
6.851: Advanced Data Structures Spring 2012

Lecture 9 — March 15, 2012
Prof. Erik Demaine

1 Overview

This is the last lecture on memory hierarchies. Today’s lecture is a crossover between cache-oblivious
data structures and geometric data structures.

First, we describe an optimal cache-oblivious sorting algorithm called Lazy Funnelsort. We’ll then
see how to combine Lazy Funnelsort with the sweepline geometric technique to solve batched
geometric problems. Using this sweepline method, we discuss how to solve batched orthogonal 2D
range searching. Finally, we’ll discuss online orthogonal 2D range searching, including a linear-
space cache-oblivious data structure for 2-sided range series, as well as saving a log log factor from
the normal 4-sided range search.

2 Lazy Funnelsort

A funnel merges several sorted lists into one sorted list in an output buffer. Suppose we’d like
to merge K sorted lists of total size K3 . We can merge them in O(KB

3
lgM/B (

K) + K) memory B
transfers. Note: The +K term may be important in certain implementations, but generally the first
term will dominate.

A K-funnel is a complete binary tree with K leaves. Each of the subtrees in a K-funnel is recursively √ √
a K√-funnel. The edges of a K-funnel point to buffers, each of which is size K3/2 . Because there
are K buffers, the total size of the buffers in the K-funnel is K2 . See Figure 1 for a visual
representation.

When the k-funnel is initialized, its buffers are all empty. At the very bottom, the leaves point to
input lists.

The actual funnelsort algorithm is an N1/3-way mergesort with N1/3-funnel merger. Note: We can
only afford N1/3-funnel as a merger because of the K3 multiplier from above.

2.1 Filling buffers

When filling a buffer, we’d like the end result to be the output buffer being completely full.

In order to fill a buffer, we must look to the two child buffers to supply the data. See Figure 2. We
will merge the elements of the child buffers into the parent buffer, as long as both child buffers still
contain items. We merge by picking putting in the smaller element of the two child buffers (regular

1

Figure 1: Memory layout for K-funnel sort.

binary merge). Whenever one of the child buffers becomes empty, recursively fill it. We are only
considering two input buffers and one resulting, merged buffer at a time. As described above, each
leaf in the funnelsort tree has an input list which supplies the original data.

2.2 Distribution Sweeping via Lazy Funnelsort

The idea is that we can use funnelsort to sort, but it can also do a divide and conquer on the key
value.

We can actually augment the binary merge of the filling algorithm to maintain auxilliary information
about the coordinates. For example, we can given a point, use this funnelsort to figure out its nearest
neighbor.

3 Orthogonal 2D Range Searching

Given N points and some rectangles, we’d like to return which points are in which rectangles.

2

Figure 2: Filling a buffer.

3.1 Batched

The batched problem involves getting all N points and N rectangles first. We have all the infor­
mation upfront, and we’re also given a batch of queries and want to solve them all.

The optimal time is going to be O(N lgM/B(
N) + out)B B B

3.1.1 Algorithm

First, count the number of rectangles containing each point. We need this to figure out what our
buffer size needs to be in the funnel.

1. Sort the points and rectangle corners by x using lazy funnelsort.

2. Divide and conquer on x, where we mergesort by y and perform an upward sweepline algo­
rithm. We have slabs L and R, as seen in Figure 3.

3

Figure 3: Left and Right slabs containing points and rectangles.

3. The problem of which points are in which rectangles are from when the rectangle completely
spans one of the slabs, the rectangles in green in Figure 7, but not when the points of the
rectangle are within that slab.

Figure 4: Slabs that also contain slabs that span either L or R.

4. Maintain the number of active rectangles (sliced by the sweep line) with a left corner in L
and completely span R. Increment CL when we encounter a lower-left corner of a rectangle,
and decrement when we encounter an upper-left corner.

5. Symmetrically maintain CR on rectangles which span slab L.

6. When we encounter a point in L, add CR to its counter. Similarly, add CL to the counter of
any point in R.

At this point, we can create buffers of the correct size. However, this is not optimal.

The optimal solution is to carve the binary tree into linear size subtrees, and make each run in
linear time.

4

3.2 Online Orthogonal 2D range search [2] [3]

It is possible to preprocess a set of N points in order to support range queries while incurring only
outO(logB N + B) external memory transfers.

We will consider three different kinds of range queries:

• 2-sided range queries : (≤ xq, ≤ yq)

• 3-sided range queries : ([xqmin , xqmax], ≤ yq)

• 4-sided range queries : ([xqmin , xqmax , yqmax])], [yqmin

Figure 5: Depicts the three different types of range queries.

Only a small amount of extra space is needed to perform cache oblivious range queries. The below
table compares the space required to perform range queries in the random access model, and the
cache oblivious model.

Query Type RAM Cache Oblivious
2-sided O(N) O(N)
3-sided O(N) O(N lg N)

4-sided O(N lg N
lg lg N) O(N lg

2 N
lg lg N)

3.2.1 2-sided range queries

First we will show how to construct a data-structure that is capable of performing 2-sided range
queries while using only linear space. Using this data-structure, it will be possible to construct
data-structures for the 3-sided and 4-sided cases which have the desired space bounds.

At a high level, our datastructure consists of a vEB BST containing our N points sorted on their
y coordinate. Each point in the tree contains a pointer into a single array which has O(N) size.
This array contains one or more copies of each of the N points, and is organized in a special way.
To report the points satisfying a 2-sided range query (≤ xq, ≤ yq) we find the point in the tree
and follow a pointer into the array, and then scan the array until we encounter a point whose x
coordinate is greater than xq. The array’s structure guarantees that we will only scan O(out) points
and that the distinct points scanned are precisely those satisfying the range query (≤ xq, ≤ yq).

5

Figure 6: A high level description of the datastructure which supports 2 sided range queries using
only linear space.

We will proceed to describe the structure of the array and prove the following claims:

1. The high level procedure we described will find all points in (≤ xq, ≤ yq).

2. The number of scanned points is O(out).

3. The array has size O(N).

First Attempt

We will begin by describing a simple structure for the array which will satisfy claims 1 and 2, but
fail to have linear size. This attempt will introduce concepts which will be useful in our second
(and successful) attempt.

Definition 1. A range (≤ xq, ≤ yq) is dense in an array S if

|{(x, y) ∈ S : x < xq}| ≤ 2 · # points in (≤ xq, ≤ yq)

Definition 2. A range is sparse with respect to S if it is not dense in S.

Note that if a range is dense in an array S and S is sorted on x, then we can report all points
within that range by scanning through S. Since the range is dense in S, we will scan no more than
twice the number of points reported.

Our strategy will be to construct an array S0S1 . . . Sk so that for any query (≤ xq, ≤ yq) there

exists an i for which that query is dense in Si.

Consider the following structure:

Let S0 = all points (sorted by x coordinate)

Let yi = largest y where some query (≤ xq, ≤ y) is sparse in Si−1.

6

Let Si = Si−1 ∩ (∗, ≤ yi).

Then let our array be S0S1 . . . Si.

Now consider the query (≤ xq, ≤ yq). There is some i for which yi < yq, and for this i the query will
be dense in Si−1. For otherwise, yq would be a larger value of y for which some query (≤ xq, ≤ y)
is sparse in Si−1, contradicting the definition of yi. Now we can construct our vEB BST and have
each node point to the start of the subarray for which the corresponding query is dense. This data
structure will allow us to find all points in a range while scanning only O(out) points (satisfying
claims 1 and 2). However, the array S0S1 . . . Sk may not have O(N) size. Figure 7 shows an
example in which the array’s size will be quadratic in N .

Figure 7: An example showing how our first attempt may construct an array with size quadratic
in N .

Second (correct) attempt

Let xi = max x coordinate where (≤ x, ≤ yi) is sparse in Si−1.

Let yi = largest y where some query (≤ xq, ≤ y) is sparse in Si−1.

Let Pi−1 = Si−1 ∩ (≤ xi, ∗).

Let Si = Si−1 ∩ ((∗, ≤ yi) ∪ (≥ xi, ∗)). (Note that this definition differs from that in our first

attempt.)

Our array will now be P0P1 . . . Pi−1Si . . . Sk (where Sj has O(1) size for j between i and k.)

First, we show that the array is O(N) in size. Notice that |Pi−1 ∩ Si| ≤ 1 |Pi−1| since (≤ xi, ≤ yi)
2
is sparse in Si−1. Charge storing Pi−1 to (Pi−1 − Si). This results in each point only being charged

1once by a factor of = 2. Which implies that the total space used is ≤ 2N .
1− 1

2

Next, notice that when an element is repeated in the array its x coordinate must be less than the
x coordinate of the last seen point in the query. Therefore, by focusing on a monotone sequence of
x coordinates we can avoid duplicates.

Finally, the total time spent scanning the array will be O(out) because each point is repeated only
outO(1) times. Therefore, this data structure can support O(logB N + B) 2-sided range queries while

using only O(N) space.

7

3.2.2 3-sided range queries

Maintain a vEB search tree in which the leaves are points keyed by x. Each internal node stores
two 2-sided range query datastructures containing the points in that node’s subtree. Since each
point appears in the 2-sided datastructures of O(log N) internal nodes, the resulting structure uses
O(N log N) space.

To perform the 3-sided range query ([xqmin , xqmax], ≤ yq), we first find the least common ancestor of
in the tree. We then perform the query (≥ xqmin) in the left child’s structure xqmin and xqmax , ≤ yq

and the query (≤ xqmax , ≤ yq) in the right child’s structure. The union of the points reported will
be the correct answer to the 3-sided range query.

OPEN: 3-sided range queries with O(logB N + out) queries and O(N) space. B

3.2.3 4-sided range queries

outNotice that we can easily achieve O(logB N +) queries if we allow ourselves to use O(N log2 N)B
space by constructing a vEB tree keyed on y which contains 3-sided range query structures.

log2 N	 log NHowever, it is possible to use only O(N) space by storing each point in only O()log log N	 log log N
3-sided range query structures.

Conceptually, we contract each 12 lg lg N height subtrees into
√
lg N degree nodes. This results in

a tree of height O(lg N).lg lg N

Now, as before, we store two 3-sided range query structure in each internal node containing the
points in their subtree. Further, we store lg N static search trees keyed by x on points in each √
interval of the node’s lg N children.

To perform the query ([xqmin]) we first find the least common ancestor of yqmin, xqmax], [yqmin , yqmax

and yqmax in the tree. Then we perform the query ([xqmin , qqmax) in the child node con­], ≥ yqmin

taining yqmin , and the query ([xqmin , qqmax) in the child containing yqmax . Finally, use], ≤ yqmin

the search tree keyed on x associated with the interval between the child containing yqmin and the
child containing yqmax to perform the query([xqmin , xqmax], ∗) for all the in-between children at once.

out	 log2 NThis data structure supports O(logB N +) 4-sided range queries, while using only O(N).B	 log log N
space.

References

[1] Gerth Stølting Brodal and Rolf Fagerberg. Cache oblivious distribution	 sweeping. In Pro­
ceedings of the 29th International Colloquium on Au- tomata, Languages, and Programming,
volume 2380 of Lecture Notes in Computer Science, pages 426-438, Malaga, Spain, July 2002.

[2] Lars Arge and Norbert Zeh. 2006.	 Simple and semi-dynamic structures for cache-oblivious
planar orthogonal range searching. In Proceedings of the twenty-second annual symposium on
Computational geometry (SCG ’06). ACM, New York, NY, USA, 158-166.

8

[3] Lars Arge, Gerth Stlting Brodal, Rolf Fagerberg, and Morten Laustsen. 2005. Cache-oblivious
planar orthogonal range searching and counting. In Proceedings of the twenty-first annual
symposium on Computational geometry (SCG ’05). ACM, New York, NY, USA, 160-169.

9

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

