6.852: Distributed Algorithms
Fall, 2009

Class 7



Today's plan

Asynchronous systems

Formal model

- 1/0O automata

- Executions and traces

- Operations: composition, hiding
- Properties and proof methods:

— Invariants
— Simulation relations

Reading: Chapter 8

Next:

— Asynchronous network algorithms: Leader election,
breadth-first search, shortest paths, spanning trees.

— Reading: Chapters 14 and 15



Last time

* Finished synchronous network algorithms:
— Lower bounds on number of rounds
— k-agreement

e Commit:

— 2-phase commit:
» Weak termination only.

— 3-phase commit:
« Strong termination.
» But depends strongly on synchrony:

— Coordinator deduces that all processes are ready or failed,
just by waiting sufficiently long so it knows that its
messages have arrived.



Practical issues for 3-phase commit

* Depends on strong assumptions, which may be hard to
guarantee in practice:

— Synchronous model:
« Could emulate with approximately-synchronized clocks, timeouts.

— Reliable message delivery:
« Could emulate with acks and retransmissions.
« But if retransmissions add too much delay, then we can’t emulate
the synchronous model accurately.

« Leads to unbounded delays, asynchronous model.
— Accurate diagnosis of process failures:

» Get this “for free” in the synchronous model.

« E.g., 3-phase commit algorithm lets process that doesn’t hear from
another process i at a round conclude that i must have failed.

* Very hard to guarantee in practice: | |nternet, or even a LAN,
to reliably distinguish failure of a process {rom Ios?communlca jon’

* Other consensus algorithms can be used for commit,
iIncluding some that don’t depend on such strong timing
and reliability assumptions.



Paxos consensus algorithm

A more robust consensus algorithm, could be used for commit.

Tolerates process stopping and recovery, message losses and
delays,...

Runs in partially synchronous model.
Based on earlier algorithm [Dwork, Lynch, Stockmeyer].
Algorlthm Idea:

Processes use unreliable leader election subalgorithm to choose
coordinator, who tries to achieve consensus.

— Coordinator decides based on active support from majority of processes.
— Does not assume anything based on not receiving a message.

— Difficulties arise when multiple coordinators are active---must ensure
consistency.

Practical difficulties with fault-tolerance in the synchronous
model motivate studying the asynchronous model.



Asynchronous systems

« No timing assumptions
- No rounds

« Two kinds of asynchronous models:
« Asynchronous networks
—- Processes communicating via channels

« Asynchronous shared-memory systems
- Processes communicating via shared objects



Asynchronous network:
Processes and channels

(’(\\'\,‘2 receiVe
i), .KCN
decide(v \CC >/ -
(V)4 "eceive, N 2,1 . ondm2

Q: Mathematically
speaking, what are
these ps and Cs?

A:. “Reactive’
components, which
interact with their
environments via input
and output actions.




Asynchronous shared-memory
system: Processes and objects

These processes and objects
are also “reactive”
components.

In both cases, reactive
components.

So, we give a general model
for reactive components.




Specifying problems and systems

« Processes, channels, and objects are automata
- Take actions while changing state.

- Reactive
« Interact with environment via input and output actions.

« Not just functions from input values to output values, but more
flexible interactions.

« EXxecution:
- Sequence of actions
- Interleaving semantics

» External behavior (trace):
- We observe external actions.
— State and internal actions are hidden.
- Problems specify allowable traces.



/O Automata



Input/Output Automata

« General mathematical modeling framework for reactive
components.
— Little structure---must add structure to specialize it for networks,
shared-memory systems,...
« Designed for describing systems in a modular way:

— Supports description of individual system components, and how they
compose to yield a larger system.

— Supports description of systems at different levels of abstraction, e.g.:
- Detailed implementation vs. more abstract algorithm description.
- Optimized algorithm vs. simpler, unoptimized version.

« Supports standard proof techniques:

— Invariants

- Simulation relations (like running 2 algorithms side-by-side and
relating their behavior step-by-step).

- Compositional reasoning (prove properties of individual components;
use to infer properties for overall system).



Input/output automaton

» State transition system
- Transitions labeled by actions

 Actions classified as input, output, internal
- Input, output are external.
- Qutput, internal are locally controlled.



Input/output automaton

sig = (in, out, int )

— input, output, internal actions (disjoint)
— acts =in U out v Int

- ext=in v out

- local = out U Int

states: Not necessarily finite
start c states

trans c states x acts x states
- Input-enabled: Any input “enabled” in any state.

tasks, partition of locally controlled actions
- Used for liveness.



Remarks

« A step of an automaton is an element of trans.

« Action r is enabled in a state s if there is a step (s, «t, ') for
some s'.

. |/O automata must be input-enabled.
—- Every input action is enabled in every state.
— Captures idea that an automaton cannot control inputs.

— |f we want restrictions, model the environment as another
automaton and express restrictions in terms of the environment.

— Could allow a component to detect bad inputs and halt, or
exhibit unconstrained behavior for bad inputs.

« Tasks correspond to “threads of control”.
- Used to define fairness (give turns to all tasks).

- Needed to guarantee liveness properties (e.g., the system keeps
making progress, or eventually terminates).



Channel automaton

receive(m)

send(m) — c —
\ .

« Reliable unidirectional FIFO channel between
two processes.
- Fix message alphabet M.
« Signature
— input actions: send(m), m € M
— output actions: receive(m), m € M
- no internal actions

. sStates
- queue: FIFO queue of M, initially empty



Channel automaton

send(m) - — receive(m)
— C -
 trans
- send(m)
. effect: add m to (end of) queue
- receive(m)

 precondition: m is at head of queue
. effect: remove head of queue

o tasks
_ All receive actions in one task.



Channel automaton

send(m)i,j - — receive(m)i’j
P; ~— Ci i _—

 trans
- send(m)i,j
. effect: add m to (end of) queue
- rec;eive(m)i,j
 precondition: m is at head of queue
. effect: remove head of queue

o tasks
_ All receive actions in one task



A process

 E.g., In a consensus protocol.
« See book, p. 205, for code details.
. * |nputs arrive from the outside.
Init decide .
* Process sends/receives values,
collects vector of values for all
processes.

send receive  When vector is filled, outputs a
decision obtained as a function of the
vector.

« (Can get new inputs, change values,
send and output repeatedly.

« Tasks for:
— Sending to each individual neighbor.
— Outputting decisions.



Executions

« An |/O automaton executes as follows:
- Start at some start state.
- Repeatedly take step from current state to new state.

« Formally, an execution is a finite or infinite

sequence.
-~ S, M, S, M,S, M, S, T
- S, IS a start state

- (s, m ,,s,,) Is astep (i.e., in trans)

s, T, S, ... (if finite, ends in state)

4 74

i+17 Ti+1

A, send(a), a, send(b), ab, receive(a), b, receive(b), A




Execution fragments

« An |/O automaton executes as follows:
- Start at some start state. execution fragment |
- Repeatedly take step from%é\e to new state.
. Formally, an exeeution is a sequence:
S, T, S, M, S, W S

- Sy Ty Sy, S, My Sy My Sy Mg S ...
- Sis-a-startState

- (s, m ,s,,)Iis astep.

I+1?



Invariants and reachable states

A state is reachable if it appears in some
execution.

- Equivalently, at the end of some finite execution
« An invariant is a predicate that is true for
every reachable state.

- Most important tool for proving properties of
concurrent/distributed algorithms.

- Typically proved by induction on length of
execution.



Traces

« Allow us to focus on components’ external behavior.
« Useful for defining correctness.

« A trace of an execution is the subsequence of external
actions in the execution.

« No states, no internal actions.

- Denoted trace(a), where o is an execution.
- Models “observable behavior”.

A, send(a), a, send(b), ab, receive(a), b, receive(b), A

send(a), send(b), receive(a), receive(b)




Operations on |/O Automata



Operations on |/O automata

To describe how systems are built out of components, the
model has operations for composition, hiding, renaming.

Composition:
— “Put multiple automata together.”
— Output actions of one may be input actions of others.

— All components having an action perform steps involving that action
at the same time (“synchronize on actions”).

Composing finitely many or countably infinitely many
automata A, i € I

Need compatibility conditions:
— Internal actions aren’t shared:
* int(A) nacts(A) = I
— Only one automaton controls each output:
* out(A;) N out(A) =<
— But output of one automaton can be an input of one or more others.
— No action is shared by infinitely many As.



Operations on |/O automata



Composition of compatible automata

« Compose two automata A and B (see book for general case).
o OUt(A x B) = out(A) U out(B)

o INt(A x B) =int(A) U int(B)

o IN(A xB)=In(A)uin(B) - (out(A) U out(B))

. states(A x B) = states(A) x states(B)

. start(A x B) = start(A) x start(B)

. trans(A x B): includes (s, &, s') iff
e ()7, 8',) e trans(A) if © € acts(A); s, =s’, otherwise.
. (sg 7, 8'y) € trans(B) if © € acts(B); sy =s'; otherwise.

. tasks(A x B) = tasks(A) u tasks(B)

« Notation: IT, _ A, for composition of A. : i € | (I countable)



Composition of channels and
CONSENSUS Processes

re

Cej
init(v), % N
deC|de(v %\

Ce’ e(m),_




Composition: Basic results

« Projection

- Execution of composition “looks good” to each
component.

« Pasting

- If execution “looks good” to each component, it
IS good overall.

« Substitutivity

- Can replace a component with one that
Implements it.



Composition: Basic results

Theorem 1: Projection

- If o € execs(I

I A)then a

- If B e traces(I

IA)then 3

A, € execs(A) for every |.
A, e traces(A ) for every .



Composition: Basic results

Theorem 2: Pasting

Suppose f3 is a sequence of external actions of IT A..

- If a, € execs(A) and B|A. = trace(a,) for every i,
then there is an execution a of IT A such that B = trace(a)
and o. = alA. for every i.

- If B |A, € traces(A)) for every i then 3 < traces(IT A).



Composition: Basic results

Theorem 3: Substitutivity

- Suppose A, and A’ have the same external
signature, and traces(A,) c traces(A’)) for every .
- A kind of “implementation” relationship.

- Then traces(IT A)) c traces(IT A’) (assuming
compatibility).
Proof:

- Follows from trace pasting and projection,
Theorems 1 and 2.



Other operations on I/O automata

* Hiding
— Make some output actions internal.
— Hides internal communication among components of a
system.
* Renaming
— Change names of some actions.

— Action names are important for specifying component
iInteractions.

— E.g., define a “generic” automaton, then rename actions
to define many instances to use in a system.
* As we did with channel automata.



Fairness



Fairness

Task T (set of actions) corresponds to a “thread of control”.

Used to define “fair” executions: a task that is continuously
enabled gets to take a step.

Needed to prove liveness properties, e.g., that something
eventually happens, like an algorithm terminating.

Formally, execution (or fragment) o of A is fair to task T if
one of the following holds:

- o is finite and T is not enabled in the final state of a.
- o is infinite and contains infinitely many events in T.

— o is infinite and contains infinitely many states in which T is not
enabled.

Execution of A is fair if it is fair to all tasks of A.
Trace of A is fair if it is the trace of a fair execution of A.



Example

« Channel
- Only one task (all receive actions).

- A finite execution of Channel is fair iff queue is
empty at the end.

- Q: Is every infinite execution of Channel fair?

« Consensus process

» Separate tasks for sending to each other
process, and for output.

. Means it "keeps trying” to do these forever.



Fairness and composition

* Fairness "behaves nicely” with respect to
composition---results analogous to non-fair results:

Theorem 4. Projection
- If a e fairexecs(IT A) then a|A. € fairexecs(A ) for every .
- If B € fairtraces(11 A) then B|A. € fairtraces(A ) for every i.

Theorem 5: Pasting

Suppose f is a sequence of external actions of IT A..

- If a, € fairexecs(A)) and B|A. = trace(a.) for every |,
then there is a fair execution o of I1 A such that 3 =
trace(a) and a. = a|A, for every .

- B A € falrtraces(A) for every i then B e fairtraces(IT A).




Fairness and composition

Theorem 6: Substitutivity

- Suppose A and A'. have the same external
signature, and fairtraces(A.) c fairtraces(A’,) for
every |.

— Another kind of “implementation” relationship.

- Then fairtraces(I1 A,) c fairtraces(IT A",).



Composition of channels and
CONSENSUS Processes

<
<

)42 recejy,
i, .KCN
ecide(v), recejyq (fn)21 2.1 Send(m\z,«

In fair executions:

* After init, keep sending
latest val forever.

* All messages that are
sent are delivered.
 After vector is full,
output latest decision

forever.




Properties and Proof Methods

Compositional reasoning
Invariants

Trace properties
Simulation relations



Compositional reasoning

 Use Theorems 1-6 to infer properties of a
system from properties of its components.

 And vice versa.



Invariants

A state is reachable if it appears in some
execution (or, at the end of some finite execution).

An invariant is a predicate that is true for every
reachable state.

Most important tool for proving properties of
concurrent and distributed algorithms.

Proving invariants:

- Typically, by induction on length of execution.

- Often prove batches of inter-dependent invariants
together.

- Step granularity is finer than round granularity, so proofs
are harder and more detailed than those for synchronous
algorithms.



Trace properties

« A trace property is essentially a set of
allowable external behavior sequences.
« A trace property P is a pair of:
- sig(P): External signature (no internal actions).
- traces(P): Set of sequences of actions in sig(P).
« Automaton A satisfies trace property P if (two
different notions):
- extsig(A) = sig(P) and traces(A) c traces(P)
- extsig(A) = sig(P) and fairtraces(A) c traces(P)



Safety and liveness

Safety property: “Bad” thing doesn't happen:

— Nonempty (null trace is always safe).

— Prefix-closed: Every prefix of a safe trace is safe.

— Limit-closed: Limit of sequence of safe traces is safe.

Liveness property: “Good” thing happens
eventually:

— Every finite sequence over acts(P) can be extended to a
sequence in traces(P).

— “It's never too late.”
Can define safety/liveness for executions similarly.

Fairness can be expressed as a liveness property
for executions.



Automata as specifications

* Every I/O automaton specifies a trace property
(extsig(A), traces(A)).

SO we can use an automaton as a problem
specification.

« Automaton A “implements” automaton B if
— extsig(A) = extsig(B)
— traces(A) c traces(B)



Hierarchical proofs

Important strategy for proving correctness
of complex asynchronous distributed Abstract spec
algorithms.

Define a series of automata, each 4

implementing the previous one

(“successive refinement”). .
algorithm

Highest-level automaton model captures description
the “real” problem specification.

Next level is a high-level algorithm
description.

Successive levels represent more and
more detailed versions of the algorithm.

Lowest level is the full algorithm
description.

High-level

Detailed
Algorithm
description



Hierarchical proofs

For example:

— High levels centralized, lower levels
distributed.

— High levels inefficient but simple, lower levels
optimized and more complex.

— High levels with large granularity steps, lower
levels with finer granularity steps.

In all these cases, lower levels are harder

to understand and reason about.

So instead of reasoning about them
directly, relate them to higher-level
descriptions.

Method similar to what we saw for
synchronous algorithms.

Abstract spec

4

High-level

algorithm
description

Detailed
Algorithm
description



Hierarchical proofs

Recall, for synchronous algorithms:

— Optimized algorithm runs side-by-side with
unoptimized version, and “invariant” proved to
relate the states of the two algorithms.

— Prove using induction.
For asynchronous systems, things become
harder:

— Asynchronous model has more nondeterminism
(in choice of new state, in order of steps).

— So, harder to determine which execs to compare.

One-way implementation relationship is
enough:

— For each execution of the lower-level algorithm,
there is a corresponding execution of the higher-
level algorithm.

— “Everything the algorithm does is allowed by the
spec.”

— Don’t need the other direction: doesn’t matter if
the algorithm does everything that is allowed.

Abstract spec

4

High-level

algorithm
description

Detailed
Algorithm
description



Simulation relations

« Most common method of proving that one
automaton implements another.

« Assume A and B have the same extsig, and R is
a relation from states(A) to states(B).

« Then R is a simulation relation from Ato B
provided:
- s, e start(A) implies there exists s; € start(B) such that
s, R sg.
- If s,, s; are reachable states of Aand B, s, R's; and
(s, @, s',) is a step, then there is an execution

fragment B starting with s; and ending with s’; such
that s’, R s’y and trace(f3) = trace(n).



Simulation relations

SB .................. ﬁ. ..................... >SB
R R
L1} >

« R is a simulation relation from A to B provided:
- s, e start(A) implies Js; e start(B) such thats, R s..
- If s,, s; are reachable states of Aand B, s, R's; and

(s, @, s',) is a step, then Jf3 starting with s; and ending
with s’ such that s’, R s'; and trace(f3) = trace(n).



Simulation relations

Theorem: If there is a simulation relation from A to
B then traces(A) c traces(B).

This means all traces of A, not just finite traces.

Proof: Fix a trace of A, arising from a (possibly
infinite) execution of A.

Create a corresponding execution of B, using an
iterative construction.

M, m, LLES LV TT

— S, A Sy, —>S3, — S

5
_>S

So A 2 A 3 A 4A 5 A



Simulation relations

o Iheorem: If there is a simulation relation from
A to B then traces(A) c traces(B).



Simulation relations

o 1heorem: If there is a simulation relation from
A to B then traces(A) c traces(B).

B

SO, ------- > S1 B

R iR

mooi T, m, , T,
—_— — g — g — g — g

So.A S1A 2 A 3A 47 5 A



Simulation relations

o 1heorem: If there is a simulation relation from
A to B then traces(A) c traces(B).




Example: Channels

» Show two channels implement one.

send(m) receive(m)

:/ C \
S~ .~

send(m) _— 3 — pass(m) _— A \receive(m) :

—~ - TN -

« Rename some actions.

» Claim that D = hideg,,ismy A x B implements C, in
the sense that traces(D) < traces(C).



Recall: Channel automaton

send(m) receive(m)

=/ C \
\ /

o Reliable unidirectional FIFO channel.

o Signature
- Input actions: send(m), m € M
— output actions: receive(m), m € M
- no internal actions
. states
- queue: FIFO queue of M, initially empty



Channel automaton

send(m) _— — receive(m)
— C _
o trans
- send(m)
« effect: add m to queue
- receive(m)

« precondition: m = head(queue)
. effect: remove head of queue

o tasks
_ All receive actions in one task



Composing two channel automata

send(m) L 3 \pass(m) L A \receive(m) :
N - N -

« Output of B is input of A

- Rename receive(m) of B and send(m) of A to pass(m).

o D= hide{ bass(m) | m e |\,,}A x B implements C
« Define simulation relation R:

- For s € states(D) and u € states(C), s R u iff u.queue is
the concatenation of s.A.queue and s.B.queue

o Proof that this is a simulation relation:

- Start condition: All queues are empty, so start states
correspond.

- Step condition: Define “step correspondence”:



Composing two channel automata

send(m) L 3 \pass(m) L A \receive(m) :
N - N -

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

. Step correspondence:

- For each step (s, &, s') € trans(D) and u such that s R u,
define execution fragment 3 of C:

o« Starts with u, ends with u’ such that s’ R u’.
. trace(p) = trace(n)
- Here, actions in 3 happen to depend only on &, and
uniquely determine post-state.
« Same action if external, empty sequence if internal.



Composing two channel

automata
send(m) _— — pass(m) _— — receive(m)
—~ B - — A - >

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

« Step correspondence:

- © =send(m) in D corresponds to send(m) in C
- 1 = receive(m) in D corresponds to receive(m) in C
- ©=pass(m)in D corresponds to A in C

« Verify that this works:
~ Actions of C are enabled.
- Final states related by relation R. case analysis.

- Routine case analysis:



Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

« Case: ©®=send(m)
— No enabling issues (input).
— Must check s’ R U'.

« Since s R u, u.queue is the concatenation of s.A.queue and
s.B.queue.

« Adding the same m to the end of u.queue and s.B.queue maintains the
correspondence.

« Case: © =receive(m)
— Enabling: Check that receive(m), for the same m, is also enabled
in u.
* We know that m is first on s.A.queue.
« Since s R u, mis first on u.queue.
« S0 enabled in u.
— s’ R U’: Since m removed from both s.A.queue and u.queue.



Showing R is a simulation relation

s R u iff u.queue is concatenation of s.A.queue and s.B.queue

 Case: ©t = pass(m)

— No enabling issues (since no u
high-level steps are involved).
— Must check s’ R u: R =R

e Since s R u, u.queue is the
concatenation of s.A.queue and ‘
s.B.queue. S .S

 Concatenation is unchanged as a pass(m)
result of this step, so also u.queue is
the concatenation of s’.A.queue and
s’'.B.queue.




Next lecture

» Basic asynchronous network algorithms:
—Leader election
— Breadth-first search
— Shortest paths
— Spanning trees.
. Reading:
- Chapters 14 and 15



MIT OpenCourseWare
|http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

