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Distributed algorithms
• Algorithms that are supposed to work in distributed 

networks, or on multiprocessors.
• Accomplish tasks like:

– Communication
– Data management
– Resource management
– Synchronization
– Consensus

• Must work in difficult settings:
– Concurrent activity at many locations
– Uncertainty of timing, order of events, inputs
– Failure and recovery of machines/processors, of communication 

channels.
• So the algorithms can be complicated:

– Hard to design
– Hard to prove correct, analyze.



This course
• Theoretical, mathematical viewpoint
• Approach:

– Define distributed computing environments.
– Define abstract problems.
– Describe algorithms that solve the problems.
– Analyze complexity.
– Identify inherent limitations, prove lower bounds and 

other impossibility results.
• Like sequential algorithms (6.046), but more 

complicated.



Distributed algorithms research
• Active area for 30+ years. 
• PODC, DISC, SPAA, OPODIS; also ICDCS, STOC, FOCS,…
• Abstract problems derived from practice, in networking and 

multiprocessor programming.
• Static theory:

– Assumes fixed network or shared-memory setting.
– Set of participants, configuration, may be generally known.
– In [Lynch text], [Attiya, Welch text], [Supplementary course papers]

• Dynamic theory:
– Client/server, peer-to-peer, wireless, mobile ad hoc
– Participants may join, leave, move.
– Next year’s special-topics course?

• Theory for modern multiprocessors:
– Multicore processors
– Transactional memory
– New material for this term [Herlihy, Shavit book]

• All are active research areas!



Administrative info (Handout 1)
• People and places
• What the course is about
• Prerequisites

– Automata:
• Traditional courses (6.045, 6.840) study general theory of automata.
• We use automata as tools, to model processes, channels, …
• Important for clear understanding, because the algorithms are complicated.

• Source material
• Course requirements

– Readings
– Problem sets

• Given out every week, due every two weeks
• Tempo language, for writing pseudocode
• Code should (at least) syntax-check!

– Grading



Topic overview (Handout 2)
• Variations in model assumptions:

– IPC method:  Shared memory, message-passing
– Timing:  

• Synchronous (rounds)
• Asynchronous (arbitrary speeds)
• Partially synchronous (some timing assumptions, e.g., bounds on message 

delay, processor speeds, clock rates)
– Failures:

• Processor:  Stopping, Byzantine, occasional total state corruption
• Communication:  Message loss, duplication; Channel failures, recovery

• Top-level organization is by the timing model.
• Synchronous model: Classes 1-6.   

– Basic, easy to program. 
– Not realistic, but sometimes can emulate in worse-behaved networks. 
– Impossibility results for synch networks carry over to worse networks.

• Asynchronous: Most of the rest of the course
– Realistic, but hard to cope with.

• Partially synchronous: Last few classes.
– Somewhere in between.



Detailed topic overview
• Synchronous networks: 

– Model
– Leader election (symmetry-breaking)
– Network searching, spanning trees
– Processor failures:  Stopping and Byzantine
– Fault-tolerant consensus:  Algorithms and lower bounds
– Other problems:  Commit, k-agreement

• Asynchronous model (I/O automata)
• Asynchronous networks, no failures:

– Model
– Leader election, network searching, spanning trees, revisited.
– Synchronizers (used to run synchronous algorithms in 

asynchronous networks)
– Logical time, replicated state machines.
– Stable property detection (termination, deadlock, snapshots).



More topics
• Asynchronous shared-memory systems, no failures:

– Model
– Mutual exclusion algorithms and lower bounds
– Practical mutual exclusion algorithms
– Resource allocation, Dining Philosophers

• Asynchronous shared-memory, with failures
– Impossibility of consensus
– Atomic (linearizable) objects, atomic read/write objects, atomic 

snapshots
– Wait-free computability; wait-free consensus; wait-free vs. f-fault-

tolerant objects
• Shared-memory multiprocessor programming

– Contention, caching, locality
– Reader/writer locks
– List algorithms:  locking algorithms, optimistic algorithms, lock-free 

algorithms
– Transactional memory



Still more topics
• Asynchronous networks, with failures

– Asynchronous networks vs. asynchronous shared-memory
– Impossibility of consensus, revisited
– Failure detectors and consensus
– Paxos consensus algorithm

• Self-stabilizing algorithms
• Partially-synchronous systems

– Models
– Mutual exclusion, consensus
– Clock synchronization



Now start the course…

• Rest of today:
– Synchronous network model
– Leader election problem, in simple ring networks

• Reading:  Chapter 2; Sections 3.1-3.5.
• Next:  Sections 3.6, 4.1-4.3



Synchronous network model
• Processes (or processors) at nodes of a network digraph, 

communicate using messages.
• Digraph:  G = (V,E), n = |V|

– out-nbrsi, in-nbrsi
– distance(i,j), number of hops on shortest path
– diam = maxi,j distance(i,j)

• M:  Message alphabet, plus ⊥ placeholder
• For each i in V, a process consisting of :

– statesi, a nonempty, not necessarily finite, set of states
– starti, a nonempty subset of statesi
– msgsi : statesi × out-nbrsi → M ∪ {⊥}
– transi : statesi × vectors (indexed by in-nbrsi) of M ∪ {⊥} → statesi

• Executes in rounds:  
– Apply msgsi to determine messages to send, 
– Send and collect messages, 
– Apply transi to determine new state.



Remarks
• No restriction on amount of local computation.
• Deterministic (a simplification).
• Can define “halting states”, but not used as 

accepting states as in traditional automata theory.
• Later, we will consider some complications:

– Variable start times
– Failures
– Random choices

• Inputs and outputs:  Can encode in the states, 
e.g., in special input and output variables.



Executions
• An execution is a mathematical object used to 

describe how an algorithm operates.
• Definition (p. 20):

– State assignment:  Mapping from process indices to 
states.

– Message assignment:  Mapping from ordered pairs of 
process indices to M ∪ {⊥}.

– Execution:  C0, M1, N1, C1, M2, N2, C2,…
• C’s are state assignments.
• M’s are messages sent.
• N’s are messages received.
• Infinite sequence (but could consider finite prefixes).

Message assignments



Leader election
• Network of processes.
• Want to distinguish exactly one, as 

the “leader”.
• Eventually, exactly one process 

should output “leader” (set special 
status variable to “leader”).

• Motivation:  Leader can take charge of:
– Communication
– Coordinating data processing (e.g., in commit protocols)
– Allocating resources
– Scheduling tasks
– Coordinating consensus protocols
– …



Simple case:  Ring network
• Variations:

– Unidirectional or bidirectional
– Ring size n known or unknown

• Numbered clockwise
• Processes don’t know the numbers; 

know neighbors as “clockwise” and 
“counterclockwise”.

• Theorem 1: Suppose all processes are 
identical (same sets of states, transition 
functions, etc.).  
Then it’s impossible to elect a leader, 
even under the best assumptions 
(bidirectional communication, ring size n 
known to all).
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Proof of Theorem 1
• By contradiction.  Assume an algorithm that solves the 

problem.
• Assume WLOG that each process has exactly one start 

state (could choose same one for all).
• Then there is exactly one execution

C0, M1, N1, C1, M2, N2, C2,…
• Prove by induction on the number r of completed rounds 

that all processes are in identical states after r rounds.
– Generate same messages, to corresponding neighbors.
– Receive same messages.
– Make the same state changes.

• Since the algorithm solves the leader election problem, 
someone eventually gets elected.

• Then everyone gets elected, contradiction.



So we need something more…
• To solve the problem at all, we need something 

more---some way of distinguishing the processes.
• E.g., assume processes have unique identifiers 

(UIDs), which they “know”.
– Formally, each process starts with its own UID in a 

special state variable.
• UIDs are elements of some data type, with 

specified operations, e.g.:
– Arbitrary totally-ordered set with just (<, =, >) 

comparisons. 
– Integers with full arithmetic.

• Different UIDs can appear anywhere in the ring, 
but each can appear only once.



A basic algorithm                
[LeLann] [Chang, Roberts]

• Assumes:
– Unidirectional communication (clockwise)
– Processes don’t know n
– UIDs, comparisons only

• Idea:  
– Each process sends its UID in a msg, to be relayed 

step-by-step around the ring.
– When process receives a UID, compares with its own.
– If incoming is:

• Bigger, pass it on.
• Smaller, discard.
• Equal, process declares itself the leader.

– Elects process with the largest UID.



In terms of our formal model:
• M, the message alphabet: Set of UIDs
• statesi: Consists of values for state variables:

– u, holds its own UID
– send, a UID or ⊥, initially its own UID
– status, one of {?, leader}, initially ?

• starti: Defined by the initializations.
• msgsi: Send contents of send variable, to clockwise nbr.
• transi:

– Defined by pseudocode (p. 28):
if incoming = v, a UID, then

case
v > u: send := v
v = u:  status := leader
v < u:  no-op

endcase
– Entire block of code is treated as atomic.



Correctness proof

• Prove exactly one process ever gets elected 
leader.

• More strongly: 
– Let imax be the process with the max UID, umax.
– Prove:

• imax outputs “leader” by end of round n.
• No other process ever outputs “leader”.



imax outputs “leader” after n rounds
• Prove by induction on number of rounds.
• But need to strengthen, to say what happens after r rounds, 0 ≤ r ≤ n.

• Lemma 2: For 0 ≤ r ≤ n-1, after r rounds, send at process                 
(imax + r) mod n contains umax.

• That is, umax is making its way around the ring.

• Proof of Lemma 2:  
– Induction on r.
– Base:  Check the initialization.
– Inductive step:  Key fact:  Everyone else lets umax pass through.

• Use Lemma 2 for r = n-1, and a little argument about the nth round to 
show the correct output happens.

• Key fact:  imax uses arrival of umax as signal to set its status to leader.



Uniqueness
• No one except imax ever outputs “leader”.
• Again, strengthen claim:
• Lemma 3: For any r ≥ 0, after r rounds, if i ≠ imax and j is 

any process in the interval [imax,i), then j’s send doesn’t 
contain ui.

• Thus, ui doesn’t get past imax when moving around the ring.

imax

i

j

• Proof:
– Induction on r.
– Key fact:  imax discards ui (if no one has 

already).

• Use Lemma 3 to show that no one 
except imax ever receives its own UID, 
so never elects itself.



Invariant proofs
• Lemmas 2 and 3 are examples of invariants---properties that are true in 

all reachable states. 
• Another invariant:  If r = n then the status variable of imax = leader.
• Invariants are usually proved by induction on the number of steps in an 

execution.
– May need to strengthen, to prove by induction.
– Inductive step requires case analysis.

• In this class:
– We’ll outline key steps of invariant proofs, not present all details.
– We’ll assume you could fill in the details if you had to.
– Try some examples in detail.

• Invariant proofs may seem like overkill here, but:
– Similar proofs work for much harder synchronous algorithms.
– Also for asynchronous algorithms, and partially synchronous algorithms.
– The properties, and proofs, are more subtle in those settings. 

• Invariants provide the main method for proving properties of distributed 
algorithms.



Complexity bounds
• What to measure?

– Time = number of rounds until “leader”:   n
– Communication = number of single-hop messages:  ≤ n2

• Variations:
– Non-leaders announce “non-leader”:  

• Any process announces “non-leader” as soon as it sees a UID higher 
than its own.

• No extra costs.
– Everyone announces who the leader is:

• At end of n rounds, everyone knows the max.
– No extra costs.
– Relies on synchrony and knowledge of n.

• Or, leader sends a special “report” message around the ring.
– Time:  ≤ 2n
– Communication:  ≤ n2 + n
– Doesn’t rely on synchrony or knowledge of n.



Halting
• Add halt states, special “looping” states from 

which all transitions leave the state unchanged, 
and that generate no messages.

• For all problem variations:
– Can halt after n rounds.

• Depends on synchrony and knowledge of n.
– Or, halt after receiving leader’s “report” message.

• Does not depend on synchrony or knowledge of n

• Q:  Can a process just halt (in basic problem) after 
it sees and relays some UID larger than its own?

• A:  No---it still has to stay alive to relay messages.



Reducing the communication 
complexity [Hirschberg, Sinclair]

• O(n log n), rather than O(n2)
• Assumptions:

– Bidirectional communication
– Ring size not known.
– UIDs with comparisons only

• Idea:  
– Successive doubling strategy

• Used in many distributed algorithms where network size is unknown.
– Each process sends a UID token in both directions, to successively 

greater distances (double each time).
– Going outbound:  Token is discarded if it reaches a node whose 

UID is bigger.
– Going inbound:  Everyone passes the token back.
– Process begins next phase only if/when it gets both its tokens back.
– Process that gets its own token in outbound direction, elects itself 

the leader.  



In terms of formal model:

• Needs local process description.
• Involves bookkeeping, with hop counts.
• LTTR (p. 33)



Complexity bounds

• Time: 
– Worse than [LCR] but still O(n).
– Time for each phase is twice the previous, so 

total time is dominated by last complete phase 
(geometric series).

– Last phase is O(n), so total is also.



Communication bound: O(n log n)
• 1 + ⎡log n⎤ phases:  0,1,2,…
• Phase 0:  All send messages both ways, ≤ 4n messages.
• Phase k > 0:  

– Within any block of 2k-1 + 1 consecutive processes, at most one is still alive 
at the start of phase k.

• Others’ tokens are discarded in earlier phases, stop participating.
– So at most ⎣ n / (2k-1 + 1) ⎦ start phase k.
– Total number of messages at phase k is at most

4 (2k ⎣n / (2k-1 + 1) ⎦ ) ≤ 8n

• So total communication is as most
8 n (1 + ⎡log n⎤ ) = O(n log n)

Out and back, 
both directions

New distance



Non-comparison-based algorithms

• Q:  Can we improve on worst-case O(n log n) messages to 
elect a leader in a ring, if UIDs can be manipulated using 
arithmetic?

• A:  Yes, easily!
• Consider case where:

– n is known
– Ring is unidirectional
– UIDs are positive integers, allowing arithmetic.

• Algorithm:
– Phases 1,2,3,…each consisting of n rounds
– Phase k 

• Devoted to UID k.
• If process has UID k, circulates it at beginning of phase k.
• Others who receive it pass it on, then become passive (or halt).

– Elects min



Complexity bounds
• Communication:  

– Just n (one-hop) messages
• Time:

– umin n
– Not practical, unless the UIDs are small integers.

• Q: What if n is unknown?
• A: Can still get O(n) messages, though now the time is 

even worse:  O(2umin n).
– VariableSpeeds algorithm, Section 3.5.2
– Different UIDs travel around the ring at different speeds, smaller 

UIDs traveling faster
– UID u moves 1 hop every 2u rounds.
– Smallest UID gets all the way around before next smallest has 

gone half-way, etc.



Next time…
• Lower bound on communication for leader election 

in rings.
• Basic computational tasks in general synchronous 

networks:
– Leader election, breadth-first search, shortest paths, 

broadcast and convergecast.
• Sections 3.6, 4.1-4.3
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