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Models, Models, Models 

Model Year Blocking Caching Levels Simple 

Idealized 
2-level 

1972 ✓ ✗ 2 ✓ 

Red-blue pebble 1981 ✗ ✓ 2 ✓− 

External memory 1987 ✓ ✓ 2 ✓ 

HMM 1987 ✗ ✓ እ ✓ 
BT 1987 ~ ✓ እ ✓− 

(U)MH 1990 ✓ ✓ እ ✗ 
Cache oblivious 1999 ✓ ✓ 2–እ ✓+ 
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Physics 

 Case for nonuniform access cost 

 Circuits? 
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Idealized Two-Level Storage 
[Floyd — Complexity of Computer Computations 1972] 

 RAM = blocks of ሻ ሎ items 

 Block operation: 

 Read up to ሎ items
 
from two blocks ሯዋ ሰ
 

 Write to third block ሱ 

 Ignore item order within block 

CPU 

ሎ items 

ሯ 

ሰ 

ሱ 

 CPU operations considered free 

 Items are indivisible 
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Permutation Lower Bound 
[Floyd — Complexity of Computer Computations 1972] 

ሎ items  Theorem: Permuting ሚ items to 
ሯሚ኎ሎ (full) specified blocks needs
 

ሚ
 
ሰም ቸቻታ ሎ 

ሎ 
ሱblock operations, in average case 

኱
 Assuming ሺ ሎ (tall disk)

እ 

 Simplified model:  Move items instead of copy
 
 Equivalence: Follow item’s path from start to finish 

CPU 
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Permutation Lower Bound 
[Floyd — Complexity of Computer Computations 1972] 

ሎ items  Potential: ሚ ሶ ኷ ሴ዆዇ ቸቻታ ሴ዆዇ 
ሯ

዆ዋ዇ 

# items in block ሯ destined for block ሰ 
ሰ 

 Maximized in target configuration
 
of full blocks (ሴ዆዆ሶሎሥ: ሚ ሶ ሚ ቸቻታ ሎ
 

ሱ 
኱

 Random configuration with ሺ ሎ 
እ 

has � ሴ዆዇ ሶ ማሤቝሥ ኆ � ሚ ሶ ማሤሚሥ 

 Claim: Block operation increases ሚ by ሻ ሎ 
኱ ቔ቗቏ እሩኲሤ኱ሥ 

 ኆ Number of block operations ሼ 
እ 
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Permutation Lower Bound 
[Floyd — Complexity of Computer Computations 1972] 

ሎ items  Potential: ሚ ሶ ኷ ሴ዆዇ ቸቻታ ሴ዆዇ 
ሯ

዆ዋ዇ 

# items in block ሯ destined for block ሰ 
ሰ 

 Maximized in target configuration
 
of full blocks (ሴ዆዆ሶሎሥ: ሚ ሶ ሚ ቸቻታ ሎ
 

ሱ 
኱

 Random configuration with ሺ ሎ 
እ 

has � ሴ዆዇ ሶ ማሤቝሥ ኆ � ሚ ሶ ማሤሚሥ 

 Claim: Block operation increases ሚ by ሻ ሎ 
ሻ ሾ ቸቻታ ሾ ሯ ሿ ቸቻታ ሿ ሯ ሾ ሯ ሿ 

o So combining groups ሾ & ሿ increases ሚ by ሻ ሾ ሯ ሿ 

o Fact: ሾ ሯ ሿ ቸቻታ ሾ ሯ ሿ 
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Permutation Bounds 
[Floyd — Complexity of Computer Computations 1972] 

 Theorem: ም 
኱ 

እ 
ቸቻታ ሎ 

 Tight for ሎ ሶ ማሤቝሥ 

 Theorem: ማ 
኱ 

እ 
ቸቻታ 

኱ 

እ 

 Similar to radix sort, 
where key = target block index 

 Accidental claim: tight for all ሎ ሹ 
኱ 

እ 

ሎ items 

ሯ 

ሰ 

ሱ 

CPU 

኱
 We will see: tight for ሎ ሺ ቸቻታ 

እ 
© Springer-Verlag US. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


   

 

 

 

 

 

 

 

 

 

Idealized Two-Level Storage 
[Floyd — Complexity of Computer Computations 1972] 

 External memory & word RAM: ሎ items 

ሯ 

ሰ 

ሱ 

© Springer-Verlag US. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Idealized Two-Level Storage 
[Floyd — Complexity of Computer Computations 1972] 

 External memory & word RAM: 

 Foreshadowing future models: 

ሎ items 

ሯ 

ሰ 

ሱ 

CPU 

© Springer-Verlag US. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

11

http://ocw.mit.edu/help/faq-fair-use/


  

 
  

  

 

 
  

 

    

 

 

 

Pebble Game 
[Hopcroft, Paul, Valiant — J. ACM 1977] 

inputs:  View computation as DAG 
of data dependencies 

 Pebble = “in memory” 

 Moves: 

 Place pebble on node outputs: 

if all predecessors have a pebble 

 Remove pebble from node 

 Goal: Pebbles on all output nodes 

 Minimize maximum number of pebbles over time 
12



  

  

 

 

 

 

 

Pebble Game 
[Hopcroft, Paul, Valiant — J. ACM 1977] 

inputs:  Theorem: Any DAG can be 
ዋ

“executed” using ማ 
ቔ቗቏ ዋ 

maximum pebbles 

outputs:  Corollary: 
ሺ 

�T�M� ሺ ር �SP!�� 
ቸቻታ ሺ 
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Red-Blue Pebble Game 
[Hong & Kung — STOC 1981] 

 Red pebble = “in cache” 
 Blue pebble = “on disk” 
 Moves: 
 Place red pebble on node if all 

predecessors have red pebble 

 Remove pebble from node 

 Write: Red pebble ቆ blue pebble
 
 Read: Blue pebble ቆ red pebble
 

 Goal: Blue inputs to blue outputs
 
 ሻ ሙ red pebbles at any time 

inputs: 

outputs: 

minimize 
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Red-Blue Pebble Game 
[Hong & Kung — STOC 1981] 

 Red pebble = “in cache” inputs: 

 Blue pebble = “on disk” 

15

outputs: 

minimize number of
 
cache ቈ disk I/Os
 

(memory transfers) 




 
  

 
 
 

 

 
 

  

 
  

 
  

  
  

   
 

  
 

Red-Blue Pebble Game Results 
[Hong & Kung — STOC 1981] 

Computation DAG 
Memory 

Transfers 
Speedup 

Fast Fourier 
Transform (FFT) 

ል ሚ ቸቻታኰ ሚ ል ቸቻታ ሙ 

Ordinary matrix-
vector multiplication 

ል 
ሚሠ 

ሙ 
ል ሙ 

Ordinary matrix-
matrix multiplication 

ል 
ሚሡ 

ሙ 
ል ሙ 

Odd-even 
transposition sort 

ል 
ሚሠ 

ሙ 
ል ሙ 

ሚ዁
ሚ ሲ ሚ ሲ ኘ ሲ ሚ grid 

ል ሙሟዪሤ዁ሩሟሥ ም 
ሙሟዪሤ዁ሩሟሥ ሪ 
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Comparison 

Idealized two­ Red-blue 
level storage pebble game 

[Floyd 1972] [Hong & Kung 1981] 
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I/O Model 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

 AKA: External Memory Model, Disk Access Model 

 Goal: Minimize number of I/Os (memory transfers) 
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Scanning 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

 Visiting ሚ elements in order costs 

memory transfers 

ኰ 
 More generally, can run ሻ parallel scans, 


እ 
keeping 1 block per scan in cache 

ኰ
 E.g., merge ማ lists of total size ሚ 

እ 
኱

in ማ ቝ ሯ memory transfers 
እ 

ማ ቝ ሯ 
኱ 

እ 
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Practical Scanning    [Arge] 

 Does the ሎ factor matter? 

 Should I presort my linked list before traversal? 

 Example: 

 ሚ ሶ ቞ቡቢዋቜቜቜዋቜቜቜ ~ 1GB 

 ሎ ሶ ቤዋቜቜቜ ~ 32KB (small) 

 1ms disk access time (small) 

 ሚ memory transfers take 256,000 sec ሸ 71 hours 


኱ 

memory transfers take ቞ቡቢ኎ቤ ሶ ዆ዅ seconds
 
እ 
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Searching 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

ል ቸቻታእረሟ ሚ 
 Finding an element ሾ among ሚ items requires 


memory transfers
 

 Lower bound: (comparison model) 

 Each block reveals where ሾ fits among ሎ items
 

 ኆ Learn ሻ ቸቻታ ሎ ሯ ቝ 

 Need ቸቻታ ሚ ሯ ቝ bits 

 Upper bound: 

 B-tree 

 Insert & delete
 
in ማ ቸቻታእረሟ ሚ
 

bits per read 
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Sorting and Permutation 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

 Sorting bound: ል 

 Permutation bound: ል 

 Either sort or use naïve RAM algorithm 

 Solves Floyd’s two-level storage problem (ሙ ሶ ቟ሎ) 

኱ 

እ 
ቸቻታኰ እ኎

኱ 

እ 

ቹትቺ ሚዋ 
኱ 

እ 
ቸቻታኰ እ኎

኱ 

እ 
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Sorting Lower Bound 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

኱ ኱ 
 Sorting bound: ም ቸቻታኰ኎እእ እ 

 Always keep cache sorted (free) 

 Might as well presort each block 

 Upon reading a block, learn how those ሎ items fit 
amongst ሙ items in cache 

ኰ
 ኆ Learn ቸታ ኰረእ ዧ ሎ ቸታ bits 

እ እ 

 Need ቸታ ሚዒ ዧ ሚ ቸታ ሚ bits 

 Know ሚ ቸታ ሎ bits from block presort 
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Sorting Upper Bound 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

኱ ኱ 
 Sorting bound: ማ ቸቻታኰ኎እ
እ እ 

ኰ
 ማ -way mergesort
 

እ 

ኰ ኰ ኱
 ሠ ሚ ሶ ሠ ሚቁ ሯ ማ ቝ ሯ 

እ እ እ 

 ሠ ሎ ሶ ማ ቝ 

ሚዪሎ ሚዪሎ 
ሙዪሎ 

኱
ቸቻታኰ኎እ እ ሚዪሎ 

levels 

ሚዪሎ ቝ ቝ ቝ 
24



 
    

  
 

  

   

 

   

 

Distribution Sort 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

 ሙ኎ሎ-way quicksort 

1.	 Find ሙ኎ሎ partition elements, 
roughly evenly spaced 

2. Partition array into ሙ኎ሎ ሯ ቝ pieces 
኱

 Scan: ማ memory transfers
 
እ 

3. Recurse 

 Same recurrence as mergesort 

25



 
    

	   
  

    

   

 
 

  

  

   

Distribution Sort Partitioning 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

1. ቻቾ ቲትቾቿኀዋ ቿቱቯቻቺተዋ ዏ ትቺኀቱቾኂቭቸ ቻቲ ሙ items:
 
 Sort in ማ ሙ኎ሎ memory transfers 

 Sample every 
ሟ 

ሙ኎ሎ th item 
ሢ 

 Total sample: በሚዪ ሙ኎ሎ items 

2. For ሯ ሶ ቝዋ቞ዋ ዏ, ሙ኎ሎ: 
 Run linear-time selection to find
 

sample element at ሯ኎ ሙ኎ሎ fraction
 
኱

 Cost: ማ ቁሎ each 
ኰ኎እ 

 Total:  ማ ሚ኎ሎ memory transf. 
26



 
    

 

Disk Parallelism 
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988] 

 ሜ
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Parallel Disks 

 J. Vitter and E. Shriver. Algorithms for parallel 
memory: Two-level memories. Algorithmica, 
12:110-147, 1994. 
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Random vs. Sequential I/Os [Farach, 

Ferragina, Muthukrishnan — FOCS 1998] 

 Sequential memory transfers are part of 
bulk read/write of ል ሙ items 

 Random memory transfer otherwise 

 Sorting: 
኱ ኱

 2-way mergesort achieves ማ ቸቻታ sequential 
እ እ 

኱ ኱ ኱ ኱

 ስ ቸቻታኰ኎እ random implies ም ቸቻታ total 

እ እ እ እ
 

 Same trade-off for 
suffix-tree construction 

29



   

  

 

 

 

 
 

 

      
    

 

Hierarchical Memory Model (HMM) 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 Nonuniform-cost RAM: 

 Accessing memory location ሾ costs ሬ ሾ ሶ ቸቻታ ሾ 

ቝ ቝ ቞ በ ቤ ቞዆1 1 1 1 1 
CPU 

“particularly simple model of computation that mimics 

the behavior of a memory hierarchy consisting of 

increasingly larger amounts of slower memory”
	

30



  

   

Why ቶ ኈ ሶ ዾሁዹ ኈ? [Mead & Conway 1980] 

© Pearson. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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HMM Upper & Lower Bounds 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

Problem Time Slowdown 

Semiring matrix 
multiplication 

ል ሚሡ ልሤቝሥ 

Fast Fourier 
Transform 

ልሤሚ ቸቻታ ሚ ቸቻታ ቸቻታ ሚሥ ል ቸቻታ ቸቻታ ሚ 

Sorting ልሤሚ ቸቻታ ሚ ቸቻታ ቸቻታ ሚሥ ል ቸቻታ ቸቻታ ሚ 

Scanning input 
(sum, max, DFS, 
planarity, etc.) 

Binary search 

ል ሚ ቸቻታ ሚ 

ል ቸቻታሠ ሚ 

ል ቸቻታ ሚ 

ል ቸቻታ ሚ 
32



  
   

  
  

 

 

     

      

      

Defining “Locality of Reference” 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 Any problem solvable in ሠ ሴ 
ቸቻታ ሴ 

time on RAM 
is solvable in ማ ሠ ሴ time on HMM 

 Problem is 

 Nonlocal if ል ሠ ሴ ቸቻታ ሴ is optimal 

 Local if ል ሠ ሴ is possible 

ሽሾቂሮሳሳ
 Semilocal if is ዛሤቝሥ and ስ ቸቻታ ሴ
 

ሽሾቂሸሧሳ 

33



 
   

   

 
 

  

   

   

  
  

   

HMM Results 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

Problem Locality 
ብቦቪ቞ባባ 

ብቦቪቨ቗ባ 

Matrix multiplication 
on a semiring 

Local ልሤቝሥ 

Fast Fourier Transform Semilocal ል ቸቻታ ቸቻታ ሴ 

Sorting Semilocal ል ቸቻታ ቸቻታ ሴ 

Scanning input (sum, 
max, DFS, planarity, etc.) 

Nonlocal ል ቸቻታ ሴ 

Binary search Nonlocal ል ቸቻታ ሴ 

34



  
   

  

  

 

     

      

     

Defining “Locality of Reference” 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 Any problem solvable in ሠ ሴ 

is solvable in ማ ሠ ሴ ቮ ሬ ሠ ሴ 

time on RAM 

time on HMM 

 Problem is 

 Nonlocal if ል ሠ ሴ ቸቻታ ሴ is optimal 

 Local if ል ሠ ሴ is possible 

ሽሾቂሮሳሳ
 Semilocal if is ዛሤቝሥ and ስ ቸቻታ ሴ 

ሽሾቂሸሧሳ 
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ዠዥዥቶሤኈሥ 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 Say accessing memory location ሾ costs ሬ ሾ
 

 Assume ሬ ቞ሾ ሻ ሩ ሬሤሾሥ for a constant ሩ ሺ ቜ
 
(“polynomially bounded”) 

 Write  ሬ ሾ ሶ ክ዆ ሽ዆ ቮ ረሾ ሼ ሾ዆ዕ ሩ 
(weighted sum of threshold functions) 

ሾ዆ 

ሾሟ ሰ ሾሞ 
ሽሟ

ሾሞCPU 
0 ሽሠሽሞ 

ሾሠ ሰ ሾሟ 
… 

36



 
   

   

  
   

  

  
 

 
  

 

Uniform Optimality 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 Consider one term ሬኰ ሾ ሶ ረሾ ሼ ሙዕ ሩ 
 Algorithm is uniformly optimal 

if optimal on �MMዃከ ዕ for all ሙ 

 Implies optimality for all ሬ ሾ 

እሙ 
ቝ 

ሙ 
red-blue 

pebble game! 

37



𝐇𝐌𝐌𝒇𝑴 𝒙  Upper & Lower Bounds 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

Problem Time Speedup 

Semiring matrix 
multiplication 

Θ
𝑁3

𝑀
 Θ 𝑀  

Fast Fourier 
Transform 

Θ 𝑁 log𝑀 𝑁  Θ log𝑀  

Sorting Θ 𝑁 log𝑀 𝑁  Θ log𝑀  

Scanning input 
(sum, max, DFS, 
planarity, etc.) 

Θ 𝑁 −𝑀  1 + 1/𝑀 

Binary search Θ log𝑁 − log𝑀  1 + 1/ log𝑀 

upper bounds known 
by Hong & Kung 1981 

other bounds follow from 
Aggarwal & Vitter 1987 



  
   

 
 

 
   

 
    

 

   
  

Implicit HMM Memory Management 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 Instead of algorithm explicitly moving data, 
use any conservative replacement strategy 
(e.g., FIFO or LRU) to evict from cache 
[Sleator & Tarjan — C. ACM 1985] 

 ሠሺቀቃ ሚዋ ሙ ሻ ቞ ቮ ሠሽሾቂ ሚዋ ቞ሙ 
ሶ ማ ሠሽሾቂ ሚዋ ሙ assuming ሬ ቞ሾ ሻ ሩ ሬሤሾሥ 

 Not uniform! 

እCPU ሙ 
ቝ0 
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Implicit HMM Memory Management 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 For general ሬ, split memory into chunks at ሾ 
where ሬሤሾሥ doubles  (up to rounding) 

ሾሞ ሾሟ ሰ ሾሞ 
ሽሞ 

CPU ሾሠ ሰ ሾሟ 
ሽሟ ሽሠ … 0 

40



  
   

  
  

 
 

 

 

      
     

 

Implicit HMM Memory Management 
[Aggarwal, Alpern, Chandra, Snir — STOC 1987] 

 For general ሬ, split memory into chunks at ሾ 
where ሬሤሾሥ doubles  (up to rounding) 

 LRU eviction from first chunk into second; 
LRU eviction from second chunk into third; etc. 

 ሠኯኵኸ ሚ ሶ ማ ሠኲኳ኷ ሚ ሯ ሚ ቮ ሬ ሚ 
 Like MTF 

ቝ ቝ ቞ በ ቤ ቞዆1 1 1 1 1 
CPU 
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HMM with Block Transfer (BT) 
[Aggarwal, Chandra, Snir — FOCS 1987] 

 Accessing memory location ሾ costs ሬ ሾ 

 Copying memory interval from  ሾ ሰ ዆ ዏ ሾ 
to ሿ ሰ ዆ ዏ ሿ costs ሬ ቹቭኄ ሾዋ ሿ ሯ ዆ 
 Models memory pipelining ~ block transfer 

 Ignores block alignment, explicit levels, etc. 

ቝ ቝ ቞ በ ቤ ቞዆1 1 1 1 1 
CPU 
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BT Results 
[Aggarwal, Chandra, Snir — FOCS 1987] 

Problem 𝑓 𝑥 = log 𝑥 
𝑓 𝑥 = 𝑥𝛼, 
0 < 𝛼 < 1 

𝑓 𝑥 = 𝑥 
𝑓 𝑥 = 𝑥𝛼, 

𝛼 > 1 

Dot product, 
merging lists 

Θ 𝑁 log∗ 𝑁  Θ 𝑁 log log 𝑁  Θ(𝑁 log 𝑁) Θ 𝑁𝛼  

Matrix mult. Θ 𝑁3  Θ 𝑁3  Θ 𝑁3  
Θ 𝑁𝛼  

if 𝛼 > 1.5 

Fast Fourier 
Transform 

Θ 𝑁 log 𝑁  Θ 𝑁 log 𝑁  Θ 𝑁 log2 𝑁  Θ 𝑁𝛼  

Sorting Θ 𝑁 log 𝑁  Θ 𝑁 log 𝑁  Θ 𝑁 log2 𝑁  Θ 𝑁𝛼  

Binary 
search 

Θ
log2 𝑁

log log 𝑁
 Θ 𝑁𝛼  Θ 𝑁  Θ 𝑁𝛼  



  

 

  
   

  

     
     

 

     

 

ሎሟ 
ሎሠ 

ሎሡ 
ሎሢ 

Memory Hierarchy Model (MH) 
[Alpern, Carter, Feig, Selker — FOCS 1990] 

 Multilevel version of external-memory model 

 ሙ዆ ቈ ሙ዆ረሟ transfers happen in blocks of size ሎ዆ 
(subblocks of ሙ዆ረሟ), and take ሺ዆ time 

 All levels can be actively transferring at once 

ሙሞ ሙሟ ሙሠ ሙሡ ሙሢ 
0 ሺሞ ሺሟ ሺሠ ሺሡ 

CPU 

ሎሞ 
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ሎሟ 
ሎሠ 

ሎሡ 
ሎሢ 

… 

2 parameters 
1 function 

Uniform Memory Hierarchy (UMH) 
[Alpern, Carter, Feig, Selker — FOCS 1990] 

 Fix aspect ratio ዃ ሶ 
ኰዪእ 

እ 
, block growth ዄ ሶ 

እኾሠሗ 

እኾ 

 ሎ዆ ሶ ዄ዆ 

 
ኰኾ 

እኾ 
ሶ ዃ ቮ ዄ዆ 

 ሺ዆ ሶ ዄ዆ ቮ ሬሤሯሥ 

ሙሞ ሙሟ ሙሠ ሙሡ ሙሢ 
0 ሺሞ ሺሟ ሺሠ ሺሡ 

CPU 

ሎሞ 
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ሎሟ 
ሎሠ 

ሎሡ 

Random Access UMH (RUMH) 
[Vitter & Nodine — SPAA 1991] 

 RAM program + block move operations like BT, 
instead of manual control of all levels 

ሙሞ ሙሟ ሙሠ ሙ
0 ሺሞ ሺሟ ሺሠ ሺሡ 

CPU 

ሎሞ 
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ሎሢ 

ሙሢ 
…
 

ሡ 



 

  

(skipping SUMH) 

 Worse (tight) bounds in Vitter & Nodine
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UMH Results 
[Alpern, Carter, Feig, Selker — FOCS 1990] 

Problem Upper Bound Lower Bound 

ቝ ቝMatrix transpose 
ማ ቝ ሯ ሚሠ ም ቝ ሯ ሚሠ 

ዄሠሬ ሯ ሶ ቝ ዃዄሢ 

ቝ ቝMatrix mult. 
ማ ቝ ሯ ሚሡ ም ቝ ሯ ሚሡ 

ዄሡ ዄሡሬ ሯ ሶ O ዄ዆ 

FFT 
ማ ቝ ሎሢሬ ሯ ሻ ሯ 

General approach: Divide & conquer 
48



(R)UMH Sorting 
[Vitter & Nodine — SPAA 1991] 

Problem 𝒇 𝒊 = 𝟏 𝒇 𝒊 =
𝟏

𝒊 + 𝟏
 

𝒇 𝒊 =
𝟏

𝜷𝒄𝒊
,  

𝒄 > 𝟎 

Sorting Θ 𝑁 log𝑁  
Θ 𝑁 log𝑁 ⋅ 
log log𝑁  Θ 𝑁1+

𝑐
2 + 𝑁 log𝑁  



P-HMM Results 
[Vitter & Shriver — STOC 1990] 

Problem 𝒇 𝒙 = 𝐥𝐨𝐠 𝒙 
𝒇 𝒙 = 𝒙𝜶, 

𝟎 < 𝜶 <
𝟏

𝟐
 

𝒇 𝒙 = 𝒙𝟏/𝟐 
𝒇 𝒙 = 𝒙𝜶, 

𝜶 >
𝟏

𝟐
 

Sorting & FFT 

Θ 
𝑁

𝑃
log𝑁 ⋅ 

log 
log𝑁

log𝑃
  

Θ
𝑁

𝑃

𝛼+1

+
𝑁

𝑃
log𝑁  

Matrix mult. Θ
𝑁3

𝑃
 Θ

𝑁3

𝑃
 

Θ 
𝑁3

𝑃3 2 
log𝑁

+
𝑁3

𝑃
  

Θ 
𝑁2

𝑃

𝛼+1

+
𝑁3

𝑃
  



P-BT Results 
[Vitter & Shriver — STOC 1990] 

Problem 𝒇 𝒙 = 𝐥𝐨𝐠 𝒙 
𝒇 𝒙 = 𝒙𝜶, 
𝟎 < 𝜶 < 𝟏 

𝒇 𝒙 = 𝒙𝟏 
𝒇 𝒙 = 𝒙𝜶, 
𝜶 > 𝟏 

Sorting & FFT Θ
𝑁

𝑃
log𝑁  Θ

𝑁

𝑃
log𝑁  

Θ 
𝑁

𝑃
 log2

𝑁

𝑃

+ log𝑁   

Θ 
𝑁

𝑃

𝛼

+
𝑁

𝑃
log𝑁  

Problem 𝒇 𝒙 = 𝐥𝐨𝐠 𝒙 
𝒇 𝒙 = 𝒙𝜶, 

𝟎 < 𝜶 <
𝟑

.𝟐
 

𝒇 𝒙 = 𝒙𝟑/𝟐 
𝒇 𝒙 = 𝒙𝜶, 

𝜶 >
𝟑

𝟐
 

Matrix mult. Θ
𝑁3

𝑃
 Θ

𝑁3

𝑃
 

Θ 
𝑁3

𝑃3 2 
log𝑁

+
𝑁3

𝑃
  

Θ
𝑁2

𝑃

𝛼

 



  

 

(skipping UPMH from Alpern et al.) 
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P-(R)UMH Sorting 
[Vitter & Nodine — SPAA 1991] 

Problem 𝒇 𝒊 = 𝟏 𝒇 𝒊 =
𝟏

𝒊 + 𝟏
 

𝒇 𝒊 =
𝟏

𝜷𝒄𝒊
,  

𝒄 > 𝟎 

Sorting Θ
𝑁

𝑃
log𝑁  

Θ 
𝑁

𝑃
log𝑁 ⋅ 

log
log𝑁

log 𝑃
  

Θ
𝑁

𝑃

1+
𝑐
2
+
𝑁

𝑃
log𝑁  



 

  
  

   

Cache-Oblivious Model    [Frigo, 

Leiserson, Prokop, Ramachandran — FOCS 1999] 

 Analyze RAM algorithm (not knowing ሎ or ሙ) 
on external-memory model 
 Must work well for all ሎ and ሙ 
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Cache-Oblivious Model    [Frigo, 

Leiserson, Prokop, Ramachandran — FOCS 1999] 

 Automatic block transfers via LRU or FIFO 

 Lose factor of 2 in ሙ and number of transfers 
 Assume ሠ ሎዋ ቞ሙ ሻ ሩ ሠሤሎዋ ሙሥ 



 

 

 
  

 

 

  
  

 

  

Cache-Oblivious Model    [Frigo, 

Leiserson, Prokop, Ramachandran — FOCS 1999] 

 Clean model 

 Adapts to changing ሎ (e.g., disk tracks) and 
changing ሙ (e.g., competing processes) 

 Adapts to multilevel memory hierarchy (MH)
 
 Assuming inclusion 

ሙሞ ሙሟ 
0 ሺሞ ሺሟ

CPU 

ሎሞ 
ሎሟ 
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Scanning   [Frigo, Leiserson, Prokop, 

Ramachandran — FOCS 1999] 

 Visiting ሚ elements in order costs 
኱

ማ ቝ ሯ memory transfers 
እ 

 More generally, can run ማ ቝ parallel scans
 
 Assume ሙ ሼ ሩ ሎ for appropriate constant ሩ ሺ ቜ 

኱ 
 E.g., merge two lists in ማ 

እ 
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Cache Oblivious 

 Prokop: cache-oblivious -> SUMH conversion 

 Also obviously cache-oblivious -> external 
memory 
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Searching    [Prokop — Meng 1999] 

“van Emde Boas layout”
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Searching    [Prokop — Meng 1999] 

60

 ቴቱትታቴኀሤወሥ 
ቝ 

ሼ ቸታ ሎ
 
቞ 

 ሻ ቞ memory 
transfers per ወ 
 ሻ በ ቸቻታእ ሚ total 



 

  
 

    

 
  

  
 

   
     
   

Cache-Oblivious Searching 

 ቸታ ራ ሯ ስ ቝ ቸቻታእ ሚ is optimal 
[Bender, Brodal, Fagerberg, Ge, He, Hu, Iacono, 
López-Ortiz — FOCS 2003] 

 Dynamic B-tree in ማ ቸቻታእ ሚ per operation 

[Bender, Demaine, Farach-Colton — FOCS 2000]
 
[Bender, Duan, Iacono, Wu — SODA 2002] 
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[Brodal, 
Fagerberg, 
Jacob — 
SODA 2002] 



 

  

  

 
  

 

   
   

 
   

Cache-Oblivious Sorting 

኱ ኱ 
 ማ ቸቻታኰ኎እ possible, assuming 

እ እ 
ሙ ሼ ም ሎሟረዶ (tall cache) 

 Funnel sort:
 
mergesort analog
 

 Distribution sort 

[Frigo, Leiserson, Prokop, 
Ramachandran — FOCS 1999; 
Brodal & Fagerberg — ICALP 2002] 

 Impossible without tall-cache assumption
 
[Brodal & Fagerberg — STOC 2003] 
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Parallel Caching (Multicore), GPU, 
etc. 
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ALA 
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 http://courses.csail.mit.edu/6.851/ 
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Models, Models, Models 

Model Year Blocking Caching Levels Simple 

Idealized 
2-level 

1972 ✓ ✗ 2 ✓ 

Red-blue pebble 1981 ✗ ✓ 2 ✓− 

External memory 1987 ✓ ✓ 2 ✓ 

HMM 1987 ✗ ✓ እ ✓ 
BT 1987 ~ ✓ እ ✓− 

(U)MH 1990 ✓ ✓ እ ✗ 
Cache oblivious 1999 ✓ ✓ 2–እ ✓+ 
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