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Models, Models, Models
Model |Year | Blocking | Caching Levels | Simple_

ey X2
Red-blue pebble 1981 X v 2 V-
External memory 1987 v v 2 v
HMM 1987 X v 00 v
BT 1987 ~ v 00 v -
(U)MH 1990 v e 00 X
Cache oblivious 1999 V4 v 2-00 J/ +



Physics

e Case for nonuniform access cost
e Circuits?



Idealized Two-Level Storage
|Floyd — Complexity of Computer Computations 1972]

e RAM = blocks of < B items < Ditems —>
e Block operation:

from two blocks i, j m_
= Write to third block k

= Read up to B items
e Ignore item order within block

= CPU operations considered free

e [tems are indivisible



Permutation Lower Bound
|Floyd — Complexity of Computer Computations 1972]

e Theorem: Permuting N itemsto ——2%— |
N /B (full) specified blocks needs 000099

a(glogs) =

block operations, in average case

00009 | ;

- Assumingg > B (tall disk)

o Simplified model: Move items instead of copy

= Equivalence: Follow item’s path from start to finish




Permutation Lower Bound

|Floyd — Complexity of Computer Computations 1972]

e Potential: ® = ) n;;logn;;

] T

# items in block i destined for block j

= Maximized in target configuration
of full blocks (n;;=B): ® = NlogB

= Random configuration with% > B
has E|n;;] = 0(1) = E[®] = O(N)

<«— B items ——>

= Claim: Block operation increases ® by < B

N log B—O(N)

* = Number of block operations >

B




Permutation Lower Bound

|Floyd — Complexity of Computer Computations 1972]

e Potential: ® = ) n;;logn;;

] T

# items in block i destined for block j

= Maximized in target configuration
of full blocks (n;;=B): ® = NlogB

= Random configuration with% > B
has E|n;;] = 0(1) = E[®] = O(N)

<«— B items ——>

= Claim: Block operation increases ® by < B
oFact: (x +y)log(x +y) <xlogx+ylogy+x+y

o So combining groups x & y increases ® by < x + vy




Permutation Bounds
|Floyd — Complexity of Computer Computations 1972]

e Theorem: Q(glog B) ;_B‘item;_) |
= Tightfor B = 0(1)

e Theorem: 0O (glogg)

= Similar to radix sort,

where key = target block index

00 00|

=~

= Accidental claim: tight for all B (< %)

By information theoretic considerations, most permutations
with w > p require O(w(log2 pt log‘2 w)) operations.

= We will see: tight for B > log%
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Idealized Two-Level Storage
|Floyd — Complexity of Computer Computations 1972]

e External memory & word RAM: =2t

Obviously the above results apply equally, whether (1)
the pages are blocks on a disc or drum, the records are in fact
records, or (2) the pages are words of internal memory, the
records are bits. The latter corresponds to the problem of
transposing a Boolean matrix in core memory. The former
corresponds to tag sorting of records on a disc memory.

© Springer-Verlag US. All rights reserved. This content is excluded from our Creative
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Idealized Two-Level Storage
|Floyd — Complexity of Computer Computations 1972]

o External memory & word RAM: St

@ @ @ ||:

Obviously the above results apply equally,
the pages are blocks on a disc or drum, the recor
records, or (2) the pages are words of i al m
records are bits. The latter correspon
transposing a Boolean matrix in core memory. T
corresponds to tag sorting of records on a disc m¢

=~

e Foreshadowing future models:

;1 The above results apply to an idealized three-address
machine. “Work is in progress attempting to apply a similar
analysis to idealized single-address machines with fast mem -
ories capable of holding two or more pages.
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Pebble Game
|[Hopcroft, Paul, Valiant — J. ACM 1977]

e View computation as DAG inputs:
of data dependencies

e Pebble = “in memory”
e Moves:

= Place pebble on node outputs:
if all predecessors have a pebble

= Remove pebble from node

e Goal: Pebbles on all output nodes

= Minimize maximum number of pebbles over time



Pebble Game
|[Hopcroft, Paul, Valiant — J. ACM 1977]

e Theorem: Any DAG can be  inputs
“executed” usingO( i )

logn

maximum pebbles

® COrOllary: outputs:

t
DTIME(t) € DSPACE (—)
logt




Red-Blue Pebble Game
|[Hong & Kung — STOC 1981]

e Red pebble = “in cache” inputs:
e Blue pebble = “on disk”
e Moves:

= Place red pebble on node if all
predecessors have red pebble

= Remove pebble from node

= Write: Red pebble — blue pebble o

= Read: Blue pebble — red pebble } HHALIIZE
e Goal: Blue inputs to blue outputs

= < M red pebbles at any time

outputs:




Red-Blue Pebble Game
|[Hong & Kung — STOC 1981}

e Red pebble = “in cache” inputs:
e Blue pebble = “on disk”

outputs:

minimize number of
cache & diskI/0s
(memory transfers)




Red-Blue Pebble Game Results
|[Hong & Kung — STOC 1981}

: Memory
Computation DAG Speedup

Fast Fourier

Transform (FFT) O(N logy N) O(log M)
oy e ion () 0(M)
e ion 0] o
gjg-s?;esriltion sort o (Nﬁz> o(M)

. d
B S SC one XY gl Q( il ) o(M/@D)
d
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Comparison

Idealized two- Red-blue

level storage pebble game
|[Floyd 1972] |[Hong & Kung 1981]



/0 Model
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

o AKA: External Memory Model, Disk Access Model
e Goal: Minimize number of I/0s (memory transfers)

18



Scanning
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

e Visiting N elements in order costs

N
0 (1 + E) memory transfers

M
e More generally, can run < = parallel scans,

keeping 1 block per scan in cache

= E.g., merge O (%) lists of total size N

in O (1 + %) memory transfers



Practical Scanning [Arge]

e Does the B factor matter?
= Should I presort my linked list before traversal?

e Example:
= N =256,000,000 ~1GB
= B =8,000 ~32KB (small)
= 1ms disk access time (small)

= N memory transfers take 256,000 sec = 71 hours

= gmemory transfers take 256/8 = 32 seconds

20



Searching
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

e Finding an element x among N items requires
O(loggs1 N) memory transfers
e Lower bound: (comparison model)
= Each block reveals where x fits among B items
= = Learn < log(B + 1) bits per read
" Need log N + 1 bits

e Upper bound:

= B-tree

= [nsert & delete
in O(logg,1 N)



Sorting and Permutation
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]
. N N
e Sorting bound: 0 (ElogM /B E)
. . N N
e Permutation bound: © (mm {N ' logy /B E})
= Either sort or use naive RAM algorithm
= Solves Floyd'’s two-level storage problem (M = 3B)



Sorting Lower Bound
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]
. N N
e Sorting bound: () (E logy /B E)
= Always keep cache sorted (free)
= Might as well presort each block

= Upon reading a block, learn how those B items fit
amongst M items in cache

= = Learn lg(M;B) ~ B lg%bits

"= Need Ig N! ~ N Ig N bits
= Know N Ig B bits from block presort



Sorting Upper Bound
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

e Sorting bound: O (%logM /B %)

=0 (%)-way mergesort

« T(N) = %T(N/%) +0 (1 +%)

~— N/B ................. N/B
v P e
logM/BE 5 R N/B
levels
, 1 1 e N/B




Distribution Sort
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

e /M /B-way quicksort

1. Find /M /B partition elements,
roughly evenly spaced

2. Partition array into /M /B + 1 pieces
= Scan: 0 (%) memory transfers

3. Recurse

= Same recurrence as mergesort



Distribution Sort Partitioning
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

1. orfirst, second, ... interval of M items:
= Sortin O(M/B) memory transfers

= Sample every%\/M /B th item
= Total sample: 4N /\/M /B items

2. Fori=1,2,...,.M/B:

= Run linear-time selection to find
sample element ati/ /M /B fraction

N
Cost: O ((«/M—/B)/B) each
= Total: O(N/B) memory transf.




Disk Parallelism
|Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

o P



Parallel Disks

e ]. Vitter and E. Shriver. Algorithms for parallel
memory: Two-level memories. Algorithmica,
12:110-147, 1994.



Random vs. Sequential 1/0s [Farach,
Ferragina, Muthukrishnan — FOCS 1998]

e Sequential memory transfers are part of
bulk read /write of @(M) items

e Random memory transfer otherwise
e Sorting:
. N, N .
= 2-way mergesort achieves O (Elog E) sequential

"0 (g logy /B %) random implies () (glog %) total

e Same trade-off for
suffix-tree construction



Hierarchical Memory Model (HMM)
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

e Nonuniform-cost RAM:

= Accessing memory location x costs f(x) = [log x|

“particularly simple model of computation that mimics
the behavior of a memory hierarchy consisting of
increasingly larger amounts of slower memory”



Why f(x) = log x? [Mead & Conway 1980]

© Pearson. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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HMM Upper & Lower Bounds
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Semiring matrix 3
multiplication 6(N*") O(1)

Fast Fourier ©(Nlog NloglogN) ©(loglog N)

Transform

Sorting O(NlogNloglogN) ©O(oglogN)
Scanning input

(sum, max, DFS, O(NlogN) O(logN)

planarity, etc.)
Binary search O(log? N) O(log N)



Defining “Locality of Reference”
|Aggarwal, Alpern, Chandra, Snir — STOC 1987

e Any problem solvable in T'(n) time on RAM
is solvable in O(T'(n) logn) time on HMM

e Problem is
= Nonlocal if O(T(n)logn) is optimal
= Local if @(T (n)) is possible

OPTHMM .
OPTany 1S w(1) and o(logn)

= Semilocal if



HMM Results
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

OPT
RAM

Matrix multiplication

.. Local O(1)
on a semiring

Fast Fourier Transform  Semilocal ©(loglogn)
Sorting Semilocal ©(loglogn)

Scanning input (sum,

max, DFS, planarity, etc.) Nonlocal  ©(logn)

Binary search Nonlocal ©(logn)



Defining “Locality of Reference”
|Aggarwal, Alpern, Chandra, Snir — STOC 1987

e Any problem solvable in T (n) time on RAM
is solvable in O (T(n) : f(T(n))) time on HMM

e Problem is
* Nonlocal if O(T(n)logn) is optimal
= Local if G)(T (n)) is possible

OPTHMM ¢ 09(1) and o(log n)

= Semilocal if
PTraM



HMMy )
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

e Say accessing memory location x costs f(x)

o Assume f(2x) < c f(x) for a constantc > 0
(“polynomially bounded”)

o Write f(x) =);w; - [x = x;7]
(weighted sum of threshold functions)




Uniform Optimality
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

e Consider one term fy,;(x) =[x = M?]

e Algorithm is uniformly optimal
if optimal on HMM¢ () for all M

e Implies optimality for all f(x)

red-blue
pebble game!

1




HMM¢, () Upper & Lower Bounds
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Speedup

.. . N3
Semiring matrix o L NNy
multiplication (\/M ) upper bounds known

: by Hong & Kung 1981
Fast Fourier
Transform O(Nlogy N) ©(log M)

: other bounds follow from
Sorting O(N logy N) Aggarwal & Vitter 1987
Scanning input
(sum, max, DFS, O(N — M) 1+1/M

planarity, etc.)
Binary search O(log N —log M) 1+1/logM



Implicit HMM Memory Management
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

e Instead of algorithm explicitly moving data,
use any conservative replacement strategy

(e.g., FIFO or LRU) to evict from cache
|Sleator & Tarjan — C. ACM 1985]

® TLRU(NJ M) <2- TOPT(NJ ZM)
= O0(Topt(N, M)) assuming f(2x) < ¢ f(x)
e Not uniform!

0




Implicit HMM Memory Management
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

e For general f, split memory into chunks at x
where f(x) doubles (up to rounding)




Implicit HMM Memory Management
|Aggarwal, Alpern, Chandra, Snir — STOC 1987]

e For general f, split memory into chunks at x
where f(x) doubles (up to rounding)

e LRU eviction from first chunk into second;
LRU eviction from second chunk into third; etc.

° Tory(N) = O(Topr(N) + N - f(N))
= Like MTF




HMM with Block Transfer (BT)
|Aggarwal, Chandra, Snir — FOCS 1987]

e Accessing memory location x costs f(x)

e Copying memory interval from x — 6 ... x
toy—48..y costs f(max{x,y}) + 8

= Models memory pipelining ~ block transfer

= [gnores block alignment, explicit levels, etc.




BT Results
|Aggarwal, Chandra, Snir — FOCS 1987]

Dot product,

* a
merging lists O(Nlog*N) O(NloglogN) ©(NlogN) O(N%)
OND)

Matrix mult. O(N?3) O(N?) O(N*) ifa > 1.5

Fast Fourier
Transform

Sorting O(NlogN) ©(NlogN) O(Nlog?N) O(N%)

Binary log® N
® N¢ N O(N“
search (loglogN) o) o) (N)

O(NlogN) ©(NlogN) O(Nlog?N) O(N%)




Memory Hierarchy Model (MH)
|Alpern, Carter, Feig, Selker — FOCS 1990]

e Multilevel version of external-memory model

e M; & M; , transfers happen in blocks of size B;
(subblocks of M;. 1), and take t; time

o All levels can be actively transferring at once




Uniform Memory Hierarchy (UMH)
|Alpern, Carter, Feig, Selker — FOCS 1990]

Biyq

e Fix aspectratio a = M/ Z , block growth =

QB-zﬁi

l

_ 2 parameters
— l .
*s % p 1 function




Random Access UMH (RUMH)
[Vitter & Nodine — SPAA 1991]

e RAM program + block move operations like BT,
instead of manual control of all levels




(skipping SUMH)

e Worse (tight) bounds in Vitter & Nodine



UMH Results
|Alpern, Carter, Feig, Selker — FOCS 1990]

Problem Upper Bound Lower Bound

Matrix transpose 1 1
£0) =1 0 (( ,82) N2> Q ((1 + a_,b"*) NZ)
Matrix mult. 1y . L
0 = 0(p) 0((”3)1\’) Q<(1+ﬁ3)1v>

FFT

f<i o) By

General approach: Divide & conquer



(R)UMH Sorting
[Vitter & Nodine — SPAA 1991]

Sorting O(NlogN)

O(NlogN -

C
1+<
loglog N) @(N 2+N108N)



P-HMM Results
|Vitter & Shriver — STOC 1990]

f(x) =x f(x) = x4,

log N -
Sorting & FFT 10 N C) (—) — log N
oo 108 ) P P

05 log P

N 3
Matrix mult. Q) (—)

N
N3 2
@ D 3
P P N) >
+— _|_N_
P P



P-BT Results
|Vitter & Shriver — STOC 1990]

o sl
N a
e
N
+108N)> +FlogN>

el
N3 (P3/2 oeh N2\
o) ) ’ (P>

P

_ N @((
Sorting & FFT @ (F log N) C] (Flog N)

N 3
Matrix mult. O (?>



(skipping UPMH from Alpern et al.)



P-(R)UMH Sorting
[Vitter & Nodine — SPAA 1991]

N

) (—logN :
Sortin ® ﬁ] N P N\1*Z N
g p 108 l logN) 0 (—) + —log N

05 log P



Cache-Oblivious Model [Frigo,
Leiserson, Prokop, Ramachandran — FOCS 1999]|

e Analyze RAM algorithm (not knowing B or M)
on external-memory model

= Must work well for all B and M



Cache-Oblivious Model [Frigo,
Leiserson, Prokop, Ramachandran — FOCS 1999]|

e Automatic block transfers via LRU or FIFO

e Lose factor of 2 in M and number of transfers
= Assume T(B,2M) < cT(B,M)



Cache-Oblivious Model [Frigo,
Leiserson, Prokop, Ramachandran — FOCS 1999]|

e Clean model

e Adapts to changing B (e.g., disk tracks) and
changing M (e.g., competing processes)

e Adapts to multilevel memory hierarchy (MH)

= Assuming inclusion

B,

GB 0, —>
0 to tq




Scanning |[Frigo, Leiserson, Prokop,
Ramachandran — FOCS 1999]

e Visiting N elements in order costs

N
0 (1 + E) memory transfers

e More generally, can run O(1) parallel scans

= Assume M = c B for appropriate constantc > 0

e E.g, merge two lists in O (g)



Cache Oblivious

e Prokop: cache-oblivious -> SUMH conversion

o Also obviously cache-oblivious -> external
memory



Searching [Prokop — Meng 1999]




Searching [Prokop — Meng 1999]

e height(2)

>1lB
=518

o < 2 memory
transfers per A

e < 4logg N total




Cache-Oblivious Searching

o (lge + 0(1)) logp N is optimal
|Bender, Brodal, Fagerberg, Ge, He, Hu, Iacono,
Lopez-Ortiz — FOCS 2003]

e Dynamic B-tree in O(logz N) per operation
Bender, Demaine, Farach-Colton — FOCS 2000}

'Bender, Duan, lacono, Wu — SODA 2002}
Brodal,

Fagerberg,

Jacob —
SODA 2002}




Cache-Oblivious Sorting

e 0 (%logM/B %) possible, assuming

M > Q(B'*¢) (tall cache)
* Funnel sort:
mergesort analog

= Distribution sort

|Frigo, Leiserson, Prokop,
Ramachandran — FOCS 1999;
Brodal & Fagerberg — ICALP 2002]

e Impossible without tall-cache assumption
|Brodal & Fagerberg — STOC 2003]



Parallel Caching (Multicore), GPU,
etc.
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