
6.852: Distributed Algorithms
Fall, 2009

Class 4

Today’s plan
• Fault-tolerant consensus in synchronous systems
• Link failures:

– The Two Generals problem
• Process failures:

– Stopping and Byzantine failure models
– Algorithms for agreement with stopping and Byzantine failures
– Exponential information gathering

• Reading: Section 5.1, 6.1-6.3
• Next:

– Lower bounds for Byzantine agreement:
• Number of processors
• Number of rounds

– Reading:
• Sections 6.4-6.7
• [Aguilera, Toueg]
• (Optional) [Keidar-Rajsbaum]

Distributed consensus
• Abstract problem of reaching agreement among processes in a

distributed system, all of which start with their own “opinions”.
• Complications: Failures (process, link); timing uncertainties.
• Motivation:

– Database transactions: Commit or abort
– Aircraft control:

• Agree on value of altimeter reading (SIFT)
• Agree on which plane should go up/down, in resolving encounters (TCAS)

– Resource allocation: Agree on who gets priority for obtaining a resource,
doing the next database update, etc.

– Replicated state machines: To emulate a virtual machine consistently,
agree on next step.

• Fundamental problem
• We’ll revisit it several times:

– In synchronous, asynchronous, and partially synchronous settings.
– With link failures, processor failures.
– Algorithms, impossibility results.

Consensus with link failures
• Informal scenario:

– Several generals plan a coordinated attack.
– All should agree to attack:

• Absolutely must agree.
• Should attack if possible.

– Each has an initial opinion about his army’s readiness.
– Nearby generals can communicate using foot

messengers:
• Unreliable, can get lost or captured
• Connected, undirected communication graph,

known to all generals, known bound on time
for successful messenger to deliver message.

• Motivation: Transaction commit
• Can show no algorithm exists!

Formal problem statement
• G = (V,E), undirected graph (bidirected edges)
• Synchronous model, n processes
• Each process has input 1 (attack) or 0 (don’t attack).
• Any subset of the messages can be lost.
• All should eventually set decision output variables to 0 or 1.

– In practice, would need this by some deadline.
• Correctness conditions:

– Agreement:
• No two processes decide differently.

– Validity:
• If all start with 0, then 0 is the only allowed decision.
• If all start with 1 and all messages are successfully delivered, then 1 is

the only allowed decision.

Alternatively:

• Stronger validity condition:
– If anyone starts with 0 then 0 is the only allowed

decision.
– If all start with 1 and all messages are successfully

delivered, then 1 is the only allowed decision.
– Typical for transaction commit (1 = commit, 0 = abort).

• Guidelines:
– For designing algorithms, try to use stronger

correctness conditions (better algorithm).
– For impossibility results, use weaker conditions (better

impossibility result).

Impossibility for 2 Generals [Gray]

• Other cases similar, LTTR.
• Proof: By contradiction.

– Suppose we have a solution---a process (states,
transitions) for each index 1, 2.

– Assume WLOG that both processes send messages at
every round.

• Could add dummy messages.
– Proof based on limitations of local knowledge.
– Start with α, the execution where both start with 1 and

all messages are received.
• By the termination condition, both eventually decide.
• Say, by the end of r rounds.
• By the validity condition, both decide on 1.

2-Generals Impossibility
• α1: Same as α, but lose all messages

after round r.
– Doesn’t matter, since they’ve already decided

by round r.
– So, both decide 1 in α1.

• .α2 : Same as α1, but lose the last
message from process 1 to process 2.
– Claim α1 is indistinguishable from α2 by

process 1, α1 ∼1α2.
– Formally, 1 sees the same sequence of

states, incoming and outgoing messages.
– So process 1 also decides 1 in α2.
– By termination, process 2 decides in α2.
– By agreement, process 2 decides 1 in α2.

Process 1 Process 2

Rd 1

Rd r-1

Rd r

Rd 2

Rd 3

A fine point:

• In α2 , process 2 must decide 1 at some
point, not necessarily by round r.

Continuing…
• α3: Same as α2, but lose the last

message from process 2 to process 1.
– Then α2 ∼2 α3.
– So process 2 decides 1 in α3.
– By termination, process 1 decides in α3.
– By agreement, process 1 decides 1 in α3.

• α4 : Same as α3, but lose the last
message from process 1 to process 2.
– Then α3 ∼1 α4.
– So process 1 decides 1 in α4.
– So process 2 decides 1 in α4.

• Keep removing edges, get to:

Process 1 Process 2

Rd 1

Rd r-1

Rd r

Rd 2

Rd 3

The contradiction
• α2r+1 : Both start with 1, no messages received.

– Still both must eventually decide 1.
• α2r+2 : process 1 starts with 1, process 2 starts with 0, no

messages received.
– Then α2r+1 ∼1 α2r+2.
– So process 1 decides 1 in α2r+2.
– So process 2 decides 1 in α2r+2.

• α2r+3 : Both start with 0, no messages received.
– Then α2r+2 ∼2 α2r+3.
– So process 2 decides 1 in α2r+3.
– So process 1 decides 1 in α2r+3.

• But α2r+3 contradicts weak validity!

Consensus with process failures
• Stopping failures (crashes) and Byzantine failures

(arbitrary processor malfunction, possibly
malicious)

• Agreement problem:
– n-node connected, undirected graph, known to all

processes.
– Input v from a set V, in some state variable.
– Output v from V, by setting decision := v.
– Bounded number ≤ f of processors may fail.

• Bounded number of failures:
– A typical way of describing limited amounts of failure.
– Alternatives: Bounded rate of failure; probabilistic

bounds on failure.

Stopping agreement
• Assume process may stop at any point:

– Between rounds.
– While sending messages at a round; any subset of intended

messages may be delivered.
– After sending, before changing state.

• Correctness conditions:
– Agreement: No two processes (failing or not) decide on different

values.
• “Uniform agreement”

– Validity: If all processes start with the same v, then v is the only
allowable decision.

– Termination: All nonfaulty processes eventually decide.
• Alternatively:

– Stronger validity condition: Every decision value must be some
process’ initial value.

– Use this later, for k-agreement.

Byzantine agreement
• “Byzantine Generals Problem” [Lamport, Pease, Shostak]

– Originally “Albanian Generals”
• Faulty processes may exhibit “arbitrary behavior”:

– Can start in arbitrary states, send arbitrary messages, perform
arbitrary transitions.

– But can’t affect anyone else’s state or outgoing messages.
– Often called “malicious” (but they aren’t necessarily).

• Correctness conditions:
– Agreement: No two nonfaulty processes decide on different values.
– Validity: If all nonfaulty processes start with the same v, then v is

the only allowable decision for nonfaulty processes.
– Termination: All nonfaulty processes eventually decide.

Technicality about stopping vs.
Byzantine agreement

• A Byzantine agreement algorithm doesn’t
necessarily solve stopping agreement:

• For stopping, all processes that decide, even ones
that later fail, must agree (uniformity condition).

• Too strong for Byzantine setting.
• Implication holds in some special cases, e.g.,

when all decisions must happen at the end.

Complexity measures

• Time: Number of rounds until all nonfaulty
processes decide.

• Communication: Number of messages, or
number of bits.
– For Byzantine case, just count those sent by

nonfaulty processes.

Simple algorithm for stopping
agreement

• Assume complete n-node graph.
• Idea:

– Processes keep sending all V values they’ve ever seen.
– Use simple decision rule at the end.

• In more detail:
– Process i maintains W ⊆ V, initially containing just i’s

initial value.
– Repeatedly: Broadcast W, add received elements to W.
– After k rounds:

• If |W| = 1 then decide on the unique value.
• Else decide on a default value v0∈ V.

• Q: How large should k be?

How many rounds?
• Depends on number f of failures to be tolerated.
• f = 0:

– k = 1 is enough.
– All get same W.

• f = 1:
– k = 1 doesn’t work:

• Say process 1 has initial value u, others have initial value v.
• Process 1 fails during round 1, sends to some and not others.
• So some have W = {v}, others {u,v}, may decide differently.

– k = 2 does work:
• If someone fails in round 1, then no one fails in round 2.

• General f:
• k = f + 1

Correctness proof (for k = f+1)
• Claim 1: Suppose 1 ≤ r ≤ f+1 and no process fails during

round r. Let i and j be two processes that haven’t failed by
the end of round r. Then Wi = Wj right after round r.

• Proof: Each gets exactly the union of all the W’s of the
processes that have not failed by the beginning of round r.

• “Clean round”---allows everyone to resolve their
differences.

• Claim 2: Suppose all the W sets are identical just after
round r, for all processes that are still non-failed. Then the
same is true for any r′ > r.

• Proof: Obvious.

Check correctness conditions
• Agreement:

– ∃ round r, 1 ≤ r ≤ f+1, at which no process fails (since ≤ f
failures)---a clean round.

– Claim 1 says all that haven’t yet failed have same W
after round r.

– Claim 2 implies that all have same W after round f + 1.
– So nonfaulty processes pick the same value.

• Validity:
– If everyone starts with v, then v is the only value that

anyone ever gets, so |W| = 1 and v is chosen.
• Termination:

– Obvious from decision rule.

Complexity bounds

• Time: f+1 rounds
• Communication:

– Messages: ≤ (f + 1) n2

– Message bits: Multiply by n b

• Can improve communication:
– Messages: ≤ 2 n2

– Message bits: Multiply by b

Number of values
sent in a message

A fixed bound on
number of bits to
represent a value in V.

Improved algorithm (Opt)

• Each process broadcasts its own value in round 1.
• May broadcast at one other round, just after it first

learns about some value different from its own.
• In that case, it chooses just one such value to

rebroadcast.
• After f + 1 rounds, use same rule as before:

– If |W| = 1 then decide on the unique value.
– Else decide on default value v0.

Correctness
• Relate behavior of Opt to that of the original algorithm.
• Specifically, relate executions of both algorithms with the

same inputs and same failure pattern.
• Let OW denote the W set in the optimized algorithm.
• Relation between states of the two algorithms:

– For every i:
• OWi ⊆ Wi.
• If |Wi| = 1 then OWi = Wi.
• If |Wi| > 1 then |OWi| > 1.

• Relation after f+1 rounds implies same decisions.

Not necessarily the same set,
but both > 1.

Proof of correspondence
• Induction on number of rounds (p. 107)
• Key ideas:

– OWi ⊆ Wi
• Obvious, since Opt just suppresses sending of some messages from

Unopt.
– If |Wi| = 1 then OWi = Wi.

• Nothing suppressed in this case.
• Actually, follows from the first property and the fact that OWi is always

nonempty.
– If |Wi| > 1 then |OWi| > 1.

• Inductive step, for some round r:
• If in Unopt, i receives messages only from processes with |W| = 1,

then in Opt, it receives the same sets. So after round r, OWi = Wi.
• Otherwise, in Unopt, i receives a message from some process j with

|Wj| > 1, and so (by induction), |OWj| > 1. Then after round r, |Wi| > 1
and |OWi| > 1.

Exponential Information Gathering
(EIG)

• A strategy for consensus algorithms, which works for
Byzantine agreement as well as stopping agreement.

• Based on EIG tree data structure.
• EIG tree Tn,f, for n processes, f failures:

– f+2 levels
– Paths from root to leaf correspond to strings of f+1 distinct process

names.
• Example: T4,2

1 432

12 13 14 242321

123 124

31 32 34

132 etc.

λ

EIG Stopping agreement algorithm
• Each process i uses the same EIG tree, Tn,f.
• Decorates nodes of the tree with values in V, level by level.
• Initially: Decorate root with i’s input value.
• Round r ≥ 1:

– Send all level r-1 decorations for nodes whose labels don’t include i, to
everyone.

• Including yourself---simulate locally.
– Use received messages to decorate level r nodes---to determine label,

append sender’s id at the end.
– If no message received, use ⊥.

• The decoration for node (i1,i2,i3,…,ik) in i’s tree is the value v such that
(ik told i) that (ik-1 told ik) that …that (i1 told i2) that i1’s initial value was v.

• Decision rule for stopping case:
– Trivial
– Let W = set of all values decorating the local EIG tree.
– If |W| = 1 decide that value, else default v0.

Example

• 3 processes, 1 failure
• Use T3,1:

1 32

312112 2313 32

λ

Process 1 Process 3Process 2

1 10

Initial values:

Example

• Process 2 is faulty,
fails after sending to
process 1 at round 1.

• After round 1:

1 32

312112 2313 32

λ

1 10

1 0 1 1 1⊥

Process 1 Process 3Process 2

Example

• After round 2: 1 32

312112 2313 32

λ

Process 1 Process 3Process 2

1 0 1 1 1⊥

⊥ ⊥ ⊥⊥⊥ ⊥1 111 00

1 10

p3 discovers that p2’s value is 0 after round 2, by hearing it from p1.

Correctness and complexity
• Correctness similar to previous algorithms.
• Time: f+1 rounds, as before.
• Messages: ≤ (f + 1) n2

• Bits: Exponential in number of failures, O(nf+1 b)
• Can improve as before by only relaying the first two

messages with distinct values.
• Extension:

– The simple EIG stopping algorithm, and its optimized variant, can
be used to tolerate worse types of failures.

– Not full Byzantine model---that will require more work…
– Rather, a restricted version of the Byzantine model, in which

processes can authenticate messages.
– Removes ability of process to relay false information about what

other processes said.

Byzantine agreement algorithm
• Recall correctness conditions:

– Agreement: No two nonfaulty processes decide on different values.
– Validity: If all nonfaulty processes start with the same v, then v is

the only allowable decision for nonfaulty processes.
– Termination: All nonfaulty processes eventually decide.

• Present EIG algorithm for Byzantine agreement, using:
– Exponential communication (in f)
– f+1 rounds
– n > 3f

• Expensive!
– Time bound: Inherent. (Lower bound)
– Number-of-processors bound: Inherent. (Lower bound)
– Communication: Can be improved to polynomial.

Bad example: n = 3, f = 1
• Consider three executions of an EIG algorithm, with any decision rule.
• α1: p1 and p2 nonfaulty, initial value 1, p3 faulty, initial value 0

– Round 1: All truthful
– Round 2: p3 lies, telling p1 that “p2 said 0”; all other communications are

truthful.
– Validity requires that p1 and p2 decide 1.

• α2: p2 and p3 nonfaulty, initial value 0, p1 faulty, initial value 1
– Round 1: All truthful
– Round 2: p1 lies, telling p3 that “p2 said 1”; all other communications are

truthful.
– Validity requires that p2 and p3 decide 0.

• α3: p1 nonfaulty, initial value 1, p3 nonfaulty, initial value 0, p2 faulty,
initial value doesn’t matter.
– Round 1: p2 tells p1 its initial value is 1, tells p3 its initial value is 0

(inconsistent).
– Round 2: All truthful.

• α3 ∼1 α1, so p1 behaves the same in both, decides 1 in α3.
• α3 ∼3 α2, so p3 behaves the same in both, decides 0 in α3.
• Contradicts agreement!

Bad example
• α1: p1 and p2 nonfaulty, initial value 1, p3 faulty, initial value 0

– Round 1: All truthful
– Round 2: p3 lies, telling p1 that “p2 said 0”; all other communications are

truthful.
– Validity requires that p1 and p2 decide 1.

p2

p3p1
1

1

0

2 said 0

2 said 1

1 said 13
sa

id
0

Bad example
• α2: p2 and p3 nonfaulty, initial value 0, p1 faulty, initial value 1

– Round 1: All truthful
– Round 2: p1 lies, telling p3 that “p2 said 1”; all other communications are

truthful.
– Validity requires that p2 and p3 decide 0.

p2

p3p1
1

0

0

2 said 0

2 said 1

1 said 13
sa

id
0

Bad example
• α3: p1 nonfaulty, initial value 1, p3 nonfaulty, initial value 0, p2 faulty,

initial value doesn’t matter.
– Round 1: p2 tells p1 its initial value is 1, tells p3 its initial value is 0

(inconsistent).
– Round 2: All truthful.

p2

p3p1
1

?

0

2 said 0

2 said 1

1 said 1
3

sa
id

0

1
1 0

0

Notes on the example
• The correct processes can tell something is wrong, but that

doesn’t help:
– E.g., in α1, p1 sees that p2 sends 1, but p3 said that p2 said 0.
– So p1 knows that either p2 or p3 is faulty, but doesn’t know which.
– By termination, p1 has to decide something, but neither value

works right in all cases.

• Impossibility of solving Byzantine agreement with 3
processes, 1 failure:
– This is not a proof--- maybe there’s a non-EIG algorithm, or one

that takes more rounds,…
– Come back to this later.

EIG algorithm for Byzantine
agreement

• Assume n > 3f.
• Same EIG tree as before.
• Relay messages for f+1 rounds, as before.
• Decorate the tree with values from V, replacing any

garbage messages with default value v0.
• New decision rule:

– Call the decorations val(x), where x is a node label.
– Redecorate the tree, defining newval(x).

• Proceed bottom-up.
• Leaf: newval(x) = val(x)
• Non-leaf: newval(x) =

– newval of strict majority of children in the tree, if majority exists,
– v0 otherwise.

– Final decision: newval(λ) (newval at root)

0001111101 1 0 1001111111 1 00001111101 0 0

Example: n = 4, f = 1
• T4,1:
• Consider a possible

execution in which p3 is
faulty.

• Initial values 1 1 0 0
• Round 1
• Round 2

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

Process 1 Process 2 Process 4(Process 3)

1 001

1 1 0 0 1 1 1 0 1 1 1 0

Lies

0001111101 1 0 1001111111 1 00001111101 0 0

Example: n = 4, f = 1
• Now calculate newvals, bottom-up, choosing majority

values, v0 = 0 if no majority.

Process 1 Process 2 Process 4(Process 3)

1 001

1 1 0 0 1 1 1 0 1 1 1 0

1 11

1 1 1 0 1 1 1 0 1 1 1 0

Corrected by taking majority

Correctness proof

• Lemma 1: If i, j, k are nonfaulty, then val(x)i
= val(x)j for every node label x ending with k.

• In example, such nodes are:

• Proof: k sends same message to i and j and
they decorate accordingly.

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

Proof, cont’d
• Lemma 2: If x ends with nonfaulty process index then ∃v ∈

V such that val(x)i = newval(x)i = v for every nonfaulty i.
• Proof: Induction on lengths of labels, bottom up.

– Basis: Leaf.
• Lemma 1 implies that all nonfaulty processes have same val(x).
• newval = val for each leaf.

– Inductive step: |x| = r ≤ f (|x| = f+1 at leaves)
• Lemma 1 implies that all nonfaulty processes have same val(x), say v.
• We need newval(x) = v everywhere also.
• Every nonfaulty process j broadcasts same v for x at round r+1, so

val(xj)i = v for every nonfaulty j and i.
• By inductive hypothesis, also newval(xj)I = v for every nonfaulty j and i.
• A majority of labels of x’s children end with nonfaulty process indices:

– Number of children of node x is ≥ n – f > 3f – f = 2f.
– At most f are faulty.

• So, majority rule applied by i leads to newval(x)i = v, for all nonfaulty i.

Main correctness conditions
• Validity:

– If all nonfaulty processes begin with v, then all nonfaulty
processes broadcast v at round 1, so val(j)i = v for all
nonfaulty i, j.

– By Lemma 2, also newval(j)i = v for all nonfaulty i,j.
– Majority rule implies newval(λ)i = v for all nonfaulty i.
– So all nonfaulty i decide v.

• Termination:
– Obvious.

• Agreement:
– Requires a bit more work:

Agreement
• Path covering: Subset

of nodes containing at
least one node on each
path from root to leaf:

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

• Common node: One for which all nonfaulty processes have
the same newval.
– If a node’s label ends in nonfaulty process index, Lemma

2 implies it’s common.
– Others might be common too.

Agreement
• Lemma 3: There exists a path covering all of whose

nodes are common.
• Proof:

– Let C = nodes with labels of the form xi, i nonfaulty.
– By Lemma 2, all of these are common.
– Claim these form a path covering:

• There are at most f faulty processes.
• Each path contains f+1 labels ending with f+1 distinct indices.
• So at least one of these labels ends with a nonfaulty process index.

1 2

λ

43

14 4132 3412 31 4313 2321 24 42

Agreement
• Lemma 4: If there’s a common path covering of the

subtree rooted at any node x, then x is common
• Proof:

– By induction, from the leaves up.
– “Common-ness” propagates upward.

• Lemma 5: The root is common.
• Proof: By Lemmas 3 and 4.

• Thus, all nonfaulty processes get the same newval(λ).
• Yields Agreement.

Complexity bounds

• As for EIG for stopping agreement:
– Time: f+1
– Communication: O(nf+1)

• Number of processes: n > 3f

Next time…
• Lower bounds for Byzantine agreement:

– Number of processors
– Bounds for connectivity, weak Byzantine agreement.
– Number of rounds

• Reading:
– Sections 6.4-6.7
– [Aguilera, Toueg]
– (Optional) [Keidar-Rajsbaum]

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Distributed consensus
	Consensus with link failures
	Formal problem statement
	Alternatively:
	Impossibility for 2 Generals [Gray]
	2-Generals Impossibility
	A fine point:
	Continuing…
	The contradiction
	Consensus with process failures
	Stopping agreement
	Byzantine agreement
	Technicality about stopping vs. Byzantine agreement
	Complexity measures
	Simple algorithm for stopping agreement
	How many rounds?
	Correctness proof (for k = f+1)
	Check correctness conditions
	Complexity bounds
	Improved algorithm (Opt)
	Correctness
	Proof of correspondence
	Exponential Information Gathering (EIG)
	EIG Stopping agreement algorithm
	Example
	Example
	Example
	Correctness and complexity
	Byzantine agreement algorithm
	Bad example: n = 3, f = 1
	Bad example
	Bad example
	Bad example
	Notes on the example
	EIG algorithm for Byzantine agreement
	Example: n = 4, f = 1
	Example: n = 4, f = 1
	Correctness proof
	Proof, cont’d
	Main correctness conditions
	Agreement
	Agreement
	Agreement
	Complexity bounds
	Next time…

