
This lecture continues our theme of cache-oblivious data structures.

First, we'll finally cover the black box we used last lecture to obtain cache-oblivious B-trees:

maintain an ordered file with O(1)-size gaps in O(lg
2
 N) moves per insert/delete in the middle of

the file. As an extra bonus, we'll see how to maintain a linked list subject to order queries in O(1)

time per insert/delete, which is a black box we used back in Lecture 1 to linearize the version

tree when implementing full persistence.

Second we'll cover cache-oblivious priority queues, supporting insert and delete-min in what's

usually sub-constant time per operation (!), O((1/B) logM/B (N/B)). This will be the first time we

see how to adapt to the cache size M, not just the block size B, in a cache-oblivious data

structure.

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

