
6.852: Distributed Algorithms
Fall, 2009

Class 6

Today’s plan
• f+1-round lower bound for stopping agreement, cont’d.
• Various other kinds of consensus problems in synchronous

networks:
– k-agreement
– Approximate agreement (skip)
– Distributed commit

• Reading:
– [Aguilera, Toueg]
– [Keidar, Rajsbaum]
– Chapter 7 (skip 7.2)

• Next:
– Modeling asynchronous systems
– Chapter 8

Lower Bound on Rounds
• Theorem 1: Suppose n ≥ f + 2. There is no n-process f-

fault stopping agreement algorithm in which nonfaulty
processes always decide at the end of round f.

• Old proof: Suppose A exists.
– Construct a chain of executions, each with at most f failures, where:

• First has decision value 0, last has decision value 1.
• Any two consecutive executions are indistinguishable to some process i

that is nonfaulty in both.
– So decisions in first and last executions are the same, contradiction.
– Must fail f processes in some executions in the chain, in order to

remove all the required messages, at all rounds.
– Construction in book, LTTR.

• Newer proof [Aguilera, Toueg]:
– Uses ideas from [Fischer, Lynch, Paterson], impossibility of

asynchronous consensus.

[Aguilera, Toueg] proof

• By contradiction. Assume A solves stopping agreement
for f failures and everyone decides after exactly f rounds.

• Consider only executions in which at most one process
fails during each round.

• Recall failure at a round allows process to miss sending
any subset of the messages, or to send all but halt
before changing state.

• Regard vector of initial values as a 0-round execution.
• Defs (adapted from [FLP]): α, an execution that

completes some finite number (possibly 0) of rounds, is:
– 0-valent, if 0 is the only decision that can occur in any execution

(of the kind we consider) that extends α.
– 1-valent, if 1 is…
– Univalent, if α is either 0-valent or 1-valent (essentially decided).
– Bivalent, if both decisions occur in some extensions (undecided).

Univalence and Bivalence

1-valent0-valent bivalent

α

0 0 0

α univalent

α

0 1 1

α

1 1 1

Initial bivalence
• Lemma 1: There is some 0-round execution

(vector of initial values) that is bivalent.

• Proof (from [FLP]):
– Assume for contradiction that all 0-round executions

are univalent.
– 000…0 is 0-valent.
– 111…1 is 1-valent.
– So there must be two 0-round executions that differ in

the value of just one process, i, such that one is 0-
valent and the other is 1-valent.

– But this is impossible, because if i fails at the start, no
one else can distinguish the two 0-round executions.

Bivalence through f-1 rounds
• Lemma 2: For every k, 0 ≤ k ≤ f-1, there is a bivalent k-

round execution.
• Proof: By induction on k.

– Base: Lemma 1.
– Inductive step: Assume for k, show for k+1, where k < f -1.

α

α* α0

round k+1

1-valent 0-valent

• Assume bivalent k-round execution α.
• Assume for contradiction that every 1-round

extension of α (with at most one new failure)
is univalent.

• Let α* be the 1-round extension of α in
which no new failures occur in round k+1.

• By assumption, α* is univalent, WLOG 1-
valent.

• Since α is bivalent, there must be another 1-
round extension of α, α0, that is 0-valent.

Bivalence through f-1 rounds
• In α0, some single process, say i, fails in

round k+1, by not sending to some set of
processes, say J = {j1, j2,…jm}.

• Define a chain of (k+1)-round executions,
α0,α1, α2,…,αm.

• Each αl in this sequence is the same as α0

except that i also sends messages to j1,
j2,…jl.
– Adding in messages from i, one at a time.

α

α* α0

round k+1

1-valent 0-valent

• Each αl is univalent, by assumption.
• Since α0 is 0-valent, either:

– At least one of these is 1-valent, or
– All are 0-valent.

Case 1: At least one αl is 1-valent

• Then there must be some l such that αl-1 is 0-
valent and αl is 1-valent.

• But αl-1 and αl differ after round k+1 only in the
state of one process, jl.

• We can extend both αl-1 and αl by simply failing jl
at beginning of round k+2.
– There is actually a round k+2 because we’ve

assumed k < f-1, so k+2 ≤ f.
• And no one left alive can tell the difference!
• Contradiction for Case 1.

Case 2: Every αl is 0-valent
• Then compare:

– αm, in which i sends all its round k+1 messages and
then fails, with

– α* , in which i sends all its round k+1 messages and
does not fail.

• No other differences, since only i fails at round k+1
in αm.

• αm is 0-valent and α* is 1-valent.
• Extend to full f-round executions:

– αm, by allowing no further failures,
– α*, by failing i right after round k+1 and then allowing no

further failures.
• No one can tell the difference.
• Contradiction for Case 2.

Bivalence through f-1 rounds

• So we’ve proved, so far:
• Lemma 2: For every k, 0 ≤ k ≤ f-1, there is

a bivalent k-round execution.

Disagreement after f rounds
• Lemma 3: There is an f-round execution in which two

nonfaulty processes decide differently.

• Proof:

α

α* α0

round f

decide 1 decide 0

– Use Lemma 2 to get a bivalent (f-1)-round execution α
with ≤ f-1 failures.

– In every 1-round extension of α, everyone who hasn’t
failed must decide (and agree).

– Let α* be the 1-round extension of α in which no new
failures occur in round f.

– Everyone who is still alive decides after α*, and they
must decide the same thing. WLOG, say they decide 1.

– Since α is bivalent, there must be another 1-round
extension of α, say α0, in which some nonfaulty process
(and so, all nonfaulty processes) decide 0.

Disagreement after f rounds
• In α0, some single process i fails in round f.
• Let j, k be two nonfaulty processes.
• Define a chain of three f-round executions, α0,α1, α*,

where α1 is identical toα0 except that i sends to j in α1

(it might not inα0).

α

α* α0

round f

decide 1 decide 0

• Then α1 ~k α0.
• Since k decides 0 in α0, k also decides 0 in α1.
• Also, α1 ~j α*.
• Since j decides 1 in α*, j also decides 1 in α1.
• Yields disagreement in α1, contradiction!

• So we’ve proved:
• Lemma 3: There is an f-round execution in which two nonfaulty

processes decide differently.
• Which immediately yields the lower bound result.

Early-stopping agreement algorithms
• Tolerate f failures in general, but in executions with f′ < f

failures, terminate faster.
• [Dolev, Reischuk, Strong 90] Stopping agreement

algorithm in which all nonfaulty processes terminate in ≤
min(f′ + 2, f+1) rounds.
– If f′ + 2 ≤ f, decide “early”, within f′ + 2 rounds; in any case decide

within f+1 rounds.
• [Keidar, Rajsbaum 02] Lower bound of f′ + 2 for early-

stopping agreement.
– Not just f′ + 1. Early stopping requires an extra round.

• Theorem 2: Assume 0 ≤ f′ ≤ f – 2 and f < n. Every early-
stopping agreement algorithm tolerating f failures has an
execution with f′ failures in which some nonfaulty process
doesn’t decide by the end of round f′ + 1.

Just consider special case: f′ = 0
• Theorem 3: Assume 2 ≤ f < n. Every early-stopping

agreement algorithm tolerating f failures has a failure-free
execution in which some nonfaulty process does not decide
by the end of round 1.

• Definition: Let α be an execution that completes some
finite number (possibly 0) of rounds. Then val(α) is the
unique decision value in the extension of α with no new
failures.

• Proof of Theorem 3:
– Assume executions in which at most one process fails per round.
– Identify 0-round executions with vectors of initial values.
– Assume, for contradiction, that everyone decides by round 1, in all

failure-free executions.
– val(000…0) = 0, val(111…1) = 1.
– So there must be two 0-round executions α0 and α1, that differ in the

value of just one process i, such that val(α0) = 0 and val(α1) = 1.

Special case: f′ = 0
• 0-round executions α0 and α1, differing only in the initial value of

process i, such that val(α0) = 0 and val(α1) = 1.

• In failure-free extensions of α0,α1, all processes decide in one round.
• Define:

– β0, 1-round extension of α0, in which process i fails, sends only to j.
– β1, 1-round extension of α1, in which process i fails, sends only to j.

• Then:
– β0 looks to j like ff extension of α0, so j decides 0 in β0 after 1 round.
– β1 looks to j like ff extension of α1, so j decides 1 in β1 after 1 round.

• β0 and β1 are indistinguishable to all processes except i, j.
• Define:

– γ 0, infinite extension of β0, in which process j fails right after round 1.
– γ 1, infinite extension of β1, in which process j fails right after round 1.

• By agreement, all nonfaulty processes must decide 0 in γ 0, 1 in γ 1.
• But γ 0 and γ 1 are indistinguishable to all nonfaulty processes, so they

can’t decide differently, contradiction.

k-Agreement

k-agreement

• Usually called k-set agreement or k-set
consensus.

• Generalizes ordinary stopping agreement by
allowing k different decisions instead of just one.

• Motivation:
– Practical:

• Allocating shared resources, e.g., agreeing on small number
of radio frequencies to use for sending/receiving broadcasts.

– Mathematical:
• Natural generalization of ordinary 1-agreement.
• Elegant theory: Nice topological structure, tight bounds.

The k-agreement problem
• Assume:

– n-node complete undirected graph
– Stopping failures only
– Inputs, decisions in finite totally-ordered set V (appear

in state variables).
• Correctness conditions:

– Agreement:
• ∃ W ⊆ V, |W| = k, all decision values in W.
• That is, there are at most k different decision values.

– Validity:
• Any decision value is some process’ initial value.
• Like strong validity for 1-agreement.

– Termination:
• All nonfaulty processes eventually decide.

FloodMin k-agreement algorithm
• Algorithm:

– Each process remembers the min value it has seen,
initially its own value.

– At each round, broadcasts its min value.
– Decide after some generally-agreed-upon number of

rounds, on current min value.
• Q: How many rounds are enough?
• 1-agreement: f+1 rounds

– Argument like those for previous stopping agreement
algorithms.

• k-agreement: ⎣f/k⎦ + 1 rounds.
• Allowing k values divides the runtime by k.

FloodMin correctness
• Theorem 1: FloodMin, for ⎣f/k⎦ + 1 rounds, solves k-

agreement.

• Proof:

• Define M(r) = set of min values of active (not-yet-failed)
processes after r rounds.

• This set can only decrease over time:

• Lemma 1: M(r+1) ⊆ M(r) for every r, 0 ≤ r ≤ ⎣f/k⎦.
• Proof: Any min value after r+1 is someone’s min value

after r.

Proof of Theorem 1, cont’d
• Lemma 2: If at most d-1 processes fail during round r,

then |M(r)| ≤ d.
• E.g., for d = 1: If no one fails during round r then all have

the same min value after r.
• Proof: Show contrapositive.

– Suppose that |M(r)| > d, show at least d processes fail in round r.
– Let m = max (M(r)).
– Let m′ < m be any other element of M(r).
– Then m′ ∈ M(r-1) by Lemma 1.
– Let i be a process active after r-1 rounds that has m′ as its min

value after r-1 rounds.
– Claim i fails in round r:

• If not, everyone would receive m; in round r.
• Means that no one would choose m > m′ as its min, contradiction.

– But this is true for every m′ < m in M(r), so at least d processes
fail in round r.

Proof of Theorem 1, cont’d
• Validity: Easy
• Termination: Obvious
• Agreement: By contradiction.

– Assume an execution with > k different decision values.
– Then the number of min values for active processes after the full

⎣f/k⎦ + 1 rounds is > k.
– That is, |M(⎣f/k⎦ + 1)| > k.
– Then by Lemma 1, |M(r)| > k for every r, 0 ≤ r ≤ ⎣f/k⎦+1.
– So by Lemma 2, at least k processes fail in each round.
– That’s at least (⎣f/k⎦+1) k total failures, which is > f failures.
– Contradiction!

Lower Bound (sketch)
• Theorem 2: Any algorithm for k-agreement requires ≥ ⎣f/k⎦ + 1 rounds.

• Recall old proof for f+1-round lower bound for 1-agreement.
– Chain of executions for assumed algorithm:

α0 ----- α1 ----- …-----αj -----αj+1 ----- …-----αm

– Each execution has a unique decision value.
– Executions at ends of chain have specified decision values.
– Two consecutive executions look the same to some nonfaulty process,

who (therefore) decides the same in both.

• Argument doesn’t extend immediately to k-agreement:
– Can’t assume a unique value in each execution.
– Example: For 2-agreement, could have 3 different values in 2

consecutive executions without violating agreement.
• Instead, use a k-dimensional generalized chain.

Lower bound
• Assume, for contradiction:

– n-process k-agreement algorithm tolerating f failures.
– All processes decide just after round r, where r ≤ ⎣f/k⎦.
– All-to-all communication at all rounds.
– n ≥ f + k + 1 (so each execution we consider has at least k+1

nonfaulty processes)
– V = {0,1,…,k}, k+1 values.

• Get contradiction by proving
existence of an execution with ≥ k + 1
different decision values.

• Use k-dimensional collection of
executions rather than 1-dimensional.
– k = 2: Triangle
– k = 3: Tetrahedron, etc.

Labeling nodes with executions
• Bermuda Triangle (k = 2): Any

algorithm vanishes somewhere in
the interior.

• Label nodes with executions:
– Corner: No failures, all have same

initial value.
– Boundary edge: Initial values

chosen from those of the two
endpoints

– For k > 2, generalize to boundary
faces.

– Interior: Mixture of inputs
• Label so executions “morph

gradually” in all directions:
• Difference between two adjacent

executions along an outer edge:
– Remove or add one message, to a

process that fails immediately.
– Fail or recover a process.
– Change initial value of failed

process.

All 0s

All 1sAll 2s

Os and 2s Os and 1s

1s and 2s

Initial values

• Also label each node with the name of a process that is nonfaulty in
the node’s execution.

• Consistency: For every tiny triangle (simplex) T, there is a single
execution β, with at most f faults, that is “compatible” with the
executions and processes labeling the corners of T:
– All the corner processes are nonfaulty in β.
– If (α′,i) labels some corner of T, then α′ is indistinguishable by i from β.

• Formalizes the “gradual morphing” property.
• Proof by laborious construction.
• Can recast chain arguments for 1-agreement in this style:

α0 ----- α1 ----- …----- αj ----- αj+1 ----- …----- αm

p0 p1 …. pj pj+1 pm

– β indistinguishable by pj from αj
– β indistinguishable by pj+1 from αj+1

β

Labeling nodes with
process names

Bound on rounds
• This labeling construction uses the assumption r
≤ ⎣f / k⎦, that is, f ≥ r k.

• How:
– We are essentially constructing chains simultaneously

in k directions (2 directions, in the Bermuda Triangle).
– We need r failures (one per round) to construct the

“chain” in each direction.
– For k directions, that’s r k total failures.

• Details LTTR (see book, or paper [Chaudhuri,
Herlihy, Lynch, Tuttle])

Coloring the nodes
• Now color each node v with a

“color” in {0,1,…,k}:
– If v is labeled with (α,i) then

color(v) = i’s decision value in α.
• Properties:

– Colors of the major corners are
all different.

– Color of each boundary edge
node is the same as one of the
endpoint corners.

– For k > 2, generalize to
boundary faces.

• Coloring properties follow from
Validity, because of the way the
initial values are assigned.

All 0s

All 1sAll 2s

Os and 2s Os and 1s

1s and 2s

Sperner Colorings
• A coloring with the listed

properties (suitably
generalized to k dimensions)
is called a “Sperner Coloring”
(in algebraic topology).

• Sperner’s Lemma: Any
Sperner Coloring has some
tiny triangle (simplex) whose
k+1 corners are colored by
all k+1 colors.

• Find one?

All 0s

All 1sAll 2s

Os and 2s Os and 1s

1s and 2s

Applying Sperner’s Lemma
• Apply Sperner’s Lemma to the coloring we constructed.
• Yields a tiny triangle (simplex) T with k+1 different colors on its

corners.
• Which means k+1 different decision values for the executions and

processes labeling its corners.
• But consistency for T yields a single execution β, with at most f

faults, that is “compatible” with the executions and processes
labeling the corners of T:
– All the corner processes are nonfaulty in β.
– If (α′,i) labels some corner of T, then α′ is indistinguishable by i from β.

• So all the corner processes behave the same in β as they do in their
own corner executions, and decide on the same values as in those
executions.

• That’s k+1 different decision values in one execution with at most f
faults.

• Contradicts k-agreement.

Approximate Agreement

Approximate Agreement problem
• Agreement on real number values:

– Readings of several altimeters on an aircraft.
– Values of approximately-synchronized clocks.

• Consider with Byzantine participants, e.g., faulty hardware.
• Abstract problem:

– Inputs, outputs are reals
– Agreement: Within ε.
– Validity: Within range of initial values of nonfaulty processes.
– Termination: Nonfaulty eventually decide.

• Assumptions: Complete n-node graph, n > 3f.
• Could solve by exact BA, using f+1 rounds and lots of

communication.
• But better algorithms exist:

– Simpler, cheaper
– Extend to asynchronous settings, whereas BA is unsolvable in

asynchronous networks.

Approximate agreement algorithm
[Dolev, Lynch, Pinter, Stark, Weihl]

• Use convergence strategy, successively narrowing the
interval of guesses of the nonfaulty processes.
– Take an average at each round.
– Because of Byzantine failures, need fault-tolerant average.

• Maintain val, latest estimate, initially initial value.
• At every round:

– Broadcast val, collect received values into multiset W.
– Fill in missing entries with any values.
– Calculate W′ = reduce(W), by discarding f largest and f smallest

elements.
– Calculate W″ = select(W′), by choosing the smallest value in W′

and every f’th value thereafter.
– Reset val to mean(W″).

Example: n = 4, f = 1
• Initial values: 1, 2, 3, 4
• Process 3 faulty, sends:

proc 1: 2 proc. 2: 100 proc 3: -100
• Process 1:

– Receives (1, 2, 2, 4), reduces to (2, 2), selects (2, 2), mean = 2.
• Process 2:

– Receives (1, 2, 100, 4), reduces to (2, 4), selects (2, 4), mean = 3.
• Process 4:

– Receives (1, 2, -100, 4), reduces to (1, 2), selects (1, 2), mean =
1.5.

One-round guarantees
• Lemma 1: Any nonfaulty process’ val after the round is in the range

of nonfaulty processes’ vals before the round.
• Proof: All elements of reduce(W) are in this range, because there

are at most f faults, and we discard the top and bottom f values.

• Lemma 2: Let d be the range of nonfaulty processes’ vals just
before the round. Then the range of nonfaulty processes’ vals after
the round is at most d / (⎣(n – (2f+1)) / f⎦ + 1).

• That is:
– If n = 3f + 1, then the new range is d / 2.
– If n = kf + 1, k ≥ 3, then the new range is d / (k -1).

• Proof: Calculations, in book.

• Example: n = 4, f = 1
– Initial vals: 1, 2, 3, 4, range is 3.
– Process 3 faulty, sends 2 to proc 1, 100 to proc 2, -100 to proc 3.
– New vals of nonfaulty processes: 2, 3, 1.5
– New range is 1.5.

The complete algorithm
• Just run the 1-round algorithm repeatedly.
• Termination: Add a mechanism, e.g.:

– Each node individually determines a round by which it knows
that the vals of nonfaulty processes are all within ε.

• Collect first round vals, predict using known convergence rate.
– After the determined round, decide locally.
– Thereafter, send the decision value.

• Upsets the convergence calculation.
• But that doesn’t matter because the vals are already within ε.

• Remarks:
– Convergence rate can be improved somewhat by using 2-round

blocks [Fekete].
– Algorithm extends easily to asynchronous case, using an

“asynchronous round” structure we’ll see later.

Distributed Commit

Distributed Commit
• Motivation: Distributed database transaction processing

– A database transaction performs work at several distributed sites.
– Transaction manager (TM) at each site decides whether it would

like to “commit” or “abort” the transaction.
• Based on whether the transaction’s work has been successfully

completed at that site, and results made stable.
– All TMs must agree on whether to commit or abort.

• Assume:
– Process stopping failures only.
– n-node, complete, undirected graph.

• Require:
– Agreement: No two processes decide differently (faulty or not,

uniformity)
– Validity:

• If any process starts with 0 (abort) then 0 is the only allowed decision.
• If all start with 1 (commit) and there are no faulty processes then 1 is

the only allowed decision.

Correctness Conditions for Commit

• Agreement: No two processes decide differently.
• Validity:

– If any process starts with 0 then 0 is the only allowed decision.
– If all start with 1 and there are no faulty processes then 1 is the

only allowed decision.
– Note the asymmetry: Guarantee abort (0) if anyone wants to

abort; guarantee commit (1) if everyone wants to commit and no
one fails (best case).

• Termination:
– Weak termination: If there are no failures then all processes

eventually decide.
– Strong termination (non-blocking condition): All nonfaulty

processes eventually decide.

2-Phase Commit
• Traditional, blocking algorithm

(guarantees weak termination only).
• Assumes distinguished process 1,

acts as “coordinator” (leader).
• Round 1: All send initial values to

process 1, who determines the
decision.

• Round 2: Process 1 sends out the
decision.

p1

p2

p3

p4

• Q: When can each process actually decide?
• Anyone with initial value 0 can decide at the beginning.
• Process 1 decides after receiving round 1 messages:

– If it sees 0, or doesn’t hear from someone, it decides 0; otherwise
decides 1.

• Everyone else decides after round 2.

Correctness of 2-Phase Commit
• Agreement:

– Because decision is centralized (and
consistent with any individual initial
decisions).

• Validity:
– Because of how the coordinator decides.

• Weak termination:
– If no one fails, everyone terminates by end of

round 2.
• Strong termination?

– No: If coordinator fails before sending its
round 2 messages, then others with initial
value 1 will never terminate.

Add a termination protocol?
• We might try to add a termination

protocol: other processes try to detect
failure of coordinator and finish
agreeing on their own.

• But this can’t always work:
– If initial values are 0,1,1,1, then by validity,

others must decide 0.
– If initial values are 1,1,1,1 and process 1

fails just after deciding, and before sending
out its round 2 messages, then:

• By validity, process 1 must decide 1.
• By agreement, others must decide 1.

– But the other processes can’t distinguish
these two situations.

0

1

1

1

1

1

1

1

Complexity of 2-phase commit

• Time:
– 2 rounds

• Communication:
– At most 2n messages

3-Phase Commit [Skeen]
• Yields strong termination.
• Trick: Introduce intermediate stage, before actually

deciding.
• Process states classified into 4 categories:

– dec-0: Already decided 0.
– dec-1: Already decided 1.
– ready: Ready to decide 1 but hasn’t yet.
– uncertain: Otherwise.

• Again, process 1 acts as “coordinator”.
• Communication pattern:

p1

3-Phase Commit
• All processes initially uncertain.
• Round 1:

– All other processes send their initial values to p1.
– All with initial value 0 decide 0 (and enter dec-0 state)
– If p1 receives 1s from everyone and its own initial value is 1, p1

becomes ready, but doesn’t yet decide.
– If p1 sees 0 or doesn’t hear from someone, p1 decides 0.

• Round 2:
– If p1 has decided 0, broadcasts “decide 0”, else broadcasts “ready”.
– Anyone else who receives “decide 0” decides 0.
– Anyone else who receives “ready” becomes ready.
– Now p1 decides 1 if it hasn’t already decided.

• Round 3:
– If p1 has decided 1, bcasts “decide 1”.
– Anyone else who receives “decide 1”

decides 1.

3-Phase Commit
• Key invariants (after 0, 1, 2, or 3 rounds):

– If any process is in ready or dec-1, then all processes have initial value 1.
– If any process is in dec-0 then:

• No process is in dec-1, and no non-failed process is ready.
– If any process is in dec-1 then:

• No process is in dec-0, and no non-failed process is uncertain.

• Proof: LTTR.
– Key step: Third condition is preserved when p1 decides 1 after round 2.
– In this case, p1 knows that:

• Everyone’s input is 1.
• No one decided 0 at the end of round 1.
• Every other process has either become ready or has failed (without deciding).

– Implies third condition.

• Note critical use of synchrony here:
– p1 infers that non-failed processes are ready just because round 2 is

completed.
– Without synchrony, would need positive acknowledgments.

Correctness conditions (so far)

• Agreement and validity follow, for these three
rounds.

• Weak termination holds
• Strong termination:

– Doesn’t hold yet---must add a termination protocol.
– Allow process 2 to act as coordinator, then 3,…
– “Rotating coordinator” strategy

3-Phase Commit
• Round 4:

– All processes send current decision status (dec-0, uncertain, ready, or dec-1) to p2.
– If p2 receives any dec-0’s and hasn’t already decided, then p2 decides 0.
– If p2 receives any dec-1’s and hasn’t already decided, then p2 decides 1.
– If all received values, and its own value, are uncertain, then p2 decides 0.
– Otherwise (all values are uncertain or ready and at least one is ready), p2 becomes

ready, but doesn’t decide yet.

• Round 5 (like round 2):
– If p1 has (ever) decided 0, broadcasts “decide 0”, and similarly for 1.
– Else broadcasts “ready”.
– Any undecided process who receives “decide()” decides accordingly.
– Any process who receives “ready” becomes ready.
– Now p2 decides 1 if it hasn’t already decided.

• Round 6 (like round 3):
– If p2 has decided 1, broadcasts “decide 1”.
– Anyone else who receives “decide 1” decides 1.

• Continue with subsequent rounds for p3, p4,…

Correctness
• Key invariants still hold:

– If any process is in ready or dec-1, then all processes
have initial value 1.

– If any process is in dec-0 then:
• No process is in dec-1, and no non-failed process is ready.

– If any process is in dec-1 then:
• No process is in dec-0, and no non-failed process is

uncertain.
• Imply agreement, validity
• Strong termination:

– Because eventually some coordinator will finish the
job (unless everyone fails).

Complexity

• Time until everyone decides:
– Normal case 3
– Worst case 3n

• Messages until everyone decides:
– Normal case O(n)

• Technicality: When can processes stop sending
messages?

– Worst case O(n2)

Practical issues for 3-phase commit
• Depends on strong assumptions, which may be hard to

guarantee in practice:
– Synchronous model:

• Could emulate with approximately-synchronized clocks, timeouts.
– Reliable message delivery:

• Could emulate with acks and retransmissions.
• But if retransmissions add too much delay, then we can’t emulate

the synchronous model accurately.
• Leads to unbounded delays, asynchronous model.

– Accurate diagnosis of process failures:
• Get this “for free” in the synchronous model.
• E.g., 3-phase commit algorithm lets process that doesn’t hear from

another process i at a round conclude that i must have failed.
• Very hard to guarantee in practice: In Internet, or even a LAN, how

to reliably distinguish failure of a process from lost communication?
• Other consensus algorithms can be used for commit,

including some that don’t depend on such strong timing
and reliability assumptions.

Paxos consensus algorithm
• A more robust consensus algorithm, could be used for commit.
• Tolerates process stopping and recovery, message losses and

delays,…
• Runs in partially synchronous model.
• Based on earlier algorithm [Dwork, Lynch, Stockmeyer].
• Algorithm idea:

– Processes use unreliable leader election subalgorithm to choose
coordinator, who tries to achieve consensus.

– Coordinator decides based on active support from majority of processes.
– Does not assume anything based on not receiving a message.
– Difficulties arise when multiple coordinators are active---must ensure

consistency.

• Practical difficulties with fault-tolerance in the synchronous model
motivate moving on to study the asynchronous model (next time).

Next time…

• Modeling asynchronous systems
• Reading: Chapter 8

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Lower Bound on Rounds
	[Aguilera, Toueg] proof
	Univalence and Bivalence
	Initial bivalence
	Bivalence through f-1 rounds
	Bivalence through f-1 rounds
	Case 1: At least one l is 1-valent
	Case 2: Every l is 0-valent
	Bivalence through f-1 rounds
	Disagreement after f rounds
	Disagreement after f rounds
	Early-stopping agreement algorithms
	Just consider special case: f = 0
	Special case: f = 0
	k-Agreement
	k-agreement
	The k-agreement problem
	FloodMin k-agreement algorithm
	FloodMin correctness
	Proof of Theorem 1, cont’d
	Proof of Theorem 1, cont’d
	Lower Bound (sketch)
	Lower bound
	Labeling nodes with executions
	Labeling nodes with process names
	Bound on rounds
	Coloring the nodes
	Sperner Colorings
	Applying Sperner’s Lemma
	Approximate Agreement
	Approximate Agreement problem
	Approximate agreement algorithm� [Dolev, Lynch, Pinter, Stark, Weihl]
	Example: n = 4, f = 1
	One-round guarantees
	The complete algorithm
	Distributed Commit
	Distributed Commit
	Correctness Conditions for Commit
	2-Phase Commit
	Correctness of 2-Phase Commit
	Add a termination protocol?
	Complexity of 2-phase commit
	3-Phase Commit [Skeen]
	3-Phase Commit
	3-Phase Commit
	Correctness conditions (so far)
	3-Phase Commit
	Correctness
	Complexity
	Practical issues for 3-phase commit
	Paxos consensus algorithm
	Next time…

