
6.852: Distributed Algorithms

Fall, 2009

Class 7

Today’s plan

z Asynchronous systems
z Formal model

� I/O automata

� Executions and traces

� Operations: composition, hiding

� Properties and proof methods:

� Invariants

� Simulation relations

z Reading: Chapter 8
• Next:

– Asynchronous network algorithms: Leader election,

breadth-first search, shortest paths, spanning trees.

– Reading: Chapters 14 and 15

Last time

• Finished synchronous network algorithms:

– Lower bounds on number of rounds
– k-agreement

• Commit:
– 2-phase commit:

• Weak termination only.
– 3-phase commit:

• Strong termination.
• But depends strongly on synchrony:

– Coordinator deduces that all processes are ready or failed,
just by waiting sufficiently long so it knows that its
messages have arrived.

Practical issues for 3-phase commit

•	 Depends on strong assumptions, which may be hard to

guarantee in practice:
–	 Synchronous model:

• Could emulate with approximately-synchronized clocks, timeouts.
–	 Reliable message delivery:

•	 Could emulate with acks and retransmissions.
•	 But if retransmissions add too much delay, then we can’t emulate

the synchronous model accurately.
•	 Leads to unbounded delays, asynchronous model.

–	 Accurate diagnosis of process failures:
•	 Get this “for free” in the synchronous model.
•	 E.g., 3-phase commit algorithm lets process that doesn’t hear from

another process i at a round conclude that i must have failed.
•	 Very hard to guarantee in practice: In Internet, or even a LAN, how

to reliably distinguish failure of a process from lost communication?
•	 Other consensus algorithms can be used for commit,

including some that don’t depend on such strong timing
and reliability assumptions.

Paxos consensus algorithm

•	 A more robust consensus algorithm, could be used for commit.

•	 Tolerates process stopping and recovery, message losses and

delays,…
•	 Runs in partially synchronous model.
•	 Based on earlier algorithm [Dwork, Lynch, Stockmeyer].
•	 Algorithm idea:

–	 Processes use unreliable leader election subalgorithm to choose
coordinator, who tries to achieve consensus.

–	 Coordinator decides based on active support from majority of processes.
–	 Does not assume anything based on not receiving a message.
–	 Difficulties arise when multiple coordinators are active---must ensure

consistency.
•	 Practical difficulties with fault-tolerance in the synchronous

model motivate studying the asynchronous model.

Asynchronous systems
z No timing assumptions

� No rounds

z Two kinds of asynchronous models:

z Asynchronous networks
� Processes communicating via channels

z Asynchronous shared-memory systems

� Processes communicating via shared objects

Asynchronous network:

Processes and channels

C2,1

p1

send(m) ,2

send(m)2,1receive(m)2,1

1
C1,2

p2

receive(m)1,2init(v)1

decide(v)1

Q: Mathematically
speaking, what are
these ps and Cs?

A: “Reactive”
components, which
interact with their
environments via input
and output actions.

Asynchronous shared-memory

system: Processes and objects

p1

pn

p2

x1

x2

xm

These processes and objects
are also “reactive”
components.

In both cases, reactive
components.

So, we give a general model

for reactive components.

Specifying problems and systems

z Processes, channels, and objects are automata
� Take actions while changing state.
� Reactive

z Interact with environment via input and output actions.
z Not just functions from input values to output values, but more

flexible interactions.
z Execution:
� Sequence of actions

� Interleaving semantics

z External behavior (trace):

� We observe external actions.

� State and internal actions are hidden.

� Problems specify allowable traces.

I/O Automata

Input/Output Automata

z General mathematical modeling framework for reactive

components.

� Little structure---must add structure to specialize it for networks,

shared-memory systems,…

z Designed for describing systems in a modular way:

� Supports description of individual system components, and how they
compose to yield a larger system.

� Supports description of systems at different levels of abstraction, e.g.:
� Detailed implementation vs. more abstract algorithm description.
� Optimized algorithm vs. simpler, unoptimized version.

z Supports standard proof techniques:

� Invariants

� Simulation relations (like running 2 algorithms side-by-side and

relating their behavior step-by-step).
� Compositional reasoning (prove properties of individual components;

use to infer properties for overall system).

Input/output automaton

z State transition system

� Transitions labeled by actions

z Actions classified as input, output, internal
� Input, output are external.
� Output, internal are locally controlled.

Input/output automaton
z sig = (in, out, int)

� input, output, internal actions (disjoint)

� acts = in � out � int

� ext = in � out

� local = out � int

z states: Not necessarily finite
z start � states
z trans � states u acts u states
� Input-enabled: Any input “enabled” in any state.

z tasks, partition of locally controlled actions
� Used for liveness.

Remarks

z A step of an automaton is an element of trans.
z Action S is enabled in a state s if there is a step (s, S, sc) for

some sc.
z I/O automata must be input-enabled.

� Every input action is enabled in every state.

� Captures idea that an automaton cannot control inputs.

� If we want restrictions, model the environment as another
automaton and express restrictions in terms of the environment.

� Could allow a component to detect bad inputs and halt, or
exhibit unconstrained behavior for bad inputs.

z Tasks correspond to “threads of control”.
� Used to define fairness (give turns to all tasks).
� Needed to guarantee liveness properties (e.g., the system keeps

making progress, or eventually terminates).

Channel automaton

C
send(m) receive(m)

z Reliable unidirectional FIFO channel between
two processes.
� Fix message alphabet M.

z signature
� input actions: send(m), m � M
� output actions: receive(m), m � M
� no internal actions

z states

� queue: FIFO queue of M, initially empty

Channel automaton

C
send(m) receive(m)

z trans

� send(m)

z effect: add m to (end of) queue

� receive(m)

z precondition: m is at head of queue

z effect: remove head of queue

z tasks

� All receive actions in one task.

Channel automaton

Ci,jpi pj

send(m)i,j receive(m)i,j

trans

� send(m)i,j

z

z effect: add m to (end of) queue

� receive(m)i,j

z precondition: m is at head of queue
z effect: remove head of queue

z tasks

� All receive actions in one task

init	 decide

send receive

pi

A process
•	 E.g., in a consensus protocol.
•	 See book, p. 205, for code details.
•	 Inputs arrive from the outside.
•	 Process sends/receives values,

collects vector of values for all

processes.

•	 When vector is filled, outputs a
decision obtained as a function of the
vector.

•	 Can get new inputs, change values,
send and output repeatedly.

•	 Tasks for:
–	 Sending to each individual neighbor.

–	 Outputting decisions.

Executions

z An I/O automaton executes as follows:
� Start at some start state.
� Repeatedly take step from current state to new state.

z Formally, an execution is a finite or infinite
sequence:
� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ... (if finite, ends in state)
� s0 is a start state
� (si, Si��, si+1) is a step (i.e., in trans)

Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ

z An I/O automaton executes as follows:
� Start at some start state. execution fragment
� Repeatedly take step from current state to new state.

z Formally, an execution is a sequence:

Execution fragments

� s0 S1 s1 S� s2 S� s3 S� s4 S� s5 ...
� s0 is a start state
� (si, Si��, si+1) is a step.

Invariants and reachable states

z A state is reachable if it appears in some

execution.
� Equivalently, at the end of some finite execution

z An invariant is a predicate that is true for

every reachable state.

� Most important tool for proving properties of

concurrent/distributed algorithms.

� Typically proved by induction on length of

execution.

Traces

z Allow us to focus on components’ external behavior.
z Useful for defining correctness.
z A trace of an execution is the subsequence of external

actions in the execution.
z No states, no internal actions.

� Denoted trace(D), where D is an execution.

� Models “observable behavior”.

Ȝ, send(a), a, send(b), ab, receive(a), b, receive(b), Ȝ

send(a), send(b), receive(a), receive(b)

Operations on I/O Automata

Operations on I/O automata

• To describe how systems are built out of components, the

model has operations for composition, hiding, renaming.

•	 Composition:

–	 “Put multiple automata together.”
–	 Output actions of one may be input actions of others.
–	 All components having an action perform steps involving that action

at the same time (“synchronize on actions”).
•	 Composing finitely many or countably infinitely many

automata Ai, i � I:
•	 Need compatibility conditions:

–	 Internal actions aren’t shared:
• int(Ai) � acts(Aj) = �

–	 Only one automaton controls each output:

• out(Ai) � out(Aj) = �

–	 But output of one automaton can be an input of one or more others.
–	 No action is shared by infinitely many Ais.

Operations on I/O automata

Composition of compatible automata

z Compose two automata A and B (see book for general case).
z out(A u B) = out(A) � out(B)
z int(A u B) = int(A) � int(B)
z in(A u B) = in(A) � in(B) – (out(A) � out(B))
z states(A u B) = states(A) u states(B)
z start(A u B) = start(A) u start(B)
z trans(A u B): includes (s, S, sc) iff

z (sA, S, scA) � trans(A) if S � acts(A); sA = scA otherwise.
z (sB, S, scB) � trans(B) if S � acts(B); sB = scB otherwise.

z tasks(A u B) = tasks(A) � tasks(B)

z Notation: 3i � , Ai, for composition of Ai : i � I (I countable)

Composition of channels and

consensus processes

p1

C1,2

p2
C2,1

send(m)1,2

send(m)2,1

receive(m)1,2

receive(m)2,1

init(v)1

decide(v)1

Composition: Basic results

z Projection
� Execution of composition “looks good” to each

component.
z Pasting
� If execution “looks good” to each component, it

is good overall.
z Substitutivity

� Can replace a component with one that

implements it.

Composition: Basic results
Theorem 1: Projection
� If D � execs(3 Ai) then D|Ai � execs(Ai) for every i.

� If E � traces(3 Ai) then E|Ai � traces(Ai) for every i.

Composition: Basic results
Theorem 2: Pasting
Suppose E is a sequence of external actions of 3 Ai.
� If Di � execs(Ai) and E|Ai = trace(Di) for every i,

then there is an execution D of 3 Ai such that E = trace(D)
and Di = D|Ai for every i.

� If E |Ai � traces(Ai) for every i then E � traces(3 Ai).

Composition: Basic results

Theorem 3: Substitutivity
� Suppose Ai and Aci have the same external

signature, and traces(Ai) � traces(Aci) for every i.
� A kind of “implementation” relationship.

� Then traces(3 Ai) � traces(3 Aci) (assuming
compatibility).

Proof:
� Follows from trace pasting and projection,

Theorems 1 and 2.

Other operations on I/O automata

• Hiding

– Make some output actions internal.
– Hides internal communication among components of a

system.

• Renaming
– Change names of some actions.
– Action names are important for specifying component

interactions.
– E.g., define a “generic” automaton, then rename actions

to define many instances to use in a system.
• As we did with channel automata.

Fairness

Fairness

z Task T (set of actions) corresponds to a “thread of control”.
z Used to define “fair” executions: a task that is continuously

enabled gets to take a step.
z Needed to prove liveness properties, e.g., that something

eventually happens, like an algorithm terminating.

z Formally, execution (or fragment) D of A is fair to task T if

one of the following holds:
� D is finite and T is not enabled in the final state of D.
� D is infinite and contains infinitely many events in T.
� D is infinite and contains infinitely many states in which T is not

enabled.
z Execution of A is fair if it is fair to all tasks of A.
z Trace of A is fair if it is the trace of a fair execution of A.

Example

z Channel
� Only one task (all receive actions).
� A finite execution of Channel is fair iff queue is

empty at the end.
� Q: Is every infinite execution of Channel fair?

z Consensus process
z Separate tasks for sending to each other

process, and for output.
z Means it “keeps trying” to do these forever.

Fairness and composition

•	 Fairness “behaves nicely” with respect to

composition---results analogous to non-fair results:
Theorem 4: Projection
� If D � fairexecs(3 Ai) then D|Ai � fairexecs(Ai) for every i.
� If E � fairtraces(3 Ai) then E|Ai � fairtraces(Ai) for every i.

Theorem 5: Pasting
Suppose E is a sequence of external actions of 3 Ai.
� If Di � fairexecs(Ai) and E|Ai = trace(Di) for every i,

then there is a fair execution D of 3 Ai such that E =
trace(D) and Di = D|Ai for every i.

� If E |Ai � fairtraces(Ai) for every i then E � fairtraces(3 Ai).

Fairness and composition

Theorem 6: Substitutivity
�	 Suppose Ai and Aci have the same external

signature, and fairtraces(Ai) � fairtraces(Aci) for
every i.
� Another kind of “implementation” relationship.

� Then fairtraces(3 Ai) � fairtraces(3 Aci).

Composition of channels and

consensus processes

p1
C2,1

send(m) ,2

receive(m)2,1
send(m)2,1

1
C1,2

p2

receive(m)1,2init(v)1

decide(v)1

In fair executions:
• After init, keep sending
latest val forever.
• All messages that are
sent are delivered.
• After vector is full,
output latest decision
forever.

Properties and Proof Methods

• Compositional reasoning
• Invariants
• Trace properties
• Simulation relations

Compositional reasoning

•	 Use Theorems 1-6 to infer properties of a
system from properties of its components.

•	 And vice versa.

Invariants

z A state is reachable if it appears in some

execution (or, at the end of some finite execution).
z An invariant is a predicate that is true for every

reachable state.
z Most important tool for proving properties of

concurrent and distributed algorithms.
z Proving invariants:
� Typically, by induction on length of execution.
� Often prove batches of inter-dependent invariants

together.
� Step granularity is finer than round granularity, so proofs

are harder and more detailed than those for synchronous
algorithms.

Trace properties

z A trace property is essentially a set of

allowable external behavior sequences.

z A trace property P is a pair of:
� sig(P): External signature (no internal actions).
� traces(P): Set of sequences of actions in sig(P).

z Automaton A satisfies trace property P if (two
different notions):
� extsig(A) = sig(P) and traces(A) � traces(P)
� extsig(A) = sig(P) and fairtraces(A) � traces(P)

Safety and liveness

•	 Safety property: “Bad” thing doesn't happen:

–	Nonempty (null trace is always safe).
–	Prefix-closed: Every prefix of a safe trace is safe.
–	Limit-closed: Limit of sequence of safe traces is safe.

•	 Liveness property: “Good” thing happens
eventually:
– Every finite sequence over acts(P) can be extended to a

sequence in traces(P).
–	 “It's never too late.”

•	 Can define safety/liveness for executions similarly.

•	 Fairness can be expressed as a liveness property

for executions.

Automata as specifications
•	 Every I/O automaton specifies a trace property

(extsig(A), traces(A)).
•	 So we can use an automaton as a problem

specification.
•	 Automaton A “implements” automaton B if

–	extsig(A) = extsig(B)
–	 traces(A) � traces(B)

Hierarchical proofs

•	 Important strategy for proving correctness

of complex asynchronous distributed
algorithms.

•	 Define a series of automata, each
implementing the previous one
(“successive refinement”).

•	 Highest-level automaton model captures
the “real” problem specification.

•	 Next level is a high-level algorithm
description.

•	 Successive levels represent more and
more detailed versions of the algorithm.

•	 Lowest level is the full algorithm
description.

Abstract spec

High-level
algorithm
description

Detailed
Algorithm

description

Hierarchical proofs
•	 For example:

–	 High levels centralized, lower levels

distributed.

–	 High levels inefficient but simple, lower levels
optimized and more complex.

–	 High levels with large granularity steps, lower
levels with finer granularity steps.

•	 In all these cases, lower levels are harder
to understand and reason about.

•	 So instead of reasoning about them
directly, relate them to higher-level
descriptions.

•	 Method similar to what we saw for
synchronous algorithms.

Abstract spec

High-level
algorithm
description

Detailed
Algorithm

description

Hierarchical proofs
•	 Recall, for synchronous algorithms:

–	 Optimized algorithm runs side-by-side with
unoptimized version, and “invariant” proved to
relate the states of the two algorithms.

–	 Prove using induction.
•	 For asynchronous systems, things become

harder:
–	 Asynchronous model has more nondeterminism

(in choice of new state, in order of steps).
–	 So, harder to determine which execs to compare.

•	 One-way implementation relationship is
enough:
–	 For each execution of the lower-level algorithm,

there is a corresponding execution of the higher-
level algorithm.

–	 “Everything the algorithm does is allowed by the
spec.”

– Don’t need the other direction: doesn’t matter if

the algorithm does everything that is allowed.

Abstract spec

High-level
algorithm
description

Detailed
Algorithm

description

Simulation relations

z Most common method of proving that one

automaton implements another.

z Assume A and B have the same extsig, and R is

a relation from states(A) to states(B).
z Then R is a simulation relation from A to B

provided:
� sA � start(A) implies there exists sB � start(B) such that

sA R sB.
� If sA, sB are reachable states of A and B, sA R sB and

(sA, S, scA) is a step, then there is an execution
fragment E starting with sB and ending with scB such
that scA R scB and trace(E) = trace(S).

Simulation relations

ȕ

sA scA

sB scB

R R

ʌ

z R is a simulation relation from A to B provided:
� sA � start(A) implies �sB � start(B) such that sA R sB.
� If sA, sB are reachable states of A and B, sA R sB and

(sA, S, scA) is a step, then �E starting with sB and ending
with scB such that scA R scB and trace(E) = trace(S).

Simulation relations

z Theorem: If there is a simulation relation from A to

B then traces(A) � traces(B).
z This means all traces of A, not just finite traces.

z Proof: Fix a trace of A, arising from a (possibly

infinite) execution of A.
z Create a corresponding execution of B, using an

iterative construction.

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Simulation relations

z Theorem: If there is a simulation relation from

A to B then traces(A) � traces(B).

s0,B

R

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Simulation relations

z Theorem: If there is a simulation relation from

A to B then traces(A) � traces(B).

ȕ1s0,B s1,B

R R

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Simulation relations

z Theorem: If there is a simulation relation from

A to B then traces(A) � traces(B).

ȕ1 ȕ2 ȕ3 ȕ4 ȕ5s0,B s1,B s2,B s3,B s4,B s5,B

R R R R R R

ʌ1 ʌ2 ʌ3 ʌ4 ʌ5

s0,A
 s1,A s2,A s3,A s4,A s5,A

Example: Channels
•	 Show two channels implement one.

C
send(m) receive(m)

AB	
send(m) pass(m) receive(m)

•	 Rename some actions.
•	 Claim that D = hide{pass(m)} A u B implements C, in

the sense that traces(D) � traces(C).

Recall: Channel automaton

C
send(m) receive(m)

z Reliable unidirectional FIFO channel.

z signature

� Input actions: send(m), m � M

� output actions: receive(m), m � M

� no internal actions

z states
� queue: FIFO queue of M, initially empty

Channel automaton

C
send(m) receive(m)

z trans

� send(m)

z effect: add m to queue

� receive(m)

z precondition: m = head(queue)
z effect: remove head of queue

z tasks

� All receive actions in one task

Composing two channel automata

AB
send(m) pass(m) receive(m)

z Output of B is input of A
� Rename receive(m) of B and send(m) of A to pass(m).

z D = hide{ pass(m) | m � M } A u B implements C
z Define simulation relation R:
� For s � states(D) and u � states(C), s R u iff u.queue is

the concatenation of s.A.queue and s.B.queue
z Proof that this is a simulation relation:
� Start condition: All queues are empty, so start states

correspond.
� Step condition: Define “step correspondence”:

Composing two channel automata

AB
send(m) pass(m) receive(m)

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

z Step correspondence:
� For each step (s, S, sc) � trans(D) and u such that s R u,

define execution fragment E of C:
z Starts with u, ends with uc such that sc R uc.
z trace(E) = trace(S)

� Here, actions in E happen to depend only on S, and
uniquely determine post-state.
z Same action if external, empty sequence if internal.

Composing two channel

automata

AB
send(m) pass(m) receive(m)

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

z Step correspondence:

� S = send(m) in D corresponds to send(m) in C

� S = receive(m) in D corresponds to receive(m) in C

� S = pass(m) in D corresponds to O in C

z Verify that this works:

� Actions of C are enabled.

� Final states related by relation R. case analysis.

� Routine case analysis:

Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

• Case: S = send(m)
–	 No enabling issues (input).
–	 Must check sc R uc.

•	 Since s R u, u.queue is the concatenation of s.A.queue and
s.B.queue.

•	 Adding the same m to the end of u.queue and s.B.queue maintains the
correspondence.

• Case: S = receive(m)
–	 Enabling: Check that receive(m), for the same m, is also enabled

in u.
•	 We know that m is first on s.A.queue.
•	 Since s R u, m is first on u.queue.
• So enabled in u.

– sc R uc: Since m removed from both s.A.queue and u.queue.

Showing R is a simulation relation
s R u iff u.queue is concatenation of s.A.queue and s.B.queue

•	 Case: S = pass(m)
– No enabling issues (since no 	 u

high-level steps are involved).

– Must check sc R u:

• Since s R u, u.queue is the
concatenation of s.A.queue and
s.B.queue. s

• Concatenation is unchanged as a pass(m)
result of this step, so also u.queue is
the concatenation of sc.A.queue and
sc.B.queue.

R
R

sc

Next lecture

z Basic asynchronous network algorithms:

– Leader election
– Breadth-first search
– Shortest paths
– Spanning trees.

z Reading:

� Chapters 14 and 15

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

