Massachusetts Institute of Technology Handout 13
6.852: Distributed Algorithms
Prof. Nancy Lynch November 5, 2009

Problem Set 5, Part a

Due: Thursday, November 19, 2009

Reading:

Herlihy-Shavit book, Chapter 7;

Mellor-Crummey and Scott paper;

Magnussen, Ladin, and Hagersten paper (optional); Chapter 11 (skim)
Chapter 12.

Reading for next week:

Chapter 13

Problems:

1. Prove that Anderson’s array algorithm implements a queue lock by giving a simulation relation from
that algorithm to the QueueME automaton in the book. This means you need to write automaton
code for Anderson’s algorithm. You should use Tempo to typecheck your code. You may find it easier
to do the proof assuming an infinite array first.

2. Give an execution of Mellor-Crummey and Scott’s MCS algorithm in which a process must wait (i.e.,
spin at the waitfor statement) in its exit region. Why does this not violate the progress condition for
exiting the critical section? Assuming an upper bound ¢ on the local step time of any process (including
access to shared memory), can you bound the time a process may have to wait in its exit region?

3. Exercise 12.2.

4. Exercise 12.5.

Handout 13: Problem Set 5, Part a

How to declare shared variables in tempo?

Short answer: Tempo has no built-in support for shared variables.

Declare them as regular variables and use tempo comments to indicate they are shared. e.g.:

myvarl: Nat := 0;
myvar2: Nat := 0;

% sxkxkxkkk START OF SHARED VARIABLES *kkkxkkk*
mysharedl: Nat := 0;
myshared2: Nat := 0;

% x*kxkkxkx*k END OF SHARED VARIABLES #kkxkkkkx

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

