
Persistent data structures 

 

The first lecture is about “persistence” (which corresponds to the “branching universe” model 

of time travel). On the one hand, we'd like to remember all past versions of our data structure 

(“partial persistence”). On the other hand, we'd like to be able to modify past versions of our 

data structure, forking off a new version (“full persistence”). Surprisingly, both of these goals 

are achievable with only a constant-factor overhead, in a fairly general model called the 

“bounded-degree pointer machine.” A bigger challenge is the ability to merge different versions 

into one version, which can e.g. allow you to double your data structure's size in one operation 

(“confluent persistence”). It's still unsolved whether this is possible with small overhead, but I'll 

describe what's known.  

 

[Details and references]  

 

This lecture overviews the nine subjects of the course: integer and string data structures, 

persistent and dynamic data structures, data structures that takes memory-hierarchy into 

account and data structures that uses a minimal amount of space, the problem of whether 

there exists an optimal binary search tree and the studying of hashing, and geometric data 

structures. The first lecture covers persistent data structures. First we introduce the pointer 

machine model, and four levels of persistencies: partial, full, confluent, and functional. Then we 

show that any pointer-machine DS with no more than O(1) pointers to any nodes (in any 

version) can be made partially persistent with O(1) amortized multiplicative overhead & O(1) 

space per change [Driscoll, Sarnak, Sleator, Tarjan - JCSS 1989]. Then we show that this applies 

to full persistence as well [Driscoll, Sarnak, Sleator, Tarjan - JCSS 1989] with the help of an order 

file maintenance data structure [Dietz & Sleator - STOC, 1987]. We briefly mention a 

deamortization technique for partial persistence [Brodal - NJC 1996] with its full persistence-

version remaining open. For conflict persistence, in the general transformation scenario, given 

a version v in the version DAG, we define e(v) = 1+ log(#paths from root to v), which measures 

the version DAG's deviation from a tree. Confluent persistence with O(e(v)) per operation is 

possible [Fiat & Kaplan - J.Alg 2003]. A data structure with O(lgn) or lower cost per op remains 

open. For disjoin transformation, O(lgn) overhead is possible [Callette, Iacono, Langerman - 

SODA 2012]. For functional persistence, we show a data structure for balanced BST with O(lgn) 

per op [Okasaki-book 2003], a data structure for link-cut tree with the same bound [Demaine, 

Langerman, Price], one for deques with concatenation in O(1) per op [Kaplan,Okasaki, Tarjan - 

SICOMP 2000] and update and search in O(lgn) per op [Brodal, Makris, Tsichlas, - ESA 2006], 

and one for tries with local navigation and subtree copy/delete and O(1) fingers maintained to 

1

http://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf
http://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf
http://www.cs.au.dk/~gerth/papers/njc96.pdf
http://www.math.tau.ac.il/~haimk/papers/journal2.pdf
http://arxiv.org/pdf/1104.3045v1.pdf
http://arxiv.org/pdf/1104.3045v1.pdf
http://books.google.com/books/about/Purely_functional_data_structures.html?id=SxPzSTcTalAC
http://erikdemaine.org/papers/ConfluentTries_Algorithmica/paper.pdf
http://www.eecs.usma.edu/webs/people/okasaki/swat98cat.pdf
http://www.eecs.usma.edu/webs/people/okasaki/swat98cat.pdf
http://www.cs.au.dk/~gerth/papers/esa06trees.pdf
http://www.eecs.usma.edu/webs/people/okasaki/swat98cat.pdf
http://dl.acm.org/citation.cfm?doid=28395.28434


"present" [Demaine, Langerman, Price]. What's beyond the scope of this lecture includes a log 

factor separation for functional persistence from pointer machine [Pippinger - TPLS 1997], the 

open problem of proving bigger separation for both functional and confluent persistence, 

general transformations for functional and confluent persistence, lists with split and 

concatenate, and arrays with copy and paste. 

2

http://erikdemaine.org/papers/ConfluentTries_Algorithmica/paper.pdf
http://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/Pure Versus Impure LISP.pdf


MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



