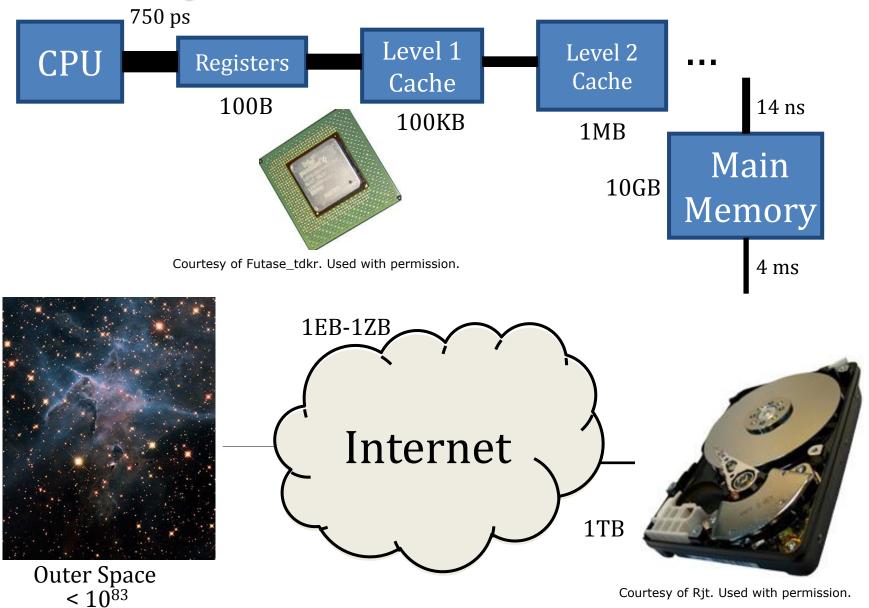
The History of I/O Models

Erik Demaine

Memory Hierarchies in Practice



Courtesy of NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI). License: Creative Commons BY.

Models, Models

Model	Year	Blocking	Caching	Levels	Simple
Idealized 2-level	1972	✓	X	2	√
Red-blue pebble	1981	X	√	2	✓ -
External memory	1987	✓	✓	2	✓
HMM	1987	X	✓	∞	✓
BT	1987	~	✓	∞	✓-
(U)MH	1990	✓	√	∞	X
Cache oblivious	1999	✓	\checkmark	2–∞	√ +

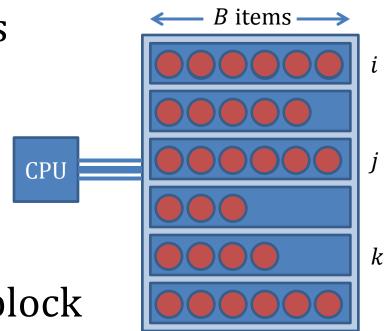
Physics

- Case for nonuniform access cost
- Circuits?

Idealized Two-Level Storage

[Floyd — Complexity of Computer Computations 1972]

- RAM = blocks of $\leq B$ items
- Block operation:
 - Read up to B items from two blocks i, j
 - Write to third block k
- Ignore item order within block
 - CPU operations considered free
- Items are indivisible



Permutation Lower Bound

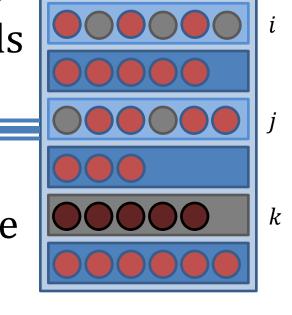
[Floyd — Complexity of Computer Computations 1972]

 Theorem: Permuting N items to N/B (full) specified blocks needs

$$\Omega\left(\frac{N}{B}\log B\right)$$

block operations, in average case

• Assuming $\frac{N}{B} > B$ (tall disk)



B items –

- Simplified model: Move items instead of copy
 - Equivalence: Follow item's path from start to finish

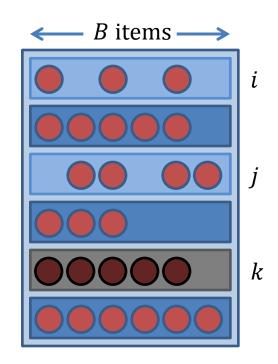
Permutation Lower Bound

[Floyd — Complexity of Computer Computations 1972]

• Potential: $\Phi = \sum_{i,j} n_{ij} \log n_{ij}$

items in block i destined for block j

- Maximized in target configuration of full blocks $(n_{ii}=B)$: $\Phi = N \log B$
- Random configuration with $\frac{N}{B} > B$ has $E[n_{ij}] = O(1) \Rightarrow E[\Phi] = O(N)$



- Claim: Block operation increases Φ by $\leq B$
- ⇒ Number of block operations $\geq \frac{N \log B O(N)}{B}$

7

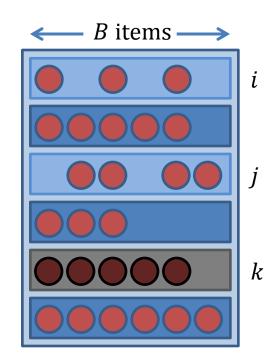
Permutation Lower Bound

[Floyd — Complexity of Computer Computations 1972]

• Potential: $\Phi = \sum_{i,j} n_{ij} \log n_{ij}$

items in block *i* destined for block *j*

- Maximized in target configuration of full blocks $(n_{ii}=B)$: $\Phi = N \log B$
- Random configuration with $\frac{N}{B} > B$ has $E[n_{ij}] = O(1) \Rightarrow E[\Phi] = O(N)$



- Claim: Block operation increases Φ by $\leq B$
 - Fact: $(x + y) \log(x + y) \le x \log x + y \log y + x + y$
 - $_{○}$ So combining groups x & y increases Φ by ≤ x + y

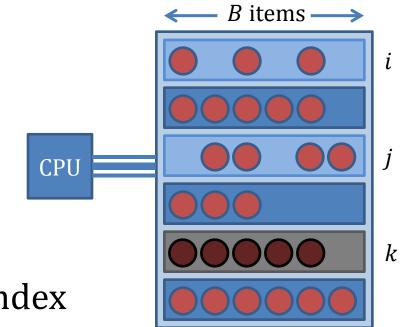
Permutation Bounds

[Floyd — Complexity of Computer Computations 1972]

- Theorem: $\Omega\left(\frac{N}{B}\log B\right)$
 - Tight for B = O(1)
- Theorem: $O\left(\frac{N}{B}\log\frac{N}{B}\right)$
 - Similar to radix sort,where key = target block index
 - Accidental claim: tight for all B $\left(<\frac{N}{B}\right)$

By information theoretic considerations, most permutations with w > p require $O(w(\log_2 p + \log_2 w))$ operations.

• We will see: tight for $B > \log \frac{N}{B}$



Idealized Two-Level Storage

[Floyd — Complexity of Computer Computations 1972]

-B items \longrightarrow

External memory & word RAM:

Obviously the above results apply equally, whether (1) the pages are blocks on a disc or drum, the records are in fact records, or (2) the pages are words of internal memory, the records are bits. The latter corresponds to the problem of transposing a Boolean matrix in core memory. The former corresponds to tag sorting of records on a disc memory.

© Springer-Verlag US. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Idealized Two-Level Storage

[Floyd — Complexity of Computer Computations 1972]

External memory & word RAM:

Obviously the above results apply equally, the pages are blocks on a disc or drum, the recorrecords, or (2) the pages are words of it had me records are bits. The latter correspond CPU the pages are blocks on a disc me corresponds to tag sorting of records on a disc me

B items

i

y

T

M

k

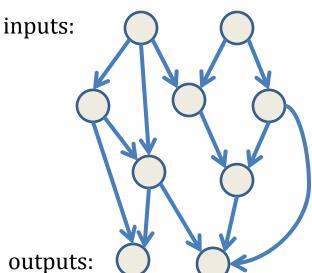
Foreshadowing future models:

The above results apply to an idealized three-address machine. Work is in progress attempting to apply a similar analysis to idealized single-address machines with fast memories capable of holding two or more pages.

Pebble Game

[Hopcroft, Paul, Valiant — J. ACM 1977]

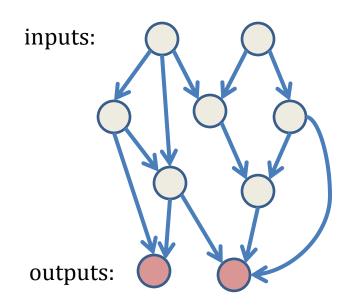
- View computation as DAG of data dependencies
- Pebble = "in memory"
- Moves:
 - Place pebble on node if all predecessors have a pebble
 - Remove pebble from node
- Goal: Pebbles on all output nodes
 - Minimize maximum number of pebbles over time



Pebble Game

[Hopcroft, Paul, Valiant — J. ACM 1977]

• Theorem: Any DAG can be "executed" using $O\left(\frac{n}{\log n}\right)$ maximum pebbles



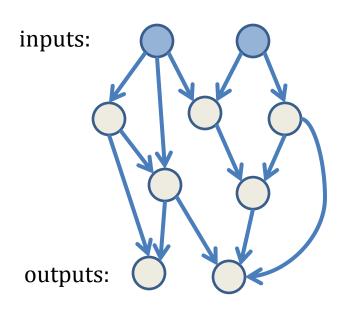
Corollary:

$$\mathsf{DTIME}(t) \subseteq \mathsf{DSPACE}\left(\frac{t}{\log t}\right)$$

Red-Blue Pebble Game

[Hong & Kung — STOC 1981]

- Red pebble = "in cache"
- **Blue pebble** = "on disk"
- Moves:
 - Place <u>red</u> pebble on node if all predecessors have red pebble
 - Remove pebble from node
 - Write: Red pebble → blue pebble
 - Read: Blue pebble → red pebble
- Goal: Blue inputs to blue outputs
 - $extcolor{lem} \leq M$ red pebbles at any time

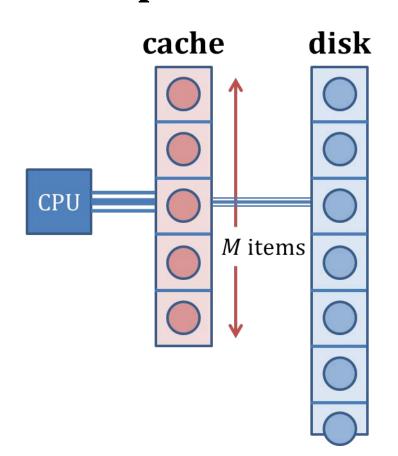


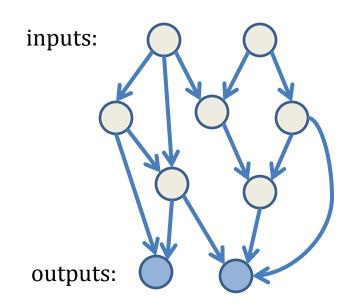
<u>minimize</u>

Red-Blue Pebble Game

[Hong & Kung — STOC 1981]

- **Red pebble** = "in cache"
- **Blue pebble** = "on disk"





minimize number of
 cache ↔ disk I/Os
(memory transfers)

Red-Blue Pebble Game Results

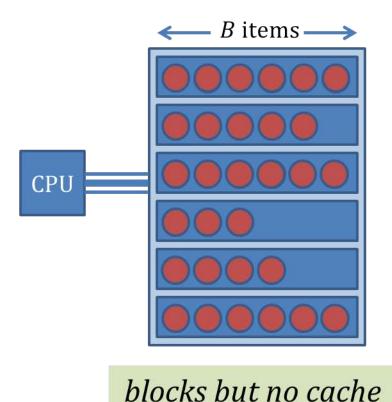
[Hong & Kung — STOC 1981]

Computation DAG	Memory Transfers	Speedup	
Fast Fourier Transform (FFT)	$\Theta(N\log_M N)$	$\Theta(\log M)$	
Ordinary matrix- vector multiplication	$\Theta\left(\frac{N^2}{M}\right)$	$\Theta(M)$	
Ordinary matrix- matrix multiplication	$\Theta\left(\frac{N^3}{\sqrt{M}}\right)$	$\Thetaig(\sqrt{M}ig)$	
Odd-even transposition sort	$\Theta\left(\frac{N^2}{M}\right)$	$\Theta(M)$	
$N \times N \times \cdots \times N$ grid	$\Omega\left(\frac{N^d}{M^{1/(d-1)}}\right)$	$\Theta(M^{1/(d-1)})$	

Comparison

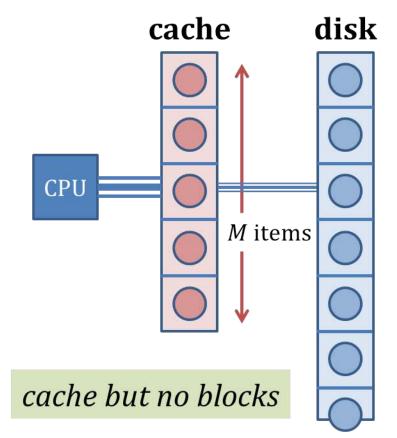
Idealized twolevel storage

[Floyd 1972]



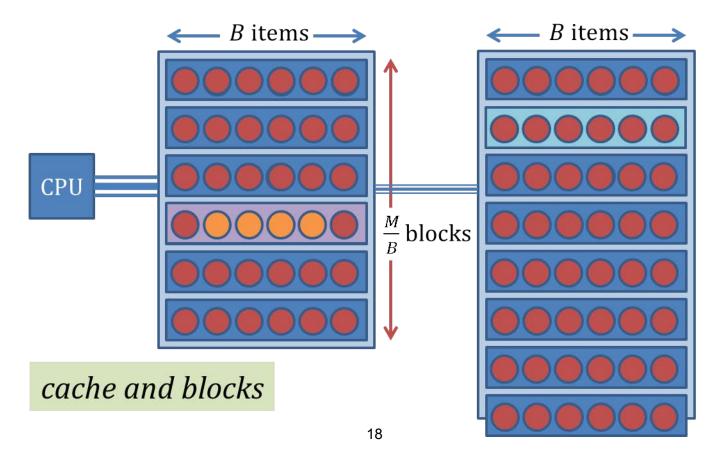
Red-blue pebble game

[Hong & Kung 1981]



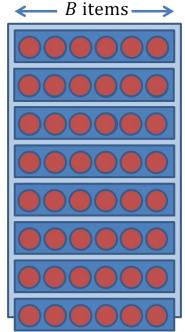
I/O Model

- AKA: External Memory Model, Disk Access Model
- Goal: Minimize number of I/Os (memory transfers)



Scanning

- Visiting *N* elements in order costs $O\left(1 + \frac{N}{B}\right)$ memory transfers
- More generally, can run $\leq \frac{M}{B}$ parallel scans, keeping 1 block per scan in cache
 - E.g., merge $O\left(\frac{M}{B}\right)$ lists of total size N in $O\left(1 + \frac{N}{B}\right)$ memory transfers



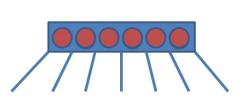
Practical Scanning [Arge]

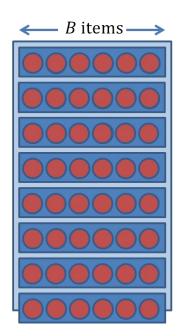
- Does the *B* factor matter?
 - Should I presort my linked list before traversal?
- Example:
 - $N = 256,000,000 \sim 1$ GB
 - $B = 8,000 \sim 32 \text{KB}$ (small)
 - 1ms disk access time (small)

- *N* memory transfers take 256,000 sec \approx **71 hours**
- $\frac{N}{B}$ memory transfers take 256/8 = **32 seconds**

Searching

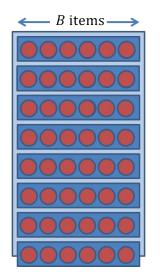
- Finding an element x among N items requires $\Theta(\log_{B+1} N)$ memory transfers
- Lower bound: (comparison model)
 - Each block reveals where x fits among B items
 - \Rightarrow Learn $\leq \log(B + 1)$ bits per read
 - Need log N + 1 bits
- Upper bound:
 - B-tree
 - Insert & deletein O(log_{B+1} N)





Sorting and Permutation

- Sorting bound: $\Theta\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$
- **Permutation bound:** $\Theta\left(\min\left\{N, \frac{N}{B}\log_{M/B} \frac{N}{B}\right\}\right)$
 - Either sort or use naïve RAM algorithm
 - Solves Floyd's two-level storage problem (M = 3B)



Sorting Lower Bound

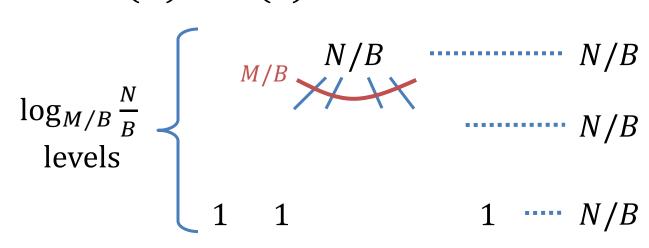
- Sorting bound: $\Omega\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$
 - Always keep cache sorted (free)
 - Might as well presort each block
 - Upon reading a block, learn how those B items fit amongst M items in cache
 - ⇒ Learn $\lg\binom{M+B}{B}$ ~ $B \lg \frac{M}{B}$ bits
 - Need $\lg N! \sim N \lg N$ bits
 - Know *N* lg *B* bits from block presort

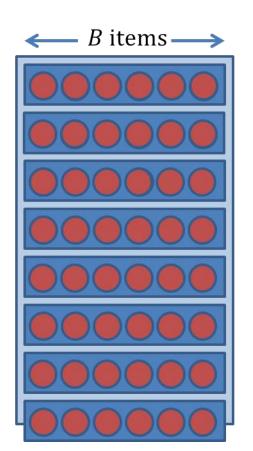
Sorting Upper Bound

- Sorting bound: $O\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$
 - $O\left(\frac{M}{B}\right)$ -way **mergesort**

$$T(N) = \frac{M}{B}T\left(N/\frac{M}{B}\right) + O\left(1 + \frac{N}{B}\right)$$

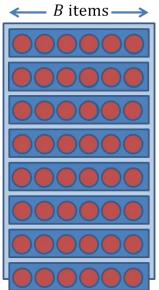
$$T(B) = O(1)$$





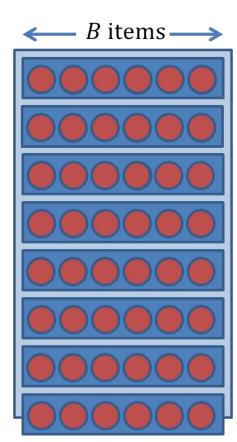
Distribution Sort

- $\sqrt{M/B}$ -way quicksort
- 1. Find $\sqrt{M/B}$ partition elements, roughly evenly spaced
- 2. Partition array into $\sqrt{M/B} + 1$ pieces
 - Scan: $O\left(\frac{N}{B}\right)$ memory transfers
- 3. Recurse
 - Same recurrence as mergesort



Distribution Sort Partitioning

- 1. or first, second, ... interval of *M* items:
 - Sort in O(M/B) memory transfers
 - Sample every $\frac{1}{4}\sqrt{M/B}$ th item
 - Total sample: $4N/\sqrt{M/B}$ items
- 2. For $i = 1, 2, ..., \sqrt{M/B}$:
 - Run **linear-time selection** to find sample element at $i/\sqrt{M/B}$ fraction
 - Cost: $O\left(\left(\frac{N}{\sqrt{M/B}}\right)/B\right)$ each
 - Total: O(N/B) memory transf.



Disk Parallelism

[Aggarwal & Vitter — ICALP 1987, C. ACM 1988]

P

Parallel Disks

 J. Vitter and E. Shriver. Algorithms for parallel memory: Two-level memories. Algorithmica, 12:110-147, 1994.

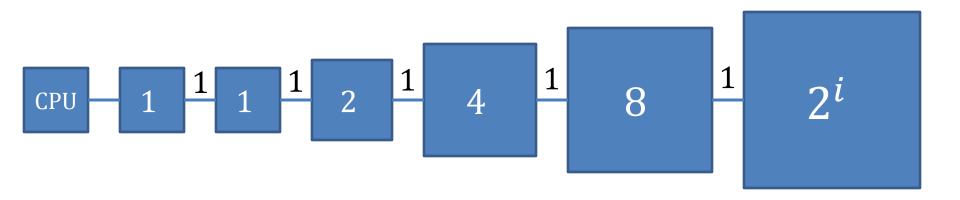
Random vs. Sequential I/Os [Farach, Ferragina, Muthukrishnan — FOCS 1998]

- **Sequential** memory transfers are part of bulk read/write of $\Theta(M)$ items
- Random memory transfer otherwise
- Sorting:
 - 2-way mergesort achieves $O\left(\frac{N}{B}\log\frac{N}{B}\right)$ sequential
 - $o\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$ random implies $\Omega\left(\frac{N}{B}\log\frac{N}{B}\right)$ total
- Same trade-off for suffix-tree construction

Hierarchical Memory Model (HMM)

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

- Nonuniform-cost RAM:
 - Accessing memory location x costs $f(x) = \lceil \log x \rceil$



"particularly simple model of computation that mimics the behavior of a memory hierarchy consisting of increasingly larger amounts of slower memory"

Why $f(x) = \log x$? [Mead & Conway 1980]

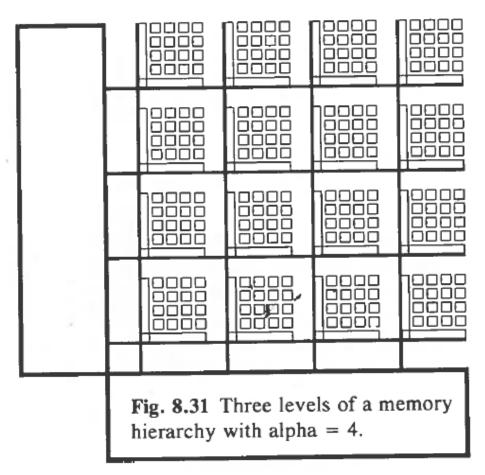


Fig. 8.31 Three levels of a memory hierarchy with alpha = 4.

© Pearson. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

8.5.2.3 Access Time of the RAM

For a RAM of S words, the access time in units of τ is then $\alpha b_0(\frac{\log S}{2\log \alpha})$.

HMM Upper & Lower Bounds

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Problem	Time	Slowdown
Semiring matrix multiplication	$\Theta(N^3)$	Θ(1)
Fast Fourier Transform	$\Theta(N \log N \log \log N)$	$\Theta(\log \log N)$
Sorting	$\Theta(N \log N \log \log N)$	$\Theta(\log \log N)$
Scanning input (sum, max, DFS, planarity, etc.)	$\Theta(N \log N)$	$\Theta(\log N)$
Binary search	$\Theta(\log^2 N)$	$\Theta(\log N)$

Defining "Locality of Reference"

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

• Any problem solvable in T(n) time on RAM is solvable in $O(T(n) \log n)$ time on HMM

- Problem is
 - **Nonlocal** if $\Theta(T(n) \log n)$ is optimal
 - **Local** if $\Theta(T(n))$ is possible
 - **Semilocal** if $\frac{\text{OPT}_{\text{HMM}}}{\text{OPT}_{\text{RAM}}}$ is $\omega(1)$ and $o(\log n)$

HMM Results

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Problem	Locality	$\frac{OPT_{HMM}}{OPT_{RAM}}$
Matrix multiplication on a semiring	Local	Θ(1)
Fast Fourier Transform	Semilocal	$\Theta(\log \log n)$
Sorting	Semilocal	$\Theta(\log \log n)$
Scanning input (sum, max, DFS, planarity, etc.)	Nonlocal	$\Theta(\log n)$
Binary search	Nonlocal	$\Theta(\log n)$

Defining "Locality of Reference"

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

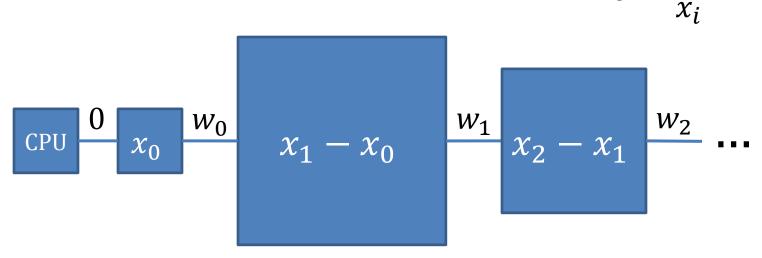
• Any problem solvable in T(n) time on RAM is solvable in $O\left(T(n)\cdot f\left(T(n)\right)\right)$ time on HMM

- Problem is
 - **Nonlocal** if $\Theta(T(n) \log n)$ is optimal
 - **Local** if $\Theta(T(n))$ is possible
 - **Semilocal** if $\frac{OPT_{HMM}}{OPT_{RAM}}$ is $\omega(1)$ and $o(\log n)$

$\mathsf{HMM}_{f(x)}$

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

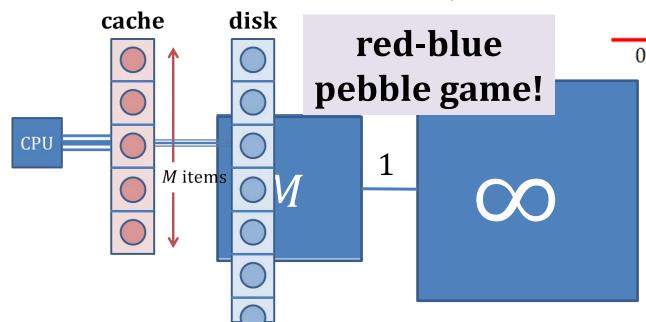
- Say accessing memory location x costs f(x)
- Assume $f(2x) \le c f(x)$ for a constant c > 0 ("polynomially bounded")
- Write $f(x) = \sum_{i} w_{i} \cdot [x \ge x_{i}?]$ (weighted sum of threshold functions)



Uniform Optimality

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

- Consider *one* term $f_M(x) = [x \ge M?]$
- Algorithm is **uniformly optimal** if optimal on $HMM_{f_M(x)}$ for *all M*
- Implies optimality for all f(x)



M

$HMM_{f_M(x)}$ Upper & Lower Bounds

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

Problem	Time	Speedup
Semiring matrix multiplication	$\Theta\left(\frac{N^3}{\sqrt{M}}\right)$	upper bounds known
Fast Fourier Transform	$\Theta(N\log_M N)$	by Hong & Kung 1981 Θ(log M)
Sorting		other bounds follow from Aggarwal & Vitter 1987
Scanning input (sum, max, DFS, planarity, etc.)	$\Theta(N-M)$	1 + 1/M
Binary search	$\Theta(\log N - \log M)$	$1 + 1/\log M$

Implicit HMM Memory Management

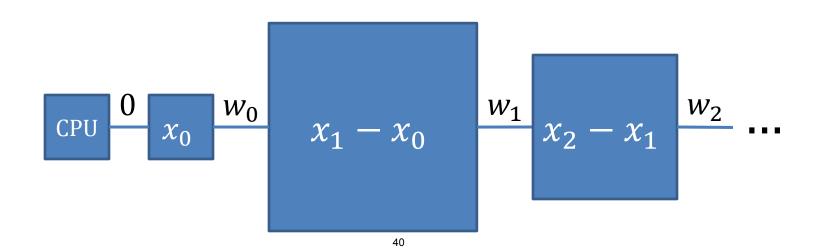
[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

- Instead of algorithm explicitly moving data, use any conservative replacement strategy (e.g., FIFO or LRU) to evict from cache [Sleator & Tarjan — C. ACM 1985]
- $T_{\text{LRU}}(N, M) \le 2 \cdot T_{\text{OPT}}(N, 2M)$ = $O(T_{\text{OPT}}(N, M))$ assuming $f(2x) \le c f(x)$

Implicit HMM Memory Management

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

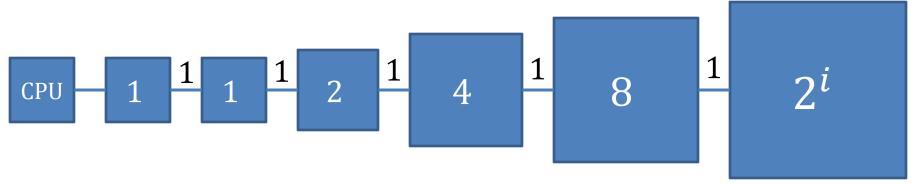
• For general f, split memory into **chunks** at x where f(x) doubles (up to rounding)



Implicit HMM Memory Management

[Aggarwal, Alpern, Chandra, Snir — STOC 1987]

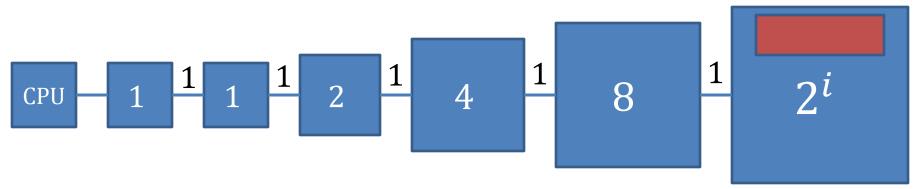
- For general f, split memory into **chunks** at x where f(x) doubles (up to rounding)
- LRU eviction from first chunk into second;
 LRU eviction from second chunk into third; etc.
- $T_{LRU}(N) = O(T_{OPT}(N) + N \cdot f(N))$
 - Like MTF



HMM with Block Transfer (BT)

[Aggarwal, Chandra, Snir — FOCS 1987]

- Accessing memory location x costs f(x)
- Copying memory interval from $x \delta \dots x$ to $y \delta \dots y$ costs $f(\max\{x, y\}) + \delta$
 - Models memory pipelining ~ block transfer
 - Ignores block alignment, explicit levels, etc.



BT Results

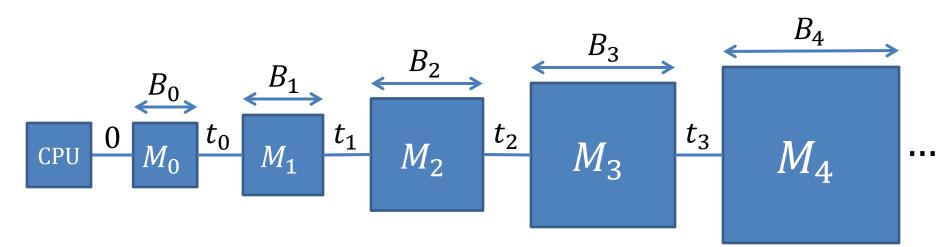
[Aggarwal, Chandra, Snir — FOCS 1987]

Problem	$f(x) = \log x$	$f(x) = x^{\alpha},$ $0 < \alpha < 1$	f(x) = x	$f(x) = x^{\alpha},$ $\alpha > 1$
Dot product, merging lists	$\Theta(N \log^* N)$	$\Theta(N \log \log N)$	$\Theta(N \log N)$	$\Theta(N^{\alpha})$
Matrix mult.	$\Theta(N^3)$	$\Theta(N^3)$	$\Theta(N^3)$	$\Theta(N^{\alpha})$ if $\alpha > 1.5$
Fast Fourier Transform	$\Theta(N \log N)$	$\Theta(N \log N)$	$\Theta(N \log^2 N)$	$\Theta(N^{\alpha})$
Sorting	$\Theta(N \log N)$	$\Theta(N \log N)$	$\Theta(N \log^2 N)$	$\Theta(N^{\alpha})$
Binary search	$\Theta\left(\frac{\log^2 N}{\log\log N}\right)$	$\Theta(N^{\alpha})$	$\Theta(N)$	$\Theta(N^{\alpha})$

Memory Hierarchy Model (MH)

[Alpern, Carter, Feig, Selker — FOCS 1990]

- Multilevel version of external-memory model
- $M_i \leftrightarrow M_{i+1}$ transfers happen in blocks of size B_i (subblocks of M_{i+1}), and take t_i time
- All levels can be actively transferring at once



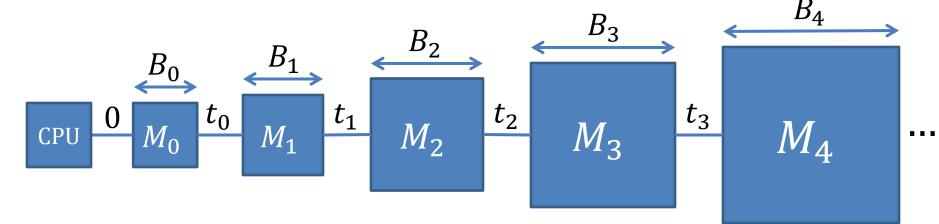
Uniform Memory Hierarchy (UMH)

[Alpern, Carter, Feig, Selker — FOCS 1990]

- Fix aspect ratio $\alpha = \frac{M/B}{B}$, block growth $\beta = \frac{B_{i+1}}{B_i}$
- $B_i = \beta^i$
- $\bullet \frac{M_i}{B_i} = \alpha \cdot \beta^i$

- 2 parameters
- 1 function

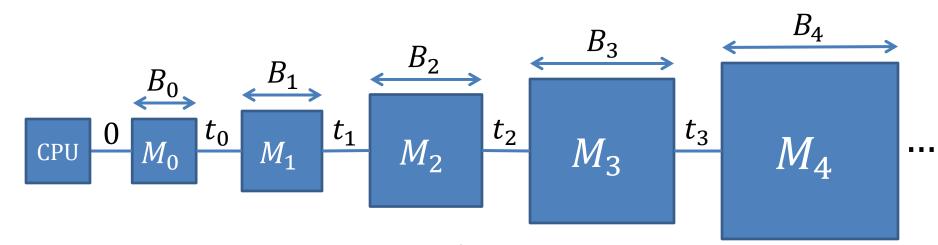
•
$$t_i = \beta^i \cdot f(i)$$



Random Access UMH (RUMH)

[Vitter & Nodine — SPAA 1991]

 RAM program + block move operations like BT, instead of manual control of all levels



(skipping SUMH)

Worse (tight) bounds in Vitter & Nodine

UMH Results

[Alpern, Carter, Feig, Selker — FOCS 1990]

Problem	Upper Bound	Lower Bound
Matrix transpose $f(i) = 1$	$O\left(\left(1+\frac{1}{\beta^2}\right)N^2\right)$	$\Omega\left(\left(1+\frac{1}{\alpha\beta^4}\right)N^2\right)$
Matrix mult. $f(i) = O(\beta^i)$	$O\left(\left(1+\frac{1}{\beta^3}\right)N^3\right)$	$\Omega\left(\left(1+\frac{1}{\beta^3}\right)N^3\right)$
FFT $f(i) \le i$	0(1)	B_4

General approach: Divide & conquer

(R)UMH Sorting

[Vitter & Nodine — SPAA 1991]

Problem	f(i) = 1	$f(i) = \frac{1}{i+1}$	$f(i) = \frac{1}{\beta^{ci}},$ $c > 0$
Sorting	$\Theta(N \log N)$	$\Theta(N \log N \cdot \log \log N)$	$\Theta\left(N^{1+\frac{c}{2}} + N\log N\right)$

P-HMM Results

[Vitter & Shriver — STOC 1990]

Problem	$f(x) = \log x$	$f(x) = x^{\alpha},$ $0 < \alpha < \frac{1}{2}$	$f(x) = x^{1/2}$	$f(x) = x^{\alpha},$ $\alpha > \frac{1}{2}$
Sorting & FFT	$\Theta\left(\frac{N}{P}\log N\right)$ $\log\frac{\log N}{\log P}$	($\Theta\left(\left(\frac{N}{P}\right)^{\alpha+1} + \frac{N}{P}\log \left(\frac{N}{P}\right)^{\alpha+1}\right)$	(N)
Matrix mult.	$\Theta\left(\frac{N^3}{P}\right)$	$\Theta\left(\frac{N^3}{P}\right)$	$\Theta\left(\frac{N^3}{P^{3/2}}\log N + \frac{N^3}{P}\right)$	$\Theta\left(\left(\frac{N^2}{P}\right)^{\alpha+1} + \frac{N^3}{P}\right)$

P-BT Results

[Vitter & Shriver — STOC 1990]

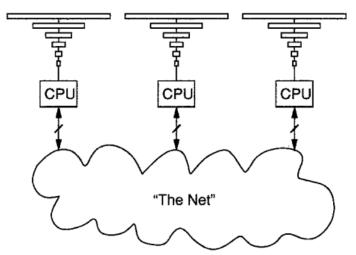
Problem	$f(x) = \log x$	$f(x) = x^{\alpha},$ $0 < \alpha < 1$	$f(x)=x^1$	$f(x) = x^{\alpha}$, $\alpha > 1$
Sorting & FFT	$\Theta\left(\frac{N}{P}\log N\right)$	$\Theta\left(\frac{N}{P}\log N\right)$	$\Theta\left(\frac{N}{P}\left(\log^2\frac{N}{P}\right) + \log N\right)$	$\Theta\left(\left(\frac{N}{P}\right)^{\alpha} + \frac{N}{P}\log N\right)$
Problem	$f(x) = \log x$	$f(x) = x^{\alpha},$ $0 < \alpha < \frac{3}{.2}$	$f(x) = x^{3/2}$	$f(x) = x^{\alpha}$, $\alpha > \frac{3}{2}$
Matrix mult.	$\Theta\left(\frac{N^3}{P}\right)$	$\Theta\left(\frac{N^3}{P}\right)$	$\Theta\left(\frac{N^3}{P^{3/2}}\log N + \frac{N^3}{P}\right)$	$\Theta\left(\left(\frac{N^2}{P}\right)^{\alpha}\right)$

(skipping UPMH from Alpern et al.)

P-(R)UMH Sorting

[Vitter & Nodine — SPAA 1991]

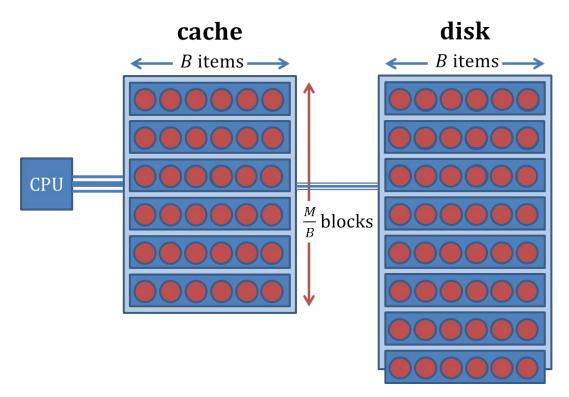
Problem	f(i) = 1	$f(i) = \frac{1}{i+1}$	$f(i) = \frac{1}{\beta^{ci}},$ $c > 0$
Sorting	$\Theta\left(\frac{N}{P}\log N\right)$	$\Theta\left(\frac{N}{P}\log N \cdot \log \frac{\log N}{\log P}\right)$	$\Theta\left(\left(\frac{N}{P}\right)^{1+\frac{c}{2}} + \frac{N}{P}\log N\right)$



Cache-Oblivious Model [Frigo,

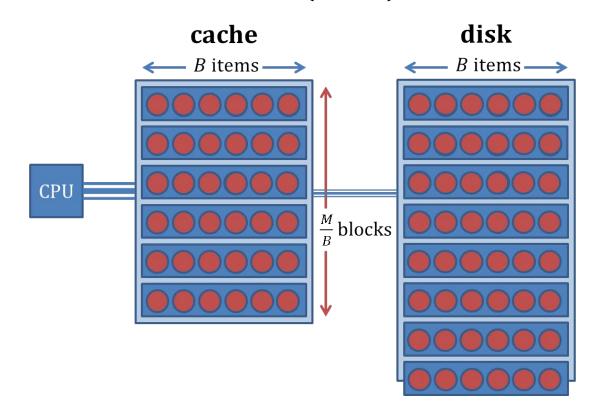
Leiserson, Prokop, Ramachandran — FOCS 1999]

- Analyze RAM algorithm (not knowing B or M) on external-memory model
 - Must work well for all B and M



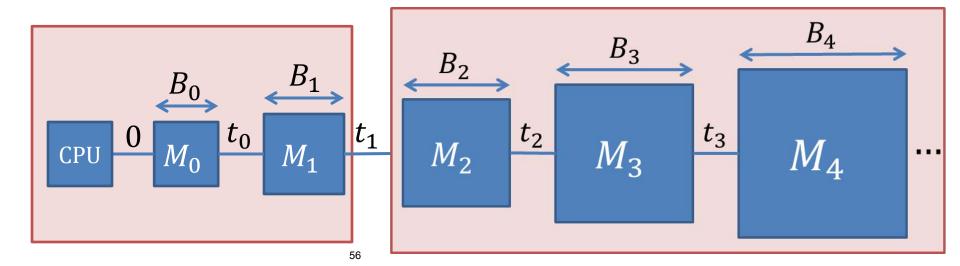
Cache-Oblivious Model [Frigo, Leiserson, Prokop, Ramachandran — FOCS 1999]

- Automatic block transfers via LRU or FIFO
- Lose factor of 2 in M and number of transfers
 - Assume $T(B, 2M) \le c T(B, M)$



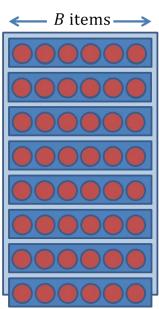
Cache-Oblivious Model [Frigo, Leiserson, Prokop, Ramachandran — FOCS 1999]

- Clean model
- Adapts to changing B (e.g., disk tracks) and changing M (e.g., competing processes)
- Adapts to multilevel memory hierarchy (MH)
 - Assuming inclusion



Scanning [Frigo, Leiserson, Prokop, Ramachandran — FOCS 1999]

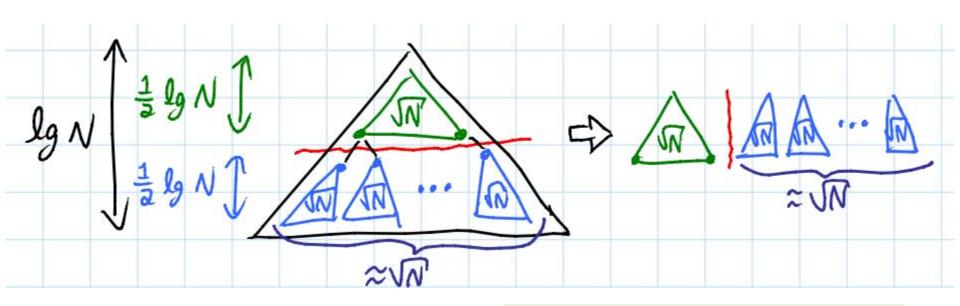
- Visiting *N* elements in order costs $O\left(1 + \frac{N}{B}\right) \text{ memory transfers}$
- More generally, can run O(1) parallel scans
 - Assume $M \ge c B$ for appropriate constant c > 0
- E.g., merge two lists in $O\left(\frac{N}{B}\right)$



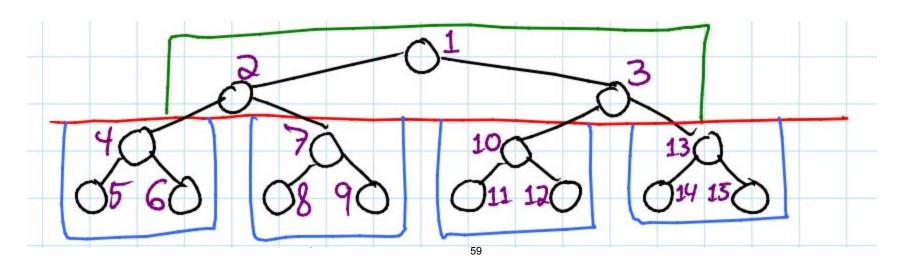
Cache Oblivious

- Prokop: cache-oblivious -> SUMH conversion
- Also obviously cache-oblivious -> external memory

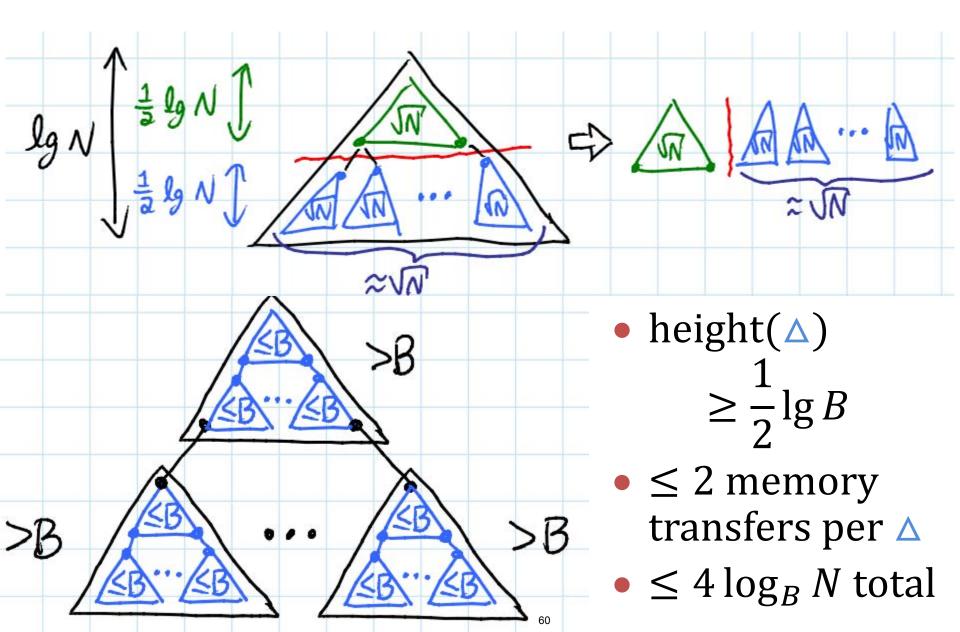
Searching [Prokop — Meng 1999]



"van Emde Boas layout"



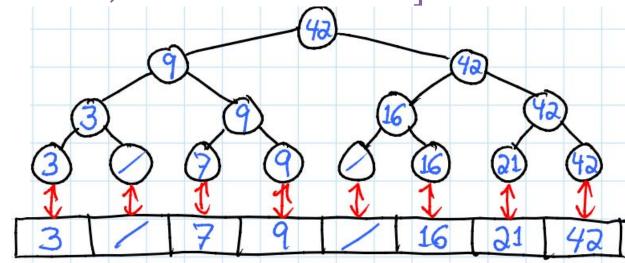
Searching [Prokop — Meng 1999]



Cache-Oblivious Searching

- $(\lg e + o(1)) \log_B N$ is optimal [Bender, Brodal, Fagerberg, Ge, He, Hu, Iacono, López-Ortiz FOCS 2003]
- Dynamic B-tree in $O(\log_B N)$ per operation [Bender, Demaine, Farach-Colton FOCS 2000] [Bender, Duan, Iacono, Wu SODA 2002]

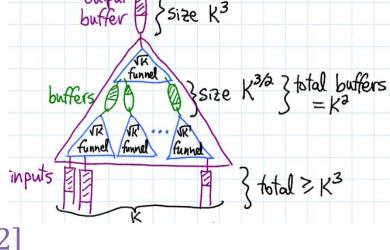
[Brodal, Fagerberg, Jacob — SODA 2002]



Cache-Oblivious Sorting

- $O\left(\frac{N}{B}\log_{M/B}\frac{N}{B}\right)$ possible, assuming $M \ge \Omega(B^{1+\varepsilon})$ (tall cache)
 - Funnel sort: mergesort analog
 - Distribution sort

[Frigo, Leiserson, Prokop, Ramachandran — FOCS 1999; Brodal & Fagerberg — ICALP 2002]

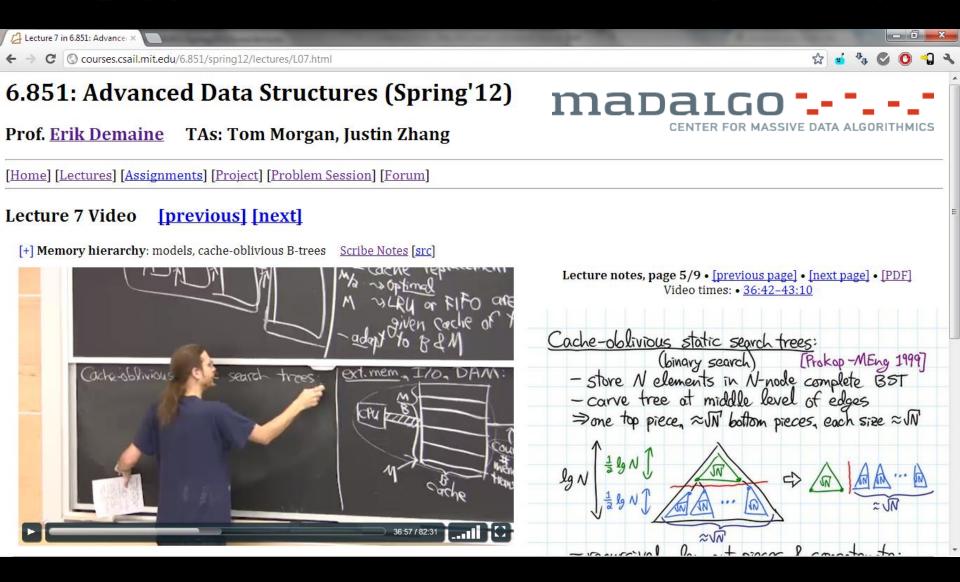


 Impossible without tall-cache assumption [Brodal & Fagerberg — STOC 2003]

Parallel Caching (Multicore), GPU, etc.

ALA

http://courses.csail.mit.edu/6.851/



Models, Models

Model	Year	Blocking	Caching	Levels	Simple
Idealized 2-level	1972	✓	X	2	√
Red-blue pebble	1981	X	√	2	✓ -
External memory	1987	✓	√	2	√
HMM	1987	X	✓	∞	✓
ВТ	1987	~	√	∞	✓-
(U)MH	1990	✓	√	∞	X
Cache oblivious	1999	✓	✓	2–∞	√ +

MIT OpenCourseWare http://ocw.mit.edu

6.851 Advanced Data Structures Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.