between each pair.

- Different processes can receive msgs from different
senders In different orders.

- Model using separate queues for each pairr.
« Multicast: Processes designate recipients.

« Also consider bcast, mcast with failures, and/or
with additional consistency conditions.

\\;v(m)1 bcast(m)n/ /
bcast(m), rev(m), ,
< Broadcast >

Asynchronous network
algorithms

Asynchronous network
algorithms

« Assume reliable FIFO point-to-point channels
« Revisit problems we considered in synchronous
networks:
- Leader election:
- Inaring.
- In general undirected networks.
- Spanning tree
- Breadth-first search
- Shortest paths
- Minimum spanning tree
« How much carries over?
- Where did we use synchrony assumption?

Leader election In a ring

e Assumptions:

— G Is aring, unidirectional or bidirectional
communication

— Local names for neighbors, UIDs

 LeLann-Chang-Roberts (AsynchLCR)

— Send UID clockwise around ring (unidirectional).
— Discard UIDs smaller than your own.
— Elect self if your UID comes back.

— Correctness: Basically the same as for synchronous
version, with a few complications:

* Finer granularity, consider individual steps rather than entire
rounds.

* Must consider messages in channels.

AsynchLCR, process i

« Signature
- Inrev(v),,;, visaUlD
- out send(v);;,,, visa UID
- out leader.

. State variables
— u: UID, initially 's UID
- send: FIFO gueue of UIDs,
initially containing i’'s UID
- status: unknown, chosen,
or reported, initially
unknown
o Tasks

- {send(v), ,, | visa UID }
and { leader, }

Transitions
« send(v). ..,
pre: v = head(send)
eff: remove head of send

. receive(v)
eff:
If v = u then status := chosen
If v> u then add v to send

-1,

. leader,
pre: status = chosen
eff. status := reported

AsynchLCR properties

. Safety: No process other thani _ ever
performs leader..

. Liveness: | eventually performs leader..

Safety proof

Safety: No process other thani__ ever performs leader;

Recall synchronous proof, based on showing invariant of
global states, after any number of rounds:

- Ifi#i,and] € [, 1) then u; notin send..
Can use a similar invariant for the asynchronous version.
But now the invariant must hold after any number of steps:

- Ifi#iandj e [, 1) then u;, notin send, or in queue
Prove by induction on number of steps.

- Use cases based on type of action.

- Key case: receive(V)imax-1 imax

« Argue thatifv#u__ thenv gets discarded.

Tl

Liveness proof

. Liveness: | eventually performs leader..

« Synchronous proof used an invariant saying
exactly where the max Is after r rounds.

« Now no rounds, need a different proof.

o Can establish intermediate milestones:
- Fork € [O,n-1], u__, eventually in send. . ..

- Prove by induction on k; use fairness for process
and channel to prove inductive step.

Complexity
« Msgs: O(n?), as before.

o Time: O(n(l+d))
. |lis an upper bound on local step time for each process (that is, for
each process task).

. dis an upper bound on time to deliver first message in each
channel (that is, for each channel task).

« Measuring real time here (not counting rounds).
« Only upper bounds, so does not restrict executions.

« Bound still holds in spite of the possibility of “pileups” of messages
In channels and send buffers.

« Pileups can be interpreted as meaning that some tokens have
sped up.
. See analysis in book.

Reducing the message complexity

« Hirschberg-Sinclair:

« Sending in both directions, to successively doubled
distances.

« Extends immediately to asynchronous model.
« O(n log n) messages.
« Use bidirectional communication.
« Peterson's algorithm:
- O(nlog n) messages
—- Unidirectional communication
- Unknown ring size
- Comparison-based

Peterson’s algorithm

Proceed in asynchronous “phases” (may execute concurrently).

In each phase, each process is active or passive.
- Passive processes just pass messages along.

In each phase, at least half of the active processes become passive,
so at most log n phases until election.
Phase 1.
- Send UID two processes clockwise; collect two UIDs from predecessors.
- Remain active iff the middle UID is max.
- In this case, adopt middle UID (the max one).
- Some process remains active (assuming n > 2), but no more than half.
Later phases:

- Same, except that the passive processes just pass messages on.

- No more than half of those active at the beginning of the phase remain
active.

Termination:

- If a process sees that its immediate predecessor’s UID is the same as its
own, elects itself the leader (knows it's the only active process left).

PetersonlLeader

« Signature

vis aUlD
vis aUlD

In receive(Vv)
out send(v)
out leader,

I-1,i?

,i+1?

Int get-second-uid,
Int get-third-uid,
Int advance-phase,
Int become-relay,
int relay.

o State variables

mode: active or relay,
Initially active

status: unknown, chosen, or

reported, initially unknown

uidl; initially i's UID

uid2; initially null

uid3; initially null

send: FIFO queue of UIDs;
Initially contains i's UID

receive: FIFO gqueue of UIDs

PetersonlLeader

« get-second-uid. « advance-phase,
pre: mode = active pre: mode = active
receive is nonempty uid3 # null
uid2 = null uid2 > max(uidl, uid3)
eff: uid2 := head(receive) eff: uidl = uid2
remove head of receive uid2 := null
add uid2 to send uid3 := null
If uid2 = uidl1 then add uid1 to send

status := chosen
« become-relay,

o get-third-uid. pre: mode = active
pre: mode = active uid3 # null
receive is nonempty uid2 < max(uidl, uid3)
uid2 # null eff: mode = relay
uid3 = null

eff: uid3 := head(receive)

remove head of receive * relay

pre: mode = relay
receive is nonempty
eff: move head(receive) to send

PetersonlLeader

o Tasks:
- {send(v);;;; | visa UID }
- { get-second-uid, get-third-uid, advance-phase,
become-relay, relay. }
- { leader, }

« Number of phases is O(log n)

« Complexity
- Messages: O(n log n)
- Time: O(n(l+d))

Leader election In a ring

« Can we do better than O(n log n) message
complexity?
- Not with comparison-based algorithms.
(Why?)
- Not at all: Can prove a lower bound.

Q(n log n) lower bound

. Lower bound for leader election in asynchronous network.

« Assume:
. Ring size nis unknown (algorithm must work in arbitrary size rings).
. UIDS:
« Chosen from some infinite set.
« No restriction on allowable operations.
« All processes identical except for UIDs.
 Bidirectional communication allowed.

. Consider combinations of processes to form:
. Rings, as usual.
. Lines, where nothing is connected to the ends and no input arrives there.
« Ring looks like line if communication delayed across ends.

- L D LD PN _»

Q(n log n) lower bound

Lemma 1. There are infinitely many process automata,
each of which can send at least one message without first
receiving one (in some execution).

Proof:

— If not, there are two processes i,j, neither of which ever sends a
message without first receiving one.

— Consider 1-node ring:

* I must elect itself, with no messages sent or received.
— Consider:

« j must elect itself, with no messages sent or received.

— Now consider:
 Both i and | elect themselves, contradiction.

I

Q(n log n) lower bound

« C(L) = maximum (actually, supremum) of the number of

messages that are sent in a single input-free execution of
line L.

Lemma 2: IfL,, L
such that C(L) > K
then C(L, join)

, L, are three line graphs of even length |
fori = 1, 2, 3,
> 2k + 1/2 for some i |

Proof:
~ Suppose not.
- Consider two lines, L, join L, and L, join L;.

A

—t
v
A

—t
v

Proof of Lemma 2
< r > < T

L,

\ 4

. Let o, be finite execution of L, with 2 k messages.

« Run ocl then o, then a, ,,, an executlon fragment of L, join
L, beginning with messages arriving across the join
boundary

« By assumption, fewer than I/2 additional messages are

sent in Ay 5

« S0, the effects of the new inputs don’t cross the middle
edges of L, and L, before the system quiesces (no more

messages sent)

o Similarly for a., ,, an execution of L, join L.

2,17

Proof of Lemma 2

 Now consider three rings:

Proof of Lemma 2

 Connect both ends of L, and L.
- Right neighbor in line is clockwise around ring.

« Run o, then o, then o, ,then a,, ..
- No interference between a, , and a,, ,.
- Quiesces: Eventually no more messages are sent.

- Must elect leader (possibly in extension, but without any more
messages).

« Assume WLOG that elected leader is in “bottom half”.

Proof of Lemma 2

L,
e Same argument for ring constructed from L, and L.
e Can leader be in bottom half?
* No!
e SO0 must be in top half.

Proof of Lemma 2

Proof of Lemma 2

Lower bound, cont’d

Summarizing, we have:

Lemma 1: There are infinitely many process automata, each
of which can send at least one message without first
receiving one.

Lemma 2: IfL,, L,, L, are three line graphs of even length | such

that C(L) 2 k for afl I, then C(L, join Lj) = 2k + 1/2 for some i #|.
Now combine:

Lemma 3: For any r =2 0, there are infinitely many disjoint
line graphs L of length 2" such that C(L) 2r 2™2.
- Base (r =0): Trivial claim.
- Base (r=1): UseLemmal
- Just need length-2 lines sending at least one message.
- Inductive step (r = 2):
. Choose L, L,, L, of length 2"* with C(L)) = (r-1) 2.
. By Lemma 2, for some i,j, C(L, join L) 2 2(r-1)2"3 + 212 = r 2"2,

Lower bound, cont’d

. Lemma 3: For anyr 2 0, there are infinitely many

disjoint line graphs L of length 2" such that C(L) =r
22,

. Theorem: Foranyr =0, thereisaring R of size n =
2" such that C(R) = Q(n log n).
~Choose L of length 2" such that C(L) = r 2"
- Connect ends, but delay communication across boundary.

« Corollary: Forany n =0, there is aring R of size n
such that C(R) = Q(n log n).

Leader election in general networks

. Undirected graphs.

« Can get asynchronous version of synchronous FloodMax
algorithm:
- Simulate rounds with counters.
- Need to know diameter for termination.

« We'll see better asynchronous algorithms later:
- Don’t need to know diameter.
- Lower message complexity.

. Depend on technigues such as:
- Breadth-first search
- Convergecast using a spanning tree
— Synchronizers to simulate synchronous algorithm
- Consistent global snapshots to detect termination.

Next lecture

« More asynchronous network algorithms
- Constructing a spanning tree
- Breadth-first search
- Shortest paths
— Minimum spanning tree (GHS)

« Reading: Section 15.3-15.5, [Gallager,
Humblet, Spiraj

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

