6.852: Distributed Algorithms
Fall, 2009

Class 5

Today’s plan

Review EIG algorithm for Byzantine agreement.

Number-of-processors lower bound for Byzantine
agreement.

Connectivity bounds.
Weak Byzantine agreement.

Time lower bounds for stopping agreement and
Byzantine agreement.

Reading: Sections 6.3-6.7, [Aguilera, Toueq],
[Keidar-Rajsbaum]

Next:
— Other distributed agreement problems
— Reading: Chapter 7 (but skim 7.2)

Byzantine agreement

e Recall correctness conditions:

— Agreement: No two nonfaulty processes decide on
different values.

— Validity: If all nonfaulty processes start with the same v,
then v is the only allowable decision for nonfaulty
processes.

— Termination: All nonfaulty processes eventually decide.

* Presented EIG algorithm for Byzantine agreement,
using:
— Exponential communication (in f)
— f+1 rounds
— n > 3f

EIG algorithm for Byzantine

agreement

Use EIG tree.
Relay messages for f+1 rounds.

Decorate the EIG tree with values from V, replacing any
garbage messages with default value v,,.

Call the decorations val(x), where x is any node label.

Decision rule:

— Redecorate the tree bottom-up, defining newval(x).
« Leaf. newval(x) = val(x)
* Non-leaf: newval(x) =
— newval of strict majority of children in the tree, if majority exists,
— V, otherwise.

— Final decision: newval(A) (newval at root)

Example: n=4,f=1

A
Tyq \
Consider a possible
y . : i 1O 2 4 O
execution in which p3 is 3
faulty.
Initial values 1100
Round 1 12 1314 21 23 24 31 32 34 41 42 43
Round 2
Lies
1 1 0 0
1 0 1 1 1 1

o 0o
I\

1101011000081

\

0o
1111111011001

Process 1 Process 2 (Process 3) Process 4

Example: n=4,f=

 Now calculate newvals, bottom-up, choosing majority
values, v, = 0 if no majority.

Corrected by taking majority

it

0

10110001

Process 1 Process 2

(Process 3)

A

11

1

Wi

1011

Process 4

001

Correctness proof

« Lemma 1: If x ends with a nonfaulty process index then
val(x); = val(x); for every nonfaulty i and |.

« In example, such nodes are: /\\
10O 2 3 4 O

12 1314 21 23 24 31 32 34 41 42 43

« Lemma 2: If x ends with a nonfaulty process index then 3v
such that val(x), = newval(x), = v for every nonfaulty I.

* Proof: Induction on level in the tree, bottom up.

Main correctness conditions

 Validity:
— Uses Lemma 2.

e Termination:
— Obvious.

e Agreement:

Agreement

« Path covering: Subset
of nodes containing at
least one node on each
path from root to leaf:

OO O OO O
12 13 14 31 32 34 41 42 43

« Common node: One for which all nonfaulty processes
have the same newval.

— All nodes whose labels end in nonfaulty process index
are common.

Agreement

Lemma 3: There exists a path covering all of whose
nodes are common.

Proof:
— Let C = nodes with labels of the form X}, | nonfaulty.

Lemma 4: If there’s a
common path covering
of the subtree rooted at
any node x, then x Is
common

Lemma5: The root is
common.

Yields Agreement.

Complexity bounds

» As for EIG for stopping agreement:
— Time: f+1
— Communication: O(n™1)

 But now, also requires n > 3f processors.

 Q: Isn> 3f necessary?

Lower bound on the number of
processes for Byzantine
Agreement

Number of processors for
Byzantine agreement

 n> 3fis necessary!
— Holds for any n-node (undirected) graph.

— For graphs with low connectivity, may need even more
Processors.

— Number of failures that can be tolerated for Byzantine
agreement in an undirected graph G has been
completely characterized, in terms of number of nodes
and connectivity.

« Theorem 1: 3 processes cannot solve Byzantine
Agreement with 1 possible failure.

Proof (3 vs. 1 BA)

e By contradiction. Suppose algorithm A,
consisting of processes 1, 2, 3, solves
BA with 1 possible failure.

e Construct new system S from 2 copies
of A, with initial values as follows:

What is S?
— A synchronous system of some kind.

Not required to satisfy any particular
correctness conditions.

Not necessarily a correct BA algorithm for
the 6-node ring.

Just some synchronous system, which runs
and does something.

We’'ll use it to get our contradiction.

Proof (3 vs 1 BA)

Consider 2 and 31In S;

Looks to them like:

— They’re in A, with a faulty
process 1.

— 1 emulates 1’-2’-3'-1 from S.
In A, 2 and 3 must decide O
So by indistinguishability,
they decide 0 In S also.

Proof (3 vs 1 BA)

e Now consider 1’ and 2’ in S.

e Looks to them like:

— They’re in A with a faulty
process 3.

— 3 emulates 3'-1-2-3 from S.

« They must decide 1in A, so
they decide 1 in S also.

Proof (3 vs 1 BA)

Finally, consider 3and 1’ in S:

Looks to them like:

— They'’re in A, with a faulty process 2.
— 2 emulates 2'-3'-1-2 from S.

In A, 3 and 1 must agree.
So by indistinguishability, 3 and
1" agree in S also.

But we already know that
process 1’ decides 1 and
process 3 decides 0, in S.

Contradiction!

Discussion

* We get this contradiction even if the original
algorithm A is assumed to “know n”.

e That simply means that:

— The processes in A have the number 3 hard-wired into
their state.

— Their correctness properties are required to hold only
when they are actually configured into a triangle.
 We are allowed to use these processes in a
different configuration S---as long as we don’t
claim any particular correctness properties for S.

Impossibility for n = 3f

Theorem 2: n processes can'’t solve BA, if n < 3f.

Proof:
— Similar construction, with f processes treated as a group.

— Or, can use a reduction:
 Show how to transform a solution for n < 3f to a solution for 3 vs. 1.
« Since 3 vs. 1is impossible, we get a contradiction.
0 1

Consider n = 2 as a special case: @—@

—n=2,f=1
— Each could be faulty, requiring the other to decide on its own value.
— Or both nonfaulty, which requires agreement, contradiction.

So from now on, assume 3 < n < 3f.
Assume a Byzantine Agreement algorithm A for (n,f).
Transform it into a BA algorithm B for (3,1).

Transforming Ato B

Algorithm:
— Partition A-processes into groups |, I,, I3, where 1 < |l |, |I,], |I5] £ 1.

— Each B; process simulates the entire I, group.
Bl
— B, initializes all processes in |, with B;'s initial value.
— At each round, B, simulates sending messages:
e Local: Just simulate locally.
: B
« Remote: Package and send. 2

B
— If any simulated process decides, B, decides the same (use any). ’

Show B satisfies correctness conditions:
— Consider any execution of B with at most 1 fault.
— Simulates an execution of A with at most f faults.
— Correctness conditions must hold in the simulated execution of A.
— Show these all carry over to B’s execution.

B’s correctness

e Termination:

— If B, is nonfaulty in B, then it simulates only nonfaulty processes of
A (at least one).

— Those terminate, so B, does also.

 Agreement:

— If B;, B; are nonfaulty processes of B, they simulate only nonfaulty
processes of A.

— Agreement in A implies all these agree.
— S0 B;, B;agree.
o Validity:
— If all nonfaulty processes of B start with v, then so do all nonfaulty
processes of A.

— Then validity of A implies that all nonfaulty A processes decide v,
so the same holds for B.

General graphs and connectivity
bounds

n > 3f isn’t the whole story:
— 4 processes, can'’t tolerate 1 fault:

Theorem 3: BA is solvable in an n-node graph G,
tolerating f faults, if and only if both of the following hold:

— n > 3f, and
— conn(G) > 2f.

conn(g) = minimum number of nodes whose removal
results in either a disconnected graph or a 1-node graph.

Examples:
i

conn=1 conn =3
conn=3

Proof: “If’ direction

« Theorem 3: BA is solvable in an n-node graph G,
tolerating f faults, if and only if n > 3f and conn(G) > 2f.

o Proof (“if"):

Suppose both hold.
Then we can simulate a total-connectivity algorithm.

Key is to emulate reliable communication from any node i to any
other node |.

Rely on Menger’s Theorem, which says that a graph is c-connected
(that is, has conn > ¢) if and only if each pair of nodes is connected
by > ¢ node-disjoint paths.

Since conn(G) > 2f + 1, we have > 2f + 1 node-disjoint paths
between i and |.

To send message, send on all these paths (assumes graph is
known).

Majority must be correct, so take majority message.

Proof. “Only if” direction

« Theorem 3: BA is solvable in an n-node graph G,
tolerating f faults, if and only if n > 3f and conn(G) > 2f.

e Proof (“only if”):
— We already showed n > 3f; remains to show conn(G) > 2f.
— Show key idea with simple case, conn =2, f = 1. a

— Canonical example:
» Disconnect 1 and 3 by removing 2 and 4:
— Proof by contradiction. a a

— Assume some algorithm A that solves BA in this
canonical graph, tolerating 1 failure.

Proof (conn = 2, 1 failure

-
.
’
1

e Now construct S from two
copies of A.

e Considerl,2,and3InS:

— Looks to them like they’re in A,
with a faulty process 4.

—In A, 1, 2, and 3 must decide O
— So they decide O in S also.

o Similarly, 1’, 2’, and 3’ decide
1inS.

Proof (conn = 2, 1 failure

 Finally, consider 3’',4',and 1in S:

— Looks to them like they’re in A, with a
faulty process 2.

— In A, they must agree, so they also
agree in S.

— But 3’ decides 0 and 1 decides 1in S,
contradiction.
e Therefore, we can’t solve BA in
canonical graph, with 1 failure.

* As before, can generalize to
conn(G) < 2f, or use a reduction.

Byzantine processor bounds

The bounds n > 3f and conn > 2f are fundamental
for consensus-style problems with Byzantine
failures.

Same bounds hold, in synchronous settings with f
Byzantine faulty processes, for:

— Byzantine Firing Squad synchronization problem

— Weak Byzantine Agreement

— Approximate agreement

Also, in timed (partially synchronous settings), for
maintaining clock synchronization.

Proofs used similar methods.

Weak Byzantine Agreement
[Lamport]

Correctness conditions for BA:
— Agreement: No two nonfaulty processes decide on different values.

— Validity: If all nonfaulty processes start with the same v, then v is
the only allowable decision for nonfaulty processes.

— Termination: All nonfaulty processes eventually decide.

Correctness conditions for Weak BA:
— Agreement:. Same as for BA.

— Validity: If all processes are nonfaulty and start with the same v,
then v is the only allowed decision value.

— Termination: Same as for BA.

Limits the situations where the decision is forced to go a
certain way.

Similar style to validity condition for 2-Generals problem.

WBA Processor Bounds

e Theorem 4: Weak BA Is solvable in an n-node

graph G, tolerating f faults, if and only if n > 3f and
conn(G) > 2f.

e Same bounds as for BA.

e Proof:

— “If”: Follows from results for ordinary BA.
— “Only If"

» By constructions like those for ordinary BA, but slightly more
complicated.

e Show 3vs. 1 here, rest LTTR.

Proof (3 vs. 1 Weak BA)

By contradiction. Suppose algorithm A,
consisting of procs 1, 2, 3, solves WBA with 1
fault.

Let o, = execution in which everyone starts with C
and there are no failures; results in decision 0.

Let o, = execution in which everyone starts with 1
and there are no failures: results in decision 1.

Let b = upper bound on number of rounds for all
processes to decide, in both a,and a,.

Construct new system S from 2b copies of A:

Proof (3 vs. 1 Weak BA)

 Claim: Any two adjacent processes in S must
decide the same thing..

— Because it looks to them like they are in A, and they
must agree in A.

e SO everyone decides the same in S.
« WLOG, all decide 1.

1 1 1 1 1 1
OO0,
- 1 2 3)
70 0 0 0 20 0

' S

Proof (3 vs. 1 Weak BA)

Now consider a block of 2b + 1 consecutive processes that
begin with O:

c o o0 o o0 o o o0

0

Claims:

— To all but the endpoints, the execution of S is indistinguishable from
0, the failure-free execution in which everyone starts with O, for 1
round.

— To all but two at each end, indistinguishable from o, for 2 rounds.
— To all but three at each end, indistinguishable from o, for 3 rounds.

— To midpoint, indistinguishable for b rounds.

But b rounds are enough for the midpoint to decide O,
contradicting the fact that everyone decides 1in S.

Lower bound on the number of
rounds for Byzantine agreement

. ower bound on number of rounds

Notice that f+1 rounds are used in all the
agreement algorithms we’ve seen so far---both
stopping and Byzantine.

That's inherent: f+1 rounds are needed In the
worst-case, even for simple stopping failures.

Assume an f-round algorithm A tolerating f faults,
and get a contradiction.

Restrictions on A (WLOG):

— n-node complete graph.

— Decisions at end of round f.

-V ={0,1}

— All-to-all communication at every round < f.

Speclal case: f=1

« Theorem 5. Suppose n > 3. There is no n-process 1-fault
stopping agreement algorithm in which nonfaulty
processes always decide at the end of round 1.

* Proof: Suppose A exists.

— Construct a chain of executions, each with at most one failure, such
that;

» First has (unigue) decision value 0.
» Last has decision value 1.
* Any two consecutive executions in the chain are indistinguishable to

some process i that is nonfaulty in both. So i must decide the same in
both executions, and the two must have the same decision values.

— Decision values in first and last executions must be the same.
— Contradiction.

Round lower bound, f=1

a,. All processes have input 0, no failures.

o, (last one): All inputs 1, no failures.
Start the chain from o,

Next execution, a;, removes message 1 — 2.

— oy and a, indistinguishable to everyone except 1
and 2; since n > 3, there is some other process.

— These processes are nonfaulty in both executions.

Next execution, a,, removes message 1 — 3.

— o, and o, indistinguishable to everyone except 1
and 3, hence to some nonfaulty process.

Next, remove message 1 — 4.
— Indistinguishable to some nonfaulty process.

o O O O

o O O O o o o o

Continuing...

Having removed all of process 1's
messages, change 1’s input from O to 1.
— Looks the same to everyone else.

We can’t just keep removing messages,
since we are allowed at most one failure Iin
each execution.

So, we continue by replacing missing
messages, one at a time.

Repeat with process 2, 3, and 4, eventually
reach the last execution: all inputs 1, no
failures.

o o o Bk o o o r»r O O O O

R R RN RN

e

Special case: f=2

Theorem 6: Suppose n > 4. There is no n-process 2-fault
stopping agreement algorithm in which nonfaulty
processes always decide at the end of round 2.

Proof: Suppose A exists.

— Construct another chain of executions, each with at most 2 failures.
» This time a bit longer and more complicated.

— Start with o,: All processes have input 0, no failures, 2 rounds:

— Work toward o, all 1's, no failures.

— Each consecutive pair is indistinguishable
to some nonfaulty process.

— Use intermediate execs o in which:
* Processes 1,...,I have initial value 1.
 Processes i+1,...,n have initial value O.
* No failures.

o O O O

Special case: f=2

Show how to connect a,and a,;.
— That is, change process 1's initial value from O to 1.
— Other intermediate steps essentially the same.

Start with a5, work toward killing p1 at the beginning, to
change its initial value, by removing messages.

Then replace the messages, working back up to a,.
Start by removing pl's round 2 messages, one by one.
Q: Continue by removing pl1’s round 1 messages?

NoO, because consecutive executions
would not look the same to anyone:

— E.g., removing 1 — 2 at round 1 allows
p2 to tell everyone about the failure.

o O O O

Special case: f=2

Removing 1 — 2 at round 1 allows p2 to tell all other processes about
the failure:

VS.

o O O O
o O O O

Distinguishable to everyone.
So we must do something more elaborate.
Recall that we can allow 2 processes to fail in some executions.

Use many steps to remove a single round 1 message 1 — i; in these
steps, both 1 and i will be faulty.

Removing pl’s round 1 messages

Start with execution where pl sends to everyone at round
1, and only p1 is faulty.

Remove round 1 message 1 — 2:

p2 starts out nonfaulty, so sends all its round 2 messages.
Now make p2 faulty.

Remove p2’s round 2 messages, one by one, until we reach an
execution where 1 — 2 at round 1, but p2 sends no round 2
messages.
Now remove the round 1 message 1 — 2.

« Executions look the same to all but 1 and 2 (and they’re nonfaulty).

Replace all the round 2 messages from p2, one by one, until p2 is
no longer faulty.

Repeat to remove pl’'s round 1 messages to p3, p4,...

After removing all of p1’s round 1 messages, change pl’s
Initial value from 0 to 1, as needed.

General case: Any f

Theorem 7. Suppose n>f+ 2. There is no n-process f-
fault stopping agreement algorithm in which nonfaulty
processes always decide at the end of round f.

Proof: Suppose A exists.

— Same ideas, longer chain.

— Must fail f processes in some executions in the chain, in order to
remove all the required messages, at all rounds.

— Construction in book, LTTR.
Newer proof [Aguilera, Toueq]:
— Uses ideas from [FLP] impossibility of consensus.

— They assume strong validity, but the proof works for our weaker
validity condition also.

Lower bound on rounds,
[Aguilera, Toueq]

e Proof:

By contradiction. Assume A solves stopping agreement for f
failures and everyone decides after exactly f rounds.

Restrict attention to executions in which at most one process fails
during each round.

Recall failure at a round allows process to miss sending an arbitrary
subset of the messages, or to send all but halt before changing
state.

Consider vector of initial values as a 0-round execution.
Defs (adapted from [Fischer, Lynch, Paterson]): o, an execution
that completes some finite number (possibly 0) of rounds, is:

« 0O-valent, if O is the only decision that can occur in any execution (of the
kind we consider) that extends o.

e 1-valent, if 1is...
« Univalent, if a is either O-valent or 1-valent (essentially decided).
» Bivalent, if both decisions occur in some extensions (undecided).

Initial bivalence

 Lemma 1: There Is some 0-round execution
(vector of initial values) that is bivalent.

* Proof (adapted from [FLP]):

— Assume for contradiction that all O-round executions are
univalent.

— 000...01s 0-valent
—111...11s 1-valent

— So there must be two O0-round executions that differ in
the value of just one process, say i, such that one is O-
valent and the other is 1-valent.

— But this is impossible, because if process i fails at the
start, no one else can distinguish the two O-round
executions.

Bivalence through f-1 rounds

« Lemma 2: For every k, 0 <k <f-1, there is a bivalent k-
round execution.

* Proof: By induction on k.
— Base (k=0): Lemma 1.
— Inductive step: Assume for k, show for k+1, where k < f -1.

 Assume bhivalent k-round execution o..

» Assume for contradiction that every 1-round

extension of o (with at most one new failure) folah
IS univalent. '

* Let a* be the 1-round extension of a in
which no new failures occur in round k+1. o i oo

e By assumption, this is univalent, WLOG 1- Q
valent. /round kil

* Since a Is bivalent, there must be another 1-
round extension of a, a?, that is 0-valent. 1-valent O-valent

Bivalence through -1 rounds

In oY, some single process i fails in round “H

k+1, by not sending to some subset of the | \‘
processes, say J = {1, Jo,---Jm}- o* { Lo
Define a chain of (k+1)-round executions, {rofind K¥1
of, al, a?,..., am. '* :
Each o'in this sequence is the same as o© 1-valent O-valent
except that i also sends messages to |,,

Josoa)i-

— Adding in messages from i, one at a time.
Each alis univalent, by assumption.

Since alis 0-valent, there are 2 possibilities:
— At least one of these is 1-valent, or
— All of these are 0-valent.

Case 1: Atleast one o!is 1-valent

Then there must be some | such that o't is O-
valent and o!is 1-valent.

But o1 and o! differ after round k+1 only in the
state of one process, |,.

We can extend both a1 and o! by simply failing j, at
beginning of round k+2.

— There is actually a round k+2 because we’ve assumed k
<f-1, so k+2 <.

And no one left alive can tell the difference!
Contradiction for Case 1.

Case 2: Every o!is 0-valent

Then compare:
— o™, in which i sends all its round k+1 messages and then fails, with
— o, iIn which i sends all its round k+1 messages and does not falil.

No other differences, since only i fails at round k+1 in a™.
o™ Is O-valent and o* is 1-valent.

Extend to full f-round executions:
— o™, by allowing no further failures,

— o, by failing i right after round k+1 and then allowing no further
failures.

No one can tell the difference.
Contradiction for Case 2.

So we've proved:

Lemma 2: For every k, 0 <k <f-1, there Is a bivalent k-
round execution.

And now the final round...

Lemma 3: There is an f-round execution in which two
nonfaulty processes decide differently.

Contradicts the problem requirements.
Proof:

Use Lemma 2 to get a bivalent (f-1)-round execution o,
with < f-1 failures.

In every 1-round extension of o, everyone who hasn't
failed must decide (and agree).

Let a* be the 1-round extension of a in which no new
failures occur in round f.

Everyone who is still alive decides after o*, and they foah
must decide the same thing. WLOG, say they decide 1. / ‘

Since a is bivalent, there must be another 1-round ; \
extension of a, say a?, in which some nonfaulty process * Yo
decides O (and hence, all decide 0). \

ound\f

decidel decideO

Disagreement after f rounds

In a®, some single process i fails in round f. ;ja

Let |, k be two nonfaulty processes. ‘
Define a chain of three f-round executions, o o!, o*, o0
where alis identical to a® except that i sends to j in ol | \

(it might not in a°). ! Youndyf
Then o! ~*aO. ‘

Since k decides 0 in a?, k also decides 0 in ol. decide 1 decide O

Also, al ~a*,
Since j decides 1 in a*, jalso decides 1 in a.
Yields disagreement in at, contradiction!

So we have proved:

Lemma 3: There is an f-round execution in which two nonfaulty
processes decide differently.

Which immediately yields the impossibility result.

Early-stopping agreement algorithms

« Tolerate f failures in general, but in executions with f' < f
failures, terminate faster.

« [Dolev, Reischuk, Strong 90] Stopping agreement
algorithm in which all nonfaulty processes terminate in <
min(f" + 2, f+1) rounds.

— If " + 2 <f, decide “early”, within f' + 2 rounds; in any case decide
within f+1 rounds.

e [Keidar, Rajsbaum 02] Lower bound of f' + 2 for early-
stopping agreement.

— Not just f" + 1. Early stopping requires an extra round.

e Theorem 8: Assume 0 <f <f—-2andf<n. Every early-
stopping agreement algorithm tolerating f failures has an
execution with f’ failures in which some nonfaulty process
doesn’t decide by the end of round f' + 1.

Special case: ' =0

Theorem 9: Assume 2 <f<n. Every early-stopping agreement
algorithm tolerating f failures has a failure-free execution in which some
nonfaulty process does not decide by the end of round 1.

Definition: Let a be an execution that completes some finite number
(possibly 0) of rounds. Then val(a) is the unique decision value in the
extension of a with no new failures.

Different from bivalence defs---now consider value in just one extension.

Proof:

Again, assume executions in which at most one process fails per round.
|dentify O-round executions with vectors of initial values.

Assume, for contradiction, that everyone decides by round 1, in all failure-
free executions.

val(000...0) =0, val(111...1) =1

So there must be two 0-round executions o and al, that differ in the value
of just one process i, such that val(a®) = 0 and val(al) = 1

Special case: ' =0

0-round executions o and a?, differing only in the initial value of
process i, such that val(a®) = 0 and val(at) = 1.

In the ff extensions of o and a!, all nonfaulty processes decide in just
one round.

Define:
— B9, 1-round extension of a2, in which process i fails, sends only to j.
— B, 1-round extension of al, in which process i fails, sends only to j.
Then:
— B2 looks to | like ff extension of a®, so j decides 0 in 9 after 1 round.
— P! looks to j like ff extension of al, so j decides 1 in after 1 round.
B%and Bt are indistinguishable to all processes except |, j.
Define:
— v9, infinite extension of B9, in which process j fails right after round 1.
— v1, infinite extension of B, in which process j fails right after round 1.
By agreement, all nonfaulty processes must decide 0iny? 1 iny1.

But y%and y ! are indistinguishable to all nonfaulty processes, so they
can’t decide differently, contradiction.

Next time...

e Other kinds of consensus problems:
— k-agreement
— Approximate agreement (skim)
— Distributed commit

 Reading: Chapter 7

MIT OpenCourseWare
Ihttp://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Byzantine agreement
	EIG algorithm for Byzantine agreement
	Example: n = 4, f = 1
	Example: n = 4, f = 1
	Correctness proof
	Main correctness conditions
	Agreement
	Agreement
	Complexity bounds
	Lower bound on the number of processes for Byzantine Agreement
	Number of processors for Byzantine agreement
	Proof (3 vs. 1 BA)
	Proof (3 vs 1 BA)
	Proof (3 vs 1 BA)
	Proof (3 vs 1 BA)
	Discussion
	Impossibility for n = 3f
	Transforming A to B
	B’s correctness
	General graphs and connectivity bounds
	Proof: “If” direction
	Proof: “Only if” direction
	Proof (conn = 2, 1 failure)
	Proof (conn = 2, 1 failure)
	Byzantine processor bounds
	Weak Byzantine Agreement [Lamport]
	WBA Processor Bounds
	Proof (3 vs. 1 Weak BA)
	Proof (3 vs. 1 Weak BA)
	Proof (3 vs. 1 Weak BA)
	Lower bound on the number of rounds for Byzantine agreement
	Lower bound on number of rounds
	Special case: f = 1
	Round lower bound, f = 1
	Continuing…
	Special case: f = 2
	Special case: f = 2
	Special case: f = 2
	Removing p1’s round 1 messages
	General case: Any f
	Lower bound on rounds, [Aguilera, Toueg]
	Initial bivalence
	Bivalence through f-1 rounds
	Bivalence through f-1 rounds
	Case 1: At least one l is 1-valent
	Case 2: Every l is 0-valent
	And now the final round…
	Disagreement after f rounds
	Early-stopping agreement algorithms
	Special case: f = 0
	Special case: f = 0
	Next time…

