
6.852: Distributed Algorithms
Fall, 2009

Instructor: Nancy Lynch
Guest Instructor: Victor Luchangco

Distributed algorithms
• Algorithms that are supposed to work in distributed

networks, or on multiprocessors.
• Accomplish tasks like:

– Communication
– Data management
– Resource management
– Synchronization
– Consensus

• Must work in difficult settings:
– Concurrent activity at many locations
– Uncertainty of timing, order of events, inputs
– Failure and recovery of machines/processors, of communication

channels.
• So the algorithms can be complicated:

– Hard to design
– Hard to prove correct, analyze.

This course
• Theoretical, mathematical viewpoint
• Approach:

– Define distributed computing environments.
– Define abstract problems.
– Describe algorithms that solve the problems.
– Analyze complexity.
– Identify inherent limitations, prove lower bounds and

other impossibility results.
• Like sequential algorithms (6.046), but more

complicated.

Distributed algorithms research
• Active area for 30+ years.
• PODC, DISC, SPAA, OPODIS; also ICDCS, STOC, FOCS,…
• Abstract problems derived from practice, in networking and

multiprocessor programming.
• Static theory:

– Assumes fixed network or shared-memory setting.
– Set of participants, configuration, may be generally known.
– In [Lynch text], [Attiya, Welch text], [Supplementary course papers]

• Dynamic theory:
– Client/server, peer-to-peer, wireless, mobile ad hoc
– Participants may join, leave, move.
– Next year’s special-topics course?

• Theory for modern multiprocessors:
– Multicore processors
– Transactional memory
– New material for this term [Herlihy, Shavit book]

• All are active research areas!

Administrative info (Handout 1)
• People and places
• What the course is about
• Prerequisites

– Automata:
• Traditional courses (6.045, 6.840) study general theory of automata.
• We use automata as tools, to model processes, channels, …
• Important for clear understanding, because the algorithms are complicated.

• Source material
• Course requirements

– Readings
– Problem sets

• Given out every week, due every two weeks
• Tempo language, for writing pseudocode
• Code should (at least) syntax-check!

– Grading

Topic overview (Handout 2)
• Variations in model assumptions:

– IPC method: Shared memory, message-passing
– Timing:

• Synchronous (rounds)
• Asynchronous (arbitrary speeds)
• Partially synchronous (some timing assumptions, e.g., bounds on message

delay, processor speeds, clock rates)
– Failures:

• Processor: Stopping, Byzantine, occasional total state corruption
• Communication: Message loss, duplication; Channel failures, recovery

• Top-level organization is by the timing model.
• Synchronous model: Classes 1-6.

– Basic, easy to program.
– Not realistic, but sometimes can emulate in worse-behaved networks.
– Impossibility results for synch networks carry over to worse networks.

• Asynchronous: Most of the rest of the course
– Realistic, but hard to cope with.

• Partially synchronous: Last few classes.
– Somewhere in between.

Detailed topic overview
• Synchronous networks:

– Model
– Leader election (symmetry-breaking)
– Network searching, spanning trees
– Processor failures: Stopping and Byzantine
– Fault-tolerant consensus: Algorithms and lower bounds
– Other problems: Commit, k-agreement

• Asynchronous model (I/O automata)
• Asynchronous networks, no failures:

– Model
– Leader election, network searching, spanning trees, revisited.
– Synchronizers (used to run synchronous algorithms in

asynchronous networks)
– Logical time, replicated state machines.
– Stable property detection (termination, deadlock, snapshots).

More topics
• Asynchronous shared-memory systems, no failures:

– Model
– Mutual exclusion algorithms and lower bounds
– Practical mutual exclusion algorithms
– Resource allocation, Dining Philosophers

• Asynchronous shared-memory, with failures
– Impossibility of consensus
– Atomic (linearizable) objects, atomic read/write objects, atomic

snapshots
– Wait-free computability; wait-free consensus; wait-free vs. f-fault-

tolerant objects
• Shared-memory multiprocessor programming

– Contention, caching, locality
– Reader/writer locks
– List algorithms: locking algorithms, optimistic algorithms, lock-free

algorithms
– Transactional memory

Still more topics
• Asynchronous networks, with failures

– Asynchronous networks vs. asynchronous shared-memory
– Impossibility of consensus, revisited
– Failure detectors and consensus
– Paxos consensus algorithm

• Self-stabilizing algorithms
• Partially-synchronous systems

– Models
– Mutual exclusion, consensus
– Clock synchronization

Now start the course…

• Rest of today:
– Synchronous network model
– Leader election problem, in simple ring networks

• Reading: Chapter 2; Sections 3.1-3.5.
• Next: Sections 3.6, 4.1-4.3

Synchronous network model
• Processes (or processors) at nodes of a network digraph,

communicate using messages.
• Digraph: G = (V,E), n = |V|

– out-nbrsi, in-nbrsi
– distance(i,j), number of hops on shortest path
– diam = maxi,j distance(i,j)

• M: Message alphabet, plus ⊥ placeholder
• For each i in V, a process consisting of :

– statesi, a nonempty, not necessarily finite, set of states
– starti, a nonempty subset of statesi
– msgsi : statesi × out-nbrsi → M ∪ {⊥}
– transi : statesi × vectors (indexed by in-nbrsi) of M ∪ {⊥} → statesi

• Executes in rounds:
– Apply msgsi to determine messages to send,
– Send and collect messages,
– Apply transi to determine new state.

Remarks
• No restriction on amount of local computation.
• Deterministic (a simplification).
• Can define “halting states”, but not used as

accepting states as in traditional automata theory.
• Later, we will consider some complications:

– Variable start times
– Failures
– Random choices

• Inputs and outputs: Can encode in the states,
e.g., in special input and output variables.

Executions
• An execution is a mathematical object used to

describe how an algorithm operates.
• Definition (p. 20):

– State assignment: Mapping from process indices to
states.

– Message assignment: Mapping from ordered pairs of
process indices to M ∪ {⊥}.

– Execution: C0, M1, N1, C1, M2, N2, C2,…
• C’s are state assignments.
• M’s are messages sent.
• N’s are messages received.
• Infinite sequence (but could consider finite prefixes).

Message assignments

Leader election
• Network of processes.
• Want to distinguish exactly one, as

the “leader”.
• Eventually, exactly one process

should output “leader” (set special
status variable to “leader”).

• Motivation: Leader can take charge of:
– Communication
– Coordinating data processing (e.g., in commit protocols)
– Allocating resources
– Scheduling tasks
– Coordinating consensus protocols
– …

Simple case: Ring network
• Variations:

– Unidirectional or bidirectional
– Ring size n known or unknown

• Numbered clockwise
• Processes don’t know the numbers;

know neighbors as “clockwise” and
“counterclockwise”.

• Theorem 1: Suppose all processes are
identical (same sets of states, transition
functions, etc.).
Then it’s impossible to elect a leader,
even under the best assumptions
(bidirectional communication, ring size n
known to all).

1

2

3
1

2

3

Proof of Theorem 1
• By contradiction. Assume an algorithm that solves the

problem.
• Assume WLOG that each process has exactly one start

state (could choose same one for all).
• Then there is exactly one execution

C0, M1, N1, C1, M2, N2, C2,…
• Prove by induction on the number r of completed rounds

that all processes are in identical states after r rounds.
– Generate same messages, to corresponding neighbors.
– Receive same messages.
– Make the same state changes.

• Since the algorithm solves the leader election problem,
someone eventually gets elected.

• Then everyone gets elected, contradiction.

So we need something more…
• To solve the problem at all, we need something

more---some way of distinguishing the processes.
• E.g., assume processes have unique identifiers

(UIDs), which they “know”.
– Formally, each process starts with its own UID in a

special state variable.
• UIDs are elements of some data type, with

specified operations, e.g.:
– Arbitrary totally-ordered set with just (<, =, >)

comparisons.
– Integers with full arithmetic.

• Different UIDs can appear anywhere in the ring,
but each can appear only once.

A basic algorithm
[LeLann] [Chang, Roberts]

• Assumes:
– Unidirectional communication (clockwise)
– Processes don’t know n
– UIDs, comparisons only

• Idea:
– Each process sends its UID in a msg, to be relayed

step-by-step around the ring.
– When process receives a UID, compares with its own.
– If incoming is:

• Bigger, pass it on.
• Smaller, discard.
• Equal, process declares itself the leader.

– Elects process with the largest UID.

In terms of our formal model:
• M, the message alphabet: Set of UIDs
• statesi: Consists of values for state variables:

– u, holds its own UID
– send, a UID or ⊥, initially its own UID
– status, one of {?, leader}, initially ?

• starti: Defined by the initializations.
• msgsi: Send contents of send variable, to clockwise nbr.
• transi:

– Defined by pseudocode (p. 28):
if incoming = v, a UID, then

case
v > u: send := v
v = u: status := leader
v < u: no-op

endcase
– Entire block of code is treated as atomic.

Correctness proof

• Prove exactly one process ever gets elected
leader.

• More strongly:
– Let imax be the process with the max UID, umax.
– Prove:

• imax outputs “leader” by end of round n.
• No other process ever outputs “leader”.

imax outputs “leader” after n rounds
• Prove by induction on number of rounds.
• But need to strengthen, to say what happens after r rounds, 0 ≤ r ≤ n.

• Lemma 2: For 0 ≤ r ≤ n-1, after r rounds, send at process
(imax + r) mod n contains umax.

• That is, umax is making its way around the ring.

• Proof of Lemma 2:
– Induction on r.
– Base: Check the initialization.
– Inductive step: Key fact: Everyone else lets umax pass through.

• Use Lemma 2 for r = n-1, and a little argument about the nth round to
show the correct output happens.

• Key fact: imax uses arrival of umax as signal to set its status to leader.

Uniqueness
• No one except imax ever outputs “leader”.
• Again, strengthen claim:
• Lemma 3: For any r ≥ 0, after r rounds, if i ≠ imax and j is

any process in the interval [imax,i), then j’s send doesn’t
contain ui.

• Thus, ui doesn’t get past imax when moving around the ring.

imax

i

j

• Proof:
– Induction on r.
– Key fact: imax discards ui (if no one has

already).

• Use Lemma 3 to show that no one
except imax ever receives its own UID,
so never elects itself.

Invariant proofs
• Lemmas 2 and 3 are examples of invariants---properties that are true in

all reachable states.
• Another invariant: If r = n then the status variable of imax = leader.
• Invariants are usually proved by induction on the number of steps in an

execution.
– May need to strengthen, to prove by induction.
– Inductive step requires case analysis.

• In this class:
– We’ll outline key steps of invariant proofs, not present all details.
– We’ll assume you could fill in the details if you had to.
– Try some examples in detail.

• Invariant proofs may seem like overkill here, but:
– Similar proofs work for much harder synchronous algorithms.
– Also for asynchronous algorithms, and partially synchronous algorithms.
– The properties, and proofs, are more subtle in those settings.

• Invariants provide the main method for proving properties of distributed
algorithms.

Complexity bounds
• What to measure?

– Time = number of rounds until “leader”: n
– Communication = number of single-hop messages: ≤ n2

• Variations:
– Non-leaders announce “non-leader”:

• Any process announces “non-leader” as soon as it sees a UID higher
than its own.

• No extra costs.
– Everyone announces who the leader is:

• At end of n rounds, everyone knows the max.
– No extra costs.
– Relies on synchrony and knowledge of n.

• Or, leader sends a special “report” message around the ring.
– Time: ≤ 2n
– Communication: ≤ n2 + n
– Doesn’t rely on synchrony or knowledge of n.

Halting
• Add halt states, special “looping” states from

which all transitions leave the state unchanged,
and that generate no messages.

• For all problem variations:
– Can halt after n rounds.

• Depends on synchrony and knowledge of n.
– Or, halt after receiving leader’s “report” message.

• Does not depend on synchrony or knowledge of n

• Q: Can a process just halt (in basic problem) after
it sees and relays some UID larger than its own?

• A: No---it still has to stay alive to relay messages.

Reducing the communication
complexity [Hirschberg, Sinclair]

• O(n log n), rather than O(n2)
• Assumptions:

– Bidirectional communication
– Ring size not known.
– UIDs with comparisons only

• Idea:
– Successive doubling strategy

• Used in many distributed algorithms where network size is unknown.
– Each process sends a UID token in both directions, to successively

greater distances (double each time).
– Going outbound: Token is discarded if it reaches a node whose

UID is bigger.
– Going inbound: Everyone passes the token back.
– Process begins next phase only if/when it gets both its tokens back.
– Process that gets its own token in outbound direction, elects itself

the leader.

In terms of formal model:

• Needs local process description.
• Involves bookkeeping, with hop counts.
• LTTR (p. 33)

Complexity bounds

• Time:
– Worse than [LCR] but still O(n).
– Time for each phase is twice the previous, so

total time is dominated by last complete phase
(geometric series).

– Last phase is O(n), so total is also.

Communication bound: O(n log n)
• 1 + ⎡log n⎤ phases: 0,1,2,…
• Phase 0: All send messages both ways, ≤ 4n messages.
• Phase k > 0:

– Within any block of 2k-1 + 1 consecutive processes, at most one is still alive
at the start of phase k.

• Others’ tokens are discarded in earlier phases, stop participating.
– So at most ⎣ n / (2k-1 + 1) ⎦ start phase k.
– Total number of messages at phase k is at most

4 (2k ⎣n / (2k-1 + 1) ⎦) ≤ 8n

• So total communication is as most
8 n (1 + ⎡log n⎤) = O(n log n)

Out and back,
both directions

New distance

Non-comparison-based algorithms

• Q: Can we improve on worst-case O(n log n) messages to
elect a leader in a ring, if UIDs can be manipulated using
arithmetic?

• A: Yes, easily!
• Consider case where:

– n is known
– Ring is unidirectional
– UIDs are positive integers, allowing arithmetic.

• Algorithm:
– Phases 1,2,3,…each consisting of n rounds
– Phase k

• Devoted to UID k.
• If process has UID k, circulates it at beginning of phase k.
• Others who receive it pass it on, then become passive (or halt).

– Elects min

Complexity bounds
• Communication:

– Just n (one-hop) messages
• Time:

– umin n
– Not practical, unless the UIDs are small integers.

• Q: What if n is unknown?
• A: Can still get O(n) messages, though now the time is

even worse: O(2umin n).
– VariableSpeeds algorithm, Section 3.5.2
– Different UIDs travel around the ring at different speeds, smaller

UIDs traveling faster
– UID u moves 1 hop every 2u rounds.
– Smallest UID gets all the way around before next smallest has

gone half-way, etc.

Next time…
• Lower bound on communication for leader election

in rings.
• Basic computational tasks in general synchronous

networks:
– Leader election, breadth-first search, shortest paths,

broadcast and convergecast.
• Sections 3.6, 4.1-4.3

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Distributed algorithms
	This course
	Distributed algorithms research
	Administrative info (Handout 1)
	Topic overview (Handout 2)
	Detailed topic overview
	More topics
	Still more topics
	Now start the course…
	Synchronous network model
	Remarks
	Executions
	Leader election
	Simple case: Ring network
	Proof of Theorem 1
	So we need something more…
	A basic algorithm [LeLann] [Chang, Roberts]
	In terms of our formal model:
	Correctness proof
	imax outputs “leader” after n rounds
	Uniqueness
	Invariant proofs
	Complexity bounds
	Halting
	Reducing the communication complexity [Hirschberg, Sinclair]
	In terms of formal model:
	Complexity bounds
	Communication bound: O(n log n)
	Non-comparison-based algorithms
	Complexity bounds
	Next time…

