
Retroactive data structures

Today's lecture is our second and final lecture on time travel, or more precisely, temporal data

structures. Here we will study retroactive data structures, which mimic the "plastic timeline"

model of time travel. For example, in Back to the Future, Marty goes back in time, makes

changes, and returns to the present that resulted from those changes and all the intervening

years. In a partially retroactive data structure, the user can go back in time, perform an

additional operation, return to the present that results, and query the resulting data structure.

In this way, we maintain a single (changing) timeline, consisting of the sequence of update

operations. Retroactive data structures can add, or remove, an update at any time, not just the

end (present). A fully retroactive data structure can furthermore query the data structure at

any time in the past. Finally, a third type of retroactivity, called "non-oblivious", puts queries on

the timeline as well, and reports the first query whose answer changed. As you might expect,

retroactivity is hard to obtain in general, but good bounds are known for several data structures

of interest.

[Details and references]

This lecture introduces the retroactive data structure and a new computation model, the cell

probe model. Retroactive data structures maintain a linear timeline and allow updates to be

performed at any time [Demaine, Iacono, Langerman -- 2003 / T. Alg 2007]. Partial retroactivity

only permits queries at the present time, while full retroactivity allows queries at any time. A

third kind of retroactivity, non-oblivious retroactivity, lets the user put a series of queries on the

time line, and whenever an update is performed, the data structure reports the first query

whose value has changed. For partial and full retroactivity, there are two easy cases. The first

one concerns commutative and invertible updates. The second, being slightly more complex,

concerns decomposable search problems [Bentley & Saxe -- J. Alg 1980], which is solved using a

segment tree. The harder situation with general transformation [Demaine, Iacono, Langerman -

- 2003 / T. Alg 2007] can be solved naively using rollback. Concerning general transformation's

lower bound, it has been proven that Ω(r) overhead can be necessary [Frandsen, Frandsen,

Mitlersen -- I&C 2001]. The same paper also proves a Ω((r/lgr)1/2) lower bound for the cell

probe model. The cell probe model is "a model of computation where the cost of a

computation is measured by the total number of memory accesses to a random access memory

with log n bits cell size. All other computations are not counted and are considered to be free."

[NIST]. A better lower bound for cell probe model, such as Ω(r/poly lgr), is open. With the help

of a geometric representation, we show a partially retroactive priority queue with O(lgn) insert

and delete-min [Demaine, Iacono, Langerman -- 2003 / T. Alg 2007]. Other data structures

1

http://www.imdb.com/title/tt0088763/
http://erikdemaine.org/papers/Retroactive_TALG/paper.pdf
http://erikdemaine.org/papers/Retroactive_TALG/paper.pdf
http://erikdemaine.org/papers/Retroactive_TALG/paper.pdf
http://www.brics.dk/RS/98/11/BRICS-RS-98-11.pdf
http://www.brics.dk/RS/98/11/BRICS-RS-98-11.pdf
http://xlinux.nist.gov/dads/HTML/cellProbeModel.html
http://erikdemaine.org/papers/Retroactive_TALG/paper.pdf

mentioned include queue, deque, union-find, a fully retroactive priority queue with O(m1/2

lg m) per op and the successor problem [Giora & Kaplan -- T. Alg 2009]. A better fully persistent

priority queue is open. The best successor problem solution requires fractional cascading from

lecture 3 and the van Emde Boas data structure from lecture 11. For non-oblivious retroactivity

[Acar, Blelloch, Tangwongsan -- CMU TR 2007], a priority queue is shown with the help of a

geometric representation.

2

http://www.math.tau.ac.il/~haimk/papers/gk-soda07.pdf
http://www.cs.cmu.edu/~ktangwon/research/socg07.pdf

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

