

The History of
I/O Models

Erik Demaine

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

1

Exa or zetta
(right after peta)

Disk

Memory Hierarchies in Practice
750 ps

CPU Registers Level 1
Cache

Level 2
Cache

…
14 ns 100B

100KB 1MB

10GB
Main

Memory
Courtesy of Futase_tdkr. Used with permission. 4 ms

1TB

Internet

1EB-1ZB

Outer Space
Courtesy of Rjt. Used with permission.< 1083

Courtesy of NASA, ESA, and M. Livio and the Hubble
20th Anniversary Team (STScI). License: Creative Commons BY.

2

Models, Models, Models

Model Year Blocking Caching Levels Simple

Idealized
2-level

1972 ✓ ✗ 2 ✓

Red-blue pebble 1981 ✗ ✓ 2 ✓−

External memory 1987 ✓ ✓ 2 ✓

HMM 1987 ✗ ✓ እ ✓
BT 1987 ~ ✓ እ ✓−

(U)MH 1990 ✓ ✓ እ ✗
Cache oblivious 1999 ✓ ✓ 2–እ ✓+

3

Physics

 Case for nonuniform access cost

 Circuits?

4

Idealized Two-Level Storage
[Floyd — Complexity of Computer Computations 1972]

 RAM = blocks of ሻ ሎ items

 Block operation:

 Read up to ሎ items

from two blocks ሯዋ ሰ

 Write to third block ሱ

 Ignore item order within block

CPU

ሎ items

ሯ

ሰ

ሱ

 CPU operations considered free

 Items are indivisible

5

Permutation Lower Bound
[Floyd — Complexity of Computer Computations 1972]

ሎ items  Theorem: Permuting ሚ items to
ሯሚ኎ሎ (full) specified blocks needs

ሚ

ሰም ቸቻታ ሎ

ሎ
ሱblock operations, in average case

኱
 Assuming ሺ ሎ (tall disk)

እ

 Simplified model: Move items instead of copy

 Equivalence: Follow item’s path from start to finish

CPU

6

Permutation Lower Bound
[Floyd — Complexity of Computer Computations 1972]

ሎ items  Potential: ሚ ሶ ኷ ሴ዆዇ ቸቻታ ሴ዆዇
ሯ

዆ዋ዇

items in block ሯ destined for block ሰ
ሰ

 Maximized in target configuration

of full blocks (ሴ዆዆ሶሎሥ: ሚ ሶ ሚ ቸቻታ ሎ

ሱ
኱

 Random configuration with ሺ ሎ
እ

has � ሴ዆዇ ሶ ማሤቝሥ ኆ � ሚ ሶ ማሤሚሥ

 Claim: Block operation increases ሚ by ሻ ሎ
኱ ቔ቗቏ እሩኲሤ኱ሥ

 ኆ Number of block operations ሼ
እ

7

Permutation Lower Bound
[Floyd — Complexity of Computer Computations 1972]

ሎ items  Potential: ሚ ሶ ኷ ሴ዆዇ ቸቻታ ሴ዆዇
ሯ

዆ዋ዇

items in block ሯ destined for block ሰ
ሰ

 Maximized in target configuration

of full blocks (ሴ዆዆ሶሎሥ: ሚ ሶ ሚ ቸቻታ ሎ

ሱ
኱

 Random configuration with ሺ ሎ
እ

has � ሴ዆዇ ሶ ማሤቝሥ ኆ � ሚ ሶ ማሤሚሥ

 Claim: Block operation increases ሚ by ሻ ሎ
ሻ ሾ ቸቻታ ሾ ሯ ሿ ቸቻታ ሿ ሯ ሾ ሯ ሿ

o So combining groups ሾ & ሿ increases ሚ by ሻ ሾ ሯ ሿ

o Fact: ሾ ሯ ሿ ቸቻታ ሾ ሯ ሿ

8

9

Permutation Bounds
[Floyd — Complexity of Computer Computations 1972]

 Theorem: ም
኱

እ
ቸቻታ ሎ

 Tight for ሎ ሶ ማሤቝሥ

 Theorem: ማ
኱

እ
ቸቻታ

኱

እ

 Similar to radix sort,
where key = target block index

 Accidental claim: tight for all ሎ ሹ
኱

እ

ሎ items

ሯ

ሰ

ሱ

CPU

኱
 We will see: tight for ሎ ሺ ቸቻታ

እ
© Springer-Verlag US. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Idealized Two-Level Storage
[Floyd — Complexity of Computer Computations 1972]

 External memory & word RAM: ሎ items

ሯ

ሰ

ሱ

© Springer-Verlag US. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

10

http://ocw.mit.edu/help/faq-fair-use/

Idealized Two-Level Storage
[Floyd — Complexity of Computer Computations 1972]

 External memory & word RAM:

 Foreshadowing future models:

ሎ items

ሯ

ሰ

ሱ

CPU

© Springer-Verlag US. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

11

http://ocw.mit.edu/help/faq-fair-use/

Pebble Game
[Hopcroft, Paul, Valiant — J. ACM 1977]

inputs:  View computation as DAG
of data dependencies

 Pebble = “in memory”

 Moves:

 Place pebble on node outputs:

if all predecessors have a pebble

 Remove pebble from node

 Goal: Pebbles on all output nodes

 Minimize maximum number of pebbles over time
12

Pebble Game
[Hopcroft, Paul, Valiant — J. ACM 1977]

inputs:  Theorem: Any DAG can be
ዋ

“executed” using ማ
ቔ቗቏ ዋ

maximum pebbles

outputs:  Corollary:
ሺ

�T�M� ሺ ር �SP!��
ቸቻታ ሺ

13

Red-Blue Pebble Game
[Hong & Kung — STOC 1981]

 Red pebble = “in cache”
 Blue pebble = “on disk”
 Moves:
 Place red pebble on node if all

predecessors have red pebble

 Remove pebble from node

 Write: Red pebble ቆ blue pebble

 Read: Blue pebble ቆ red pebble

 Goal: Blue inputs to blue outputs

 ሻ ሙ red pebbles at any time

inputs:

outputs:

minimize

14

Red-Blue Pebble Game
[Hong & Kung — STOC 1981]

 Red pebble = “in cache” inputs:

 Blue pebble = “on disk”

15

outputs:

minimize number of

cache ቈ disk I/Os

(memory transfers)

Red-Blue Pebble Game Results
[Hong & Kung — STOC 1981]

Computation DAG
Memory

Transfers
Speedup

Fast Fourier
Transform (FFT)

ል ሚ ቸቻታኰ ሚ ል ቸቻታ ሙ

Ordinary matrix-
vector multiplication

ል
ሚሠ

ሙ
ል ሙ

Ordinary matrix-
matrix multiplication

ል
ሚሡ

ሙ
ል ሙ

Odd-even
transposition sort

ል
ሚሠ

ሙ
ል ሙ

ሚ዁
ሚ ሲ ሚ ሲ ኘ ሲ ሚ grid

ል ሙሟዪሤ዁ሩሟሥ ም
ሙሟዪሤ዁ሩሟሥ ሪ

16

Comparison

Idealized two­ Red-blue
level storage pebble game

[Floyd 1972] [Hong & Kung 1981]

17

I/O Model
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

 AKA: External Memory Model, Disk Access Model

 Goal: Minimize number of I/Os (memory transfers)

18

Scanning
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

 Visiting ሚ elements in order costs

memory transfers

ኰ
 More generally, can run ሻ parallel scans,

እ
keeping 1 block per scan in cache

ኰ
 E.g., merge ማ lists of total size ሚ

እ
኱

in ማ ቝ ሯ memory transfers
እ

ማ ቝ ሯ
኱

እ

19

Practical Scanning [Arge]

 Does the ሎ factor matter?

 Should I presort my linked list before traversal?

 Example:

 ሚ ሶ ቞ቡቢዋቜቜቜዋቜቜቜ ~ 1GB

 ሎ ሶ ቤዋቜቜቜ ~ 32KB (small)

 1ms disk access time (small)

 ሚ memory transfers take 256,000 sec ሸ 71 hours


኱

memory transfers take ቞ቡቢ኎ቤ ሶ ዆ዅ seconds

እ

20

Searching
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

ል ቸቻታእረሟ ሚ
 Finding an element ሾ among ሚ items requires

memory transfers

 Lower bound: (comparison model)

 Each block reveals where ሾ fits among ሎ items

 ኆ Learn ሻ ቸቻታ ሎ ሯ ቝ

 Need ቸቻታ ሚ ሯ ቝ bits

 Upper bound:

 B-tree

 Insert & delete

in ማ ቸቻታእረሟ ሚ

bits per read

21

Sorting and Permutation
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

 Sorting bound: ል

 Permutation bound: ል

 Either sort or use naïve RAM algorithm

 Solves Floyd’s two-level storage problem (ሙ ሶ ቟ሎ)

኱

እ
ቸቻታኰ እ኎

኱

እ

ቹትቺ ሚዋ
኱

እ
ቸቻታኰ እ኎

኱

እ

22

Sorting Lower Bound
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

኱ ኱
 Sorting bound: ም ቸቻታኰ኎እእ እ

 Always keep cache sorted (free)

 Might as well presort each block

 Upon reading a block, learn how those ሎ items fit
amongst ሙ items in cache

ኰ
 ኆ Learn ቸታ ኰረእ ዧ ሎ ቸታ bits

እ እ

 Need ቸታ ሚዒ ዧ ሚ ቸታ ሚ bits

 Know ሚ ቸታ ሎ bits from block presort

23

Sorting Upper Bound
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

኱ ኱
 Sorting bound: ማ ቸቻታኰ኎እ
እ እ

ኰ
 ማ -way mergesort

እ

ኰ ኰ ኱
 ሠ ሚ ሶ ሠ ሚቁ ሯ ማ ቝ ሯ

እ እ እ

 ሠ ሎ ሶ ማ ቝ

ሚዪሎ ሚዪሎ
ሙዪሎ

኱
ቸቻታኰ኎እ እ ሚዪሎ

levels

ሚዪሎ ቝ ቝ ቝ
24

Distribution Sort
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

 ሙ኎ሎ-way quicksort

1.	 Find ሙ኎ሎ partition elements,
roughly evenly spaced

2. Partition array into ሙ኎ሎ ሯ ቝ pieces
኱

 Scan: ማ memory transfers

እ

3. Recurse

 Same recurrence as mergesort

25

	

Distribution Sort Partitioning
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

1. ቻቾ ቲትቾቿኀዋ ቿቱቯቻቺተዋ ዏ ትቺኀቱቾኂቭቸ ቻቲ ሙ items:

 Sort in ማ ሙ኎ሎ memory transfers

 Sample every
ሟ

ሙ኎ሎ th item
ሢ

 Total sample: በሚዪ ሙ኎ሎ items

2. For ሯ ሶ ቝዋ቞ዋ ዏ, ሙ኎ሎ:
 Run linear-time selection to find

sample element at ሯ኎ ሙ኎ሎ fraction

኱

 Cost: ማ ቁሎ each
ኰ኎እ

 Total: ማ ሚ኎ሎ memory transf.
26

Disk Parallelism
[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

 ሜ

27

Parallel Disks

 J. Vitter and E. Shriver. Algorithms for parallel
memory: Two-level memories. Algorithmica,
12:110-147, 1994.

28

Random vs. Sequential I/Os [Farach,

Ferragina, Muthukrishnan — FOCS 1998]

 Sequential memory transfers are part of
bulk read/write of ል ሙ items

 Random memory transfer otherwise

 Sorting:
኱ ኱

 2-way mergesort achieves ማ ቸቻታ sequential
እ እ

኱ ኱ ኱ ኱

 ስ ቸቻታኰ኎እ random implies ም ቸቻታ total

እ እ እ እ

 Same trade-off for
suffix-tree construction

29

Hierarchical Memory Model (HMM)
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 Nonuniform-cost RAM:

 Accessing memory location ሾ costs ሬ ሾ ሶ ቸቻታ ሾ

ቝ ቝ ቞ በ ቤ ቞዆1 1 1 1 1
CPU

“particularly simple model of computation that mimics

the behavior of a memory hierarchy consisting of

increasingly larger amounts of slower memory”
	

30

Why ቶ ኈ ሶ ዾሁዹ ኈ? [Mead & Conway 1980]

© Pearson. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

31

http://ocw.mit.edu/help/faq-fair-use/

HMM Upper & Lower Bounds
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Problem Time Slowdown

Semiring matrix
multiplication

ል ሚሡ ልሤቝሥ

Fast Fourier
Transform

ልሤሚ ቸቻታ ሚ ቸቻታ ቸቻታ ሚሥ ል ቸቻታ ቸቻታ ሚ

Sorting ልሤሚ ቸቻታ ሚ ቸቻታ ቸቻታ ሚሥ ል ቸቻታ ቸቻታ ሚ

Scanning input
(sum, max, DFS,
planarity, etc.)

Binary search

ል ሚ ቸቻታ ሚ

ል ቸቻታሠ ሚ

ል ቸቻታ ሚ

ል ቸቻታ ሚ
32

Defining “Locality of Reference”
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 Any problem solvable in ሠ ሴ
ቸቻታ ሴ

time on RAM
is solvable in ማ ሠ ሴ time on HMM

 Problem is

 Nonlocal if ል ሠ ሴ ቸቻታ ሴ is optimal

 Local if ል ሠ ሴ is possible

ሽሾቂሮሳሳ
 Semilocal if is ዛሤቝሥ and ስ ቸቻታ ሴ

ሽሾቂሸሧሳ

33

HMM Results
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Problem Locality
ብቦቪ቞ባባ

ብቦቪቨ቗ባ

Matrix multiplication
on a semiring

Local ልሤቝሥ

Fast Fourier Transform Semilocal ል ቸቻታ ቸቻታ ሴ

Sorting Semilocal ል ቸቻታ ቸቻታ ሴ

Scanning input (sum,
max, DFS, planarity, etc.)

Nonlocal ል ቸቻታ ሴ

Binary search Nonlocal ል ቸቻታ ሴ

34

Defining “Locality of Reference”
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 Any problem solvable in ሠ ሴ

is solvable in ማ ሠ ሴ ቮ ሬ ሠ ሴ

time on RAM

time on HMM

 Problem is

 Nonlocal if ል ሠ ሴ ቸቻታ ሴ is optimal

 Local if ል ሠ ሴ is possible

ሽሾቂሮሳሳ
 Semilocal if is ዛሤቝሥ and ስ ቸቻታ ሴ

ሽሾቂሸሧሳ

35

ዠዥዥቶሤኈሥ
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 Say accessing memory location ሾ costs ሬ ሾ

 Assume ሬ ቞ሾ ሻ ሩ ሬሤሾሥ for a constant ሩ ሺ ቜ

(“polynomially bounded”)

 Write ሬ ሾ ሶ ክ዆ ሽ዆ ቮ ረሾ ሼ ሾ዆ዕ ሩ
(weighted sum of threshold functions)

ሾ዆

ሾሟ ሰ ሾሞ
ሽሟ

ሾሞCPU
0 ሽሠሽሞ

ሾሠ ሰ ሾሟ
…

36

Uniform Optimality
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 Consider one term ሬኰ ሾ ሶ ረሾ ሼ ሙዕ ሩ
 Algorithm is uniformly optimal

if optimal on �MMዃከ ዕ for all ሙ

 Implies optimality for all ሬ ሾ

እሙ
ቝ

ሙ
red-blue

pebble game!

37

𝐇𝐌𝐌𝒇𝑴 𝒙 Upper & Lower Bounds
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Problem Time Speedup

Semiring matrix
multiplication

Θ
𝑁3

𝑀
 Θ 𝑀

Fast Fourier
Transform

Θ 𝑁 log𝑀 𝑁 Θ log𝑀

Sorting Θ 𝑁 log𝑀 𝑁 Θ log𝑀

Scanning input
(sum, max, DFS,
planarity, etc.)

Θ 𝑁 −𝑀 1 + 1/𝑀

Binary search Θ log𝑁 − log𝑀 1 + 1/ log𝑀

upper bounds known
by Hong & Kung 1981

other bounds follow from
Aggarwal & Vitter 1987

Implicit HMM Memory Management
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 Instead of algorithm explicitly moving data,
use any conservative replacement strategy
(e.g., FIFO or LRU) to evict from cache
[Sleator & Tarjan — C. ACM 1985]

 ሠሺቀቃ ሚዋ ሙ ሻ ቞ ቮ ሠሽሾቂ ሚዋ ቞ሙ
ሶ ማ ሠሽሾቂ ሚዋ ሙ assuming ሬ ቞ሾ ሻ ሩ ሬሤሾሥ

 Not uniform!

እCPU ሙ
ቝ0

39

Implicit HMM Memory Management
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 For general ሬ, split memory into chunks at ሾ
where ሬሤሾሥ doubles (up to rounding)

ሾሞ ሾሟ ሰ ሾሞ
ሽሞ

CPU ሾሠ ሰ ሾሟ
ሽሟ ሽሠ … 0

40

Implicit HMM Memory Management
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

 For general ሬ, split memory into chunks at ሾ
where ሬሤሾሥ doubles (up to rounding)

 LRU eviction from first chunk into second;
LRU eviction from second chunk into third; etc.

 ሠኯኵኸ ሚ ሶ ማ ሠኲኳ኷ ሚ ሯ ሚ ቮ ሬ ሚ
 Like MTF

ቝ ቝ ቞ በ ቤ ቞዆1 1 1 1 1
CPU

41

HMM with Block Transfer (BT)
[Aggarwal, Chandra, Snir — FOCS 1987]

 Accessing memory location ሾ costs ሬ ሾ

 Copying memory interval from ሾ ሰ ዆ ዏ ሾ
to ሿ ሰ ዆ ዏ ሿ costs ሬ ቹቭኄ ሾዋ ሿ ሯ ዆
 Models memory pipelining ~ block transfer

 Ignores block alignment, explicit levels, etc.

ቝ ቝ ቞ በ ቤ ቞዆1 1 1 1 1
CPU

42

BT Results
[Aggarwal, Chandra, Snir — FOCS 1987]

Problem 𝑓 𝑥 = log 𝑥
𝑓 𝑥 = 𝑥𝛼,
0 < 𝛼 < 1

𝑓 𝑥 = 𝑥
𝑓 𝑥 = 𝑥𝛼,

𝛼 > 1

Dot product,
merging lists

Θ 𝑁 log∗ 𝑁 Θ 𝑁 log log 𝑁 Θ(𝑁 log 𝑁) Θ 𝑁𝛼

Matrix mult. Θ 𝑁3 Θ 𝑁3 Θ 𝑁3
Θ 𝑁𝛼

if 𝛼 > 1.5

Fast Fourier
Transform

Θ 𝑁 log 𝑁 Θ 𝑁 log 𝑁 Θ 𝑁 log2 𝑁 Θ 𝑁𝛼

Sorting Θ 𝑁 log 𝑁 Θ 𝑁 log 𝑁 Θ 𝑁 log2 𝑁 Θ 𝑁𝛼

Binary
search

Θ
log2 𝑁

log log 𝑁
 Θ 𝑁𝛼 Θ 𝑁 Θ 𝑁𝛼

ሎሟ
ሎሠ

ሎሡ
ሎሢ

Memory Hierarchy Model (MH)
[Alpern, Carter, Feig, Selker — FOCS 1990]

 Multilevel version of external-memory model

 ሙ዆ ቈ ሙ዆ረሟ transfers happen in blocks of size ሎ዆
(subblocks of ሙ዆ረሟ), and take ሺ዆ time

 All levels can be actively transferring at once

ሙሞ ሙሟ ሙሠ ሙሡ ሙሢ
0 ሺሞ ሺሟ ሺሠ ሺሡ

CPU

ሎሞ

44

…

ሎሟ
ሎሠ

ሎሡ
ሎሢ

…

2 parameters
1 function

Uniform Memory Hierarchy (UMH)
[Alpern, Carter, Feig, Selker — FOCS 1990]

 Fix aspect ratio ዃ ሶ
ኰዪእ

እ
, block growth ዄ ሶ

እኾሠሗ

እኾ

 ሎ዆ ሶ ዄ዆


ኰኾ

እኾ
ሶ ዃ ቮ ዄ዆

 ሺ዆ ሶ ዄ዆ ቮ ሬሤሯሥ

ሙሞ ሙሟ ሙሠ ሙሡ ሙሢ
0 ሺሞ ሺሟ ሺሠ ሺሡ

CPU

ሎሞ

45

ሎሟ
ሎሠ

ሎሡ

Random Access UMH (RUMH)
[Vitter & Nodine — SPAA 1991]

 RAM program + block move operations like BT,
instead of manual control of all levels

ሙሞ ሙሟ ሙሠ ሙ
0 ሺሞ ሺሟ ሺሠ ሺሡ

CPU

ሎሞ

46

ሎሢ

ሙሢ
…

ሡ

(skipping SUMH)

 Worse (tight) bounds in Vitter & Nodine

47

UMH Results
[Alpern, Carter, Feig, Selker — FOCS 1990]

Problem Upper Bound Lower Bound

ቝ ቝMatrix transpose
ማ ቝ ሯ ሚሠ ም ቝ ሯ ሚሠ

ዄሠሬ ሯ ሶ ቝ ዃዄሢ

ቝ ቝMatrix mult.
ማ ቝ ሯ ሚሡ ም ቝ ሯ ሚሡ

ዄሡ ዄሡሬ ሯ ሶ O ዄ዆

FFT
ማ ቝ ሎሢሬ ሯ ሻ ሯ

General approach: Divide & conquer
48

(R)UMH Sorting
[Vitter & Nodine — SPAA 1991]

Problem 𝒇 𝒊 = 𝟏 𝒇 𝒊 =
𝟏

𝒊 + 𝟏

𝒇 𝒊 =
𝟏

𝜷𝒄𝒊
,

𝒄 > 𝟎

Sorting Θ 𝑁 log𝑁
Θ 𝑁 log𝑁 ⋅
log log𝑁 Θ 𝑁1+

𝑐
2 + 𝑁 log𝑁

P-HMM Results
[Vitter & Shriver — STOC 1990]

Problem 𝒇 𝒙 = 𝐥𝐨𝐠 𝒙
𝒇 𝒙 = 𝒙𝜶,

𝟎 < 𝜶 <
𝟏

𝟐

𝒇 𝒙 = 𝒙𝟏/𝟐
𝒇 𝒙 = 𝒙𝜶,

𝜶 >
𝟏

𝟐

Sorting & FFT

Θ
𝑁

𝑃
log𝑁 ⋅

log
log𝑁

log𝑃

Θ
𝑁

𝑃

𝛼+1

+
𝑁

𝑃
log𝑁

Matrix mult. Θ
𝑁3

𝑃
 Θ

𝑁3

𝑃

Θ
𝑁3

𝑃3 2
log𝑁

+
𝑁3

𝑃

Θ
𝑁2

𝑃

𝛼+1

+
𝑁3

𝑃

P-BT Results
[Vitter & Shriver — STOC 1990]

Problem 𝒇 𝒙 = 𝐥𝐨𝐠 𝒙
𝒇 𝒙 = 𝒙𝜶,
𝟎 < 𝜶 < 𝟏

𝒇 𝒙 = 𝒙𝟏
𝒇 𝒙 = 𝒙𝜶,
𝜶 > 𝟏

Sorting & FFT Θ
𝑁

𝑃
log𝑁 Θ

𝑁

𝑃
log𝑁

Θ
𝑁

𝑃
 log2

𝑁

𝑃

+ log𝑁

Θ
𝑁

𝑃

𝛼

+
𝑁

𝑃
log𝑁

Problem 𝒇 𝒙 = 𝐥𝐨𝐠 𝒙
𝒇 𝒙 = 𝒙𝜶,

𝟎 < 𝜶 <
𝟑

.𝟐

𝒇 𝒙 = 𝒙𝟑/𝟐
𝒇 𝒙 = 𝒙𝜶,

𝜶 >
𝟑

𝟐

Matrix mult. Θ
𝑁3

𝑃
 Θ

𝑁3

𝑃

Θ
𝑁3

𝑃3 2
log𝑁

+
𝑁3

𝑃

Θ
𝑁2

𝑃

𝛼

(skipping UPMH from Alpern et al.)

52

P-(R)UMH Sorting
[Vitter & Nodine — SPAA 1991]

Problem 𝒇 𝒊 = 𝟏 𝒇 𝒊 =
𝟏

𝒊 + 𝟏

𝒇 𝒊 =
𝟏

𝜷𝒄𝒊
,

𝒄 > 𝟎

Sorting Θ
𝑁

𝑃
log𝑁

Θ
𝑁

𝑃
log𝑁 ⋅

log
log𝑁

log 𝑃

Θ
𝑁

𝑃

1+
𝑐
2
+
𝑁

𝑃
log𝑁

Cache-Oblivious Model [Frigo,

Leiserson, Prokop, Ramachandran — FOCS 1999]

 Analyze RAM algorithm (not knowing ሎ or ሙ)
on external-memory model
 Must work well for all ሎ and ሙ

54

Cache-Oblivious Model [Frigo,

Leiserson, Prokop, Ramachandran — FOCS 1999]

 Automatic block transfers via LRU or FIFO

 Lose factor of 2 in ሙ and number of transfers
 Assume ሠ ሎዋ ቞ሙ ሻ ሩ ሠሤሎዋ ሙሥ

Cache-Oblivious Model [Frigo,

Leiserson, Prokop, Ramachandran — FOCS 1999]

 Clean model

 Adapts to changing ሎ (e.g., disk tracks) and
changing ሙ (e.g., competing processes)

 Adapts to multilevel memory hierarchy (MH)

 Assuming inclusion

ሙሞ ሙሟ
0 ሺሞ ሺሟ

CPU

ሎሞ
ሎሟ

56

Scanning [Frigo, Leiserson, Prokop,

Ramachandran — FOCS 1999]

 Visiting ሚ elements in order costs
኱

ማ ቝ ሯ memory transfers
እ

 More generally, can run ማ ቝ parallel scans

 Assume ሙ ሼ ሩ ሎ for appropriate constant ሩ ሺ ቜ

኱
 E.g., merge two lists in ማ

እ

57

Cache Oblivious

 Prokop: cache-oblivious -> SUMH conversion

 Also obviously cache-oblivious -> external
memory

58

Searching [Prokop — Meng 1999]

“van Emde Boas layout”

59

Searching [Prokop — Meng 1999]

60

 ቴቱትታቴኀሤወሥ
ቝ

ሼ ቸታ ሎ

቞

 ሻ ቞ memory
transfers per ወ
 ሻ በ ቸቻታእ ሚ total

Cache-Oblivious Searching

 ቸታ ራ ሯ ስ ቝ ቸቻታእ ሚ is optimal
[Bender, Brodal, Fagerberg, Ge, He, Hu, Iacono,
López-Ortiz — FOCS 2003]

 Dynamic B-tree in ማ ቸቻታእ ሚ per operation

[Bender, Demaine, Farach-Colton — FOCS 2000]

[Bender, Duan, Iacono, Wu — SODA 2002]

61

[Brodal,
Fagerberg,
Jacob —
SODA 2002]

Cache-Oblivious Sorting

኱ ኱
 ማ ቸቻታኰ኎እ possible, assuming

እ እ
ሙ ሼ ም ሎሟረዶ (tall cache)

 Funnel sort:

mergesort analog

 Distribution sort

[Frigo, Leiserson, Prokop,
Ramachandran — FOCS 1999;
Brodal & Fagerberg — ICALP 2002]

 Impossible without tall-cache assumption

[Brodal & Fagerberg — STOC 2003]

62

Parallel Caching (Multicore), GPU,
etc.

63

ALA

64

 http://courses.csail.mit.edu/6.851/

65

Models, Models, Models

Model Year Blocking Caching Levels Simple

Idealized
2-level

1972 ✓ ✗ 2 ✓

Red-blue pebble 1981 ✗ ✓ 2 ✓−

External memory 1987 ✓ ✓ 2 ✓

HMM 1987 ✗ ✓ እ ✓
BT 1987 ~ ✓ እ ✓−

(U)MH 1990 ✓ ✓ እ ✗
Cache oblivious 1999 ✓ ✓ 2–እ ✓+

66

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	22 prof cover.pdf
	Untitled

