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1 Overview- Geometry II 

We first show how to further utilize fractional cascading to remove yet another lg factor from d-
dimensional orthogonal range searches, so that we can query in O(n lgd−2 n). Recall that fractional 
cascading allow for: 

• searching for x in k lists of length n in O(lg n + k) time. 

• this works even if the lists are found online by navigating a bounded-degree graph 

Then we move on to the topic of kinetic data structures. These are data structures that contain 
information about objects in motion. They support the following three types of queries: (i) change 
the trajectory of an object; (ii) move forward to a specified point in time (advance); (iii) return 
information about the state of the objects in the current time. Examples we will go over are kinetic 
predecessor/successor and kinetic heaps. 

2 3D Orthogonal Range Search in O(lg n) Query Time 

The work here is due to Chazell and Guibas [CG86]. 

In general we want to query on the section of our points in space defined by: [a1, b1]×[a2, b2]×[a3, b3]. 

2.1 Step 1 

We want to query (−∞, b2) × (−∞, b3), which we call the restricted two dimensional case. There 
are no left endpoints in our query, so the area we’re querying basically looks like: 

We want to call points dominated by (b2, b3) in the yz-plane in time: O(k) + the time needed to 
search for b3 in the list of z-coordinates. We transform this to a ray-stabbing query. The basic idea 
is to use horizontal rays to stab vertical rays, where the horizontal ray is our ray of query. 

A crossing indicates that the point whose vertical ray caused the crossing lies in the query range. 
What we want to do is walk along our horizontal ray and spend constant time per crossing. For 
each vertical ray, we keep a horizontal line at the bottom point of the ray. This line is extended 
left and right until it hits another vertical ray. (These lines are blue in the figure below.) 
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Figure 1: Query Area
 

Figure 2: Stabbing Vertical Rays 

When traversing, we binary search for the z value and then go from ”face” to ”face” in the picture. 
However, we want to bound the degree of the faces (the number of faces bordering it) to make the 
query more efficient. Thus we look at all the horizontal lines that end at some vertical ray and 
extend approximately half of them into the face to create more faces with lower degree (the green 
dotted lines in the figure above). Since we only extend half, the number of lines decreases by a  ∞ 1 
factor of 2 for every vertical ray. Since = 2, we only have an O(n) increase in space. This i=0 2i 
is due to Chazelle [C86]. 

2.2 Step 2 

Now we want to query [a1, b1] × (−∞, b2) × (−∞, b3) in O(k)+ O(lg n) searches. To do this, we use 
a one dimensional range tree on the x-coordinates, where each node stores the structure in Step 1 
on points in its subtree. 

2.3 Step 3 

Now we query [a1, b1] × [a2, b2] × (−∞, b3). We do something similar to a range tree on the y-
coordinate, where each node v stores a key = max(left(v)), the structure in Step 2 on points in its 
right subtree, and the structure in Step 2, but inverted, on points in its left subtree. The inverted 
structure allows queries of [a1, b1] × (a2, ∞) × (−∞, b3). This can easily be done in the same way as 
before. At this point, we know that we can only afford a constant number of calls to the structures 
in Step 2. 
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Figure 3: Extending Lines 

We start by walking down the tree. At each node v, if key(v) < a2 < b2 we go to its right child. 
If key(v) > b2 > a2, we go to its left child. Finally, if a2 ≤ key(v) ≤ b2, we query on the Step 2 
structure and the inverted Step 2 structure at this node. The reason this gives us all the points we 
want is that the structure in the left subtree allows for queries from a2 to ∞. However, since this 
only stores points with y-coordinate less than or equal to key(v), we get the points between a2 and 
key(v). Similarly, the structure in the right subtree allows for leftward queries, so we get the points 
between key(v) and b2. Thus we only needed two calls to the Step 2 structures and one lg n search 
(walking down the tree). We note that we could have used this idea for all three coordinates, but 
we didn’t need to since range trees give us the x-coordinate for free (this requires a lg factor of 
extra space). 

2.4 Step 4 

Finally, we query [a1, b1] × [a2, b2] × [a3, b3]. We do the exact same thing as in Step 3, except now 
on the z-coordinates, and at each node we store the structure in Step 3. 

2.5 Total Time and Space 

This whole process required O(lg n + k) time and O(n lg3 n) space. This means that in general, for 
d ≥ 3 dimensions, orthogonal range search costs O(lgd−2(n) + k). The basic idea was that if using 
more space is not a problem, one-sided intervals are equivalent to two-sided intervals. The reason 
why this doesn’t further reduce the runtime is that if we were to try this on four dimensions, the 
initial structure in Step 1 would need to account for more than two dimensions, which it cannot do 
quickly. 

3 Kinetic Data Structures 

The work here is due to Basch, Guibas, and Hershberger [BGH99]. 

The idea behind kinetic data structures is that we have objects moving with some velocity, and we 
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want to know where they will be at some future time. Also, we want to be able to account for the 
objects’ change in trajectories. The operations are: 

•	 advance(t) : now = t 

•	 change(x, f(t)) : changes trajectory of x to f(t) 

We will only be dealing with the following models of trajectories: 

•	 affine: f(t) = a + bt 

n•	 bounded-degree arithmetic: f(t) = i=0 ait
i 

•	 pseudo-algebraic: any certificate of interest flips between true and false O(1) times 

We define a certificate as a boolean function about the points. 

3.1 Approach 

1. Store the data structure that is accurate now. Then queries about the present are easy. 

2. Augment the data structures with certificates which store conditions under which the data 
structures is accurate and which are true now. 

3. Compute the failure times when each certificate fails to hold (takes O(1) time). 

4. Place the failure times into a priority queue. When we advance time, we look for certificates 
that fail and ”fix” them. 

3.2 Metrics 

There are four metrics we generally use to measure the performance of a kinetic data structure: 

•	 responsiveness — when an event happens (e.g. a certificate failing), how quickly can the data 
structure be fixed? 

•	 locality — what is the most number of certificates any object participates in? 

•	 compactness — what is the total number of certificates? 

•	 efficiency What is the ratio of the worst-case number of data structure events (disregarding 
modify) to the worst case number of “necessary” changes? (The notion of a “necessary 
change” is somewhat slippery. In practice we will define it on a per-problem basis.) 
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3.3 Kinetic Predecessor 

The first kinetic data structure problem we will look at is kinetic predecessor (also called kinetic 
sorting). We want to support queries asking for the predecessor of an element (assuming the 
elements are sorted by value). We take the following approach: 

1. Maintain a balanced binary search tree. 

2. Let x1, . . . , xn be the in-order traversal of the BST. Keep the certificates {(xi < xi+1) | i = 
1, . . . , n − 1}. 

3. Compute the failure time of each certificate as failure timei := inf{t ≥ now | xi(t) > xi+1(t)}. 
For example, if the motion of each object is linear, compute the first time after the current 
point at which two lines intersect. 

4. Implement advance(t) as follows: 

while t >= Q.min : 
now = Q.min 
event (Q. de l e t e −min ) 

now = t 

de f i n e event ( c e r t i f i c a t e ( x [ i ] < x [ i +1 ] ) ) : 
swap (x [ i ] , x [ i +1]) in BST 
add c e r t i f i c a t e ( x [ i +1] <= x [ i ] ) 
r ep l a c e c e r t i f i c a t e ( x [ i −1] <= x [ i ] ) with ( x [ i −1] <= x [ i +1]) 
r ep l a c e c e r t i f i c a t e ( x [ i +1] <= x [ i +2]) with ( x [ i ] <= x [ i +2]) 

Each time a certificate fails, we remove it from the priority queue and replace any certificates that 
are no longer applicable. It takes O(lg n) time to update the priority queue per event, but the 
problem is that there may be O(n2) events. We now analyze according to our metrics. 

Efficiency If we need to ”know” the sorted order of points, then we will need an event for every 
order change. Each pair of points can swap a constant number of times, yielding O(n2) possible 
events. Therefore the efficiency is O(1). 

Responsiveness Because we used a BBST, we can fix the constant number of certificate failures 
in O(lg n) time. 

Local Each data object participates in O(1) certificates. In fact, each participates in at most 2 
certificates. 

Compact There were O(n) certificates total. 

3.4 Kinetic Heap 

The work here is due to de Fonseca and de Figueiredo [FF03] 

We next consider the kinetic heap problem. For this problem, the data structure operation we 
want to implement is findmin. We do this by maintaining a heap (for now, just a regular heap, no 
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need to worry about Fibonacci heaps). Our certificates check whether each node is smaller than its 
two children in the heap. Whenever a certificate breaks, we simply apply the heap-up operation to 
fix it, and then modify the certificates of the surrounding nodes in the heap appropriately. In this 
case, our data structure has O(lg n) responsiveness, O(1) locality, and O(n) compactness. The only 
non-obvious metric is efficiency. We show below that the efficiency is in fact O(lg n) (by showing 
that the total number of events is O(n lg n)). 

Analyzing the number of events in kinetic heap. We will show that there are at most 
O(n lg n) events in a kinetic heap using amortized analysis. For simplicity, we will carry through 
our analysis in the case that all functions are linear, although the general case works the same. 

Define Φ(t, x) as the number of descendents of x that overtake x at some time after t. 

Define Φ(t, x, y) as the number of descendants of y (including y) that overtake x at some time 
greater than t. Clearly, Φ(t, x) = Φ(t, x, y) + Φ(t, x, z), where y and z are the children of x.  
Finally, define Φ(t) = (Φ(t, x)). Φ will be the potential function we use in our amortized 

x 
analysis. Observe that Φ(t) is O(n lg n) for any value of t, since it is at most the total number of 
descendants of all nodes, which is the same as the total number of ancestors of all nodes, which is 
O(n lg n). We will show that Φ(t) decreases by at least 1 each time a certificate fails, meaning that 
certificates can fail at most O(n lg n) times in total. 

Consider the event at time t+ when a node y overtakes its parent x, and define z to be the other 
child of x. The nodes x and y exchange places, but no other nodes do. This means that the only 
changes to any of the potential functions between t and t+ are: 

+Φ(t , x) = Φ(t, x, y) − 1 

and 

+Φ(t , y) = Φ(t, y) + Φ(t, y, z). 

Since y > x now, we also see that 

Φ(t, y, z) ≤ Φ(t, x, z). 

Finally, we need that 

Φ(t, x, z) = Φ(t, x) − Φ(t, x, y). 

Then 

+ +Φ(t , x) + Φ(t , y) = Φ(t, x, y) − 1 + Φ(t, y) + Φ(t, y, z) 

≤ Φ(t, x, y) − 1 + Φ(t, y) + Φ(t, x, z) 

= Φ(t, x, y) − 1 + Φ(t, y) + Φ(t, x) − Φ(t, x, y) 

= Φ(t, y) + Φ(t, x) − 1 
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From these, it follows that: 

Φ(t+) ≤ Φ(t) − 1, 

which completes the analysis. We conclude that the total number of data structure modifications 
is O(n lg n). 

3.5 Other Results 

We now survey the results in the field of kinetic data structures. For a more comprehensive survey,
 
see [Gui04].
 

2D convex hull. (Also diameter, with, and minimum area/perimeter rectangle.) Efficiency:
 
O(n2+E), Ω(n2) [BGH99]. OPEN: 3D case.
 

Smallest enclosing disk. O(n3) events. OPEN: O(n2+E)?
 

Approximatie results. We can (1+ E)-approximate the diameter and the smallest disc/rectangle
 

E 
O(1)

in 1 events [AHP01]. 

Delaunay triangulations. O(1) efficiency [AGMR98]. OPEN: how many total certificate 
changes are there? It is known to be O(n3) and Ω(n2). 

Any triangulation. Ω(n
 2+2) changes even with Steiner points [ABdB+99]. O(n 
1 
3 ) events [ABG+02]. 

OPEN: O(n2) events? We can achieve O(n2) for pseudo-triangulations. 

Collision detection. See the work done in [KSS00], [ABG+02], and [GXZ01]. 

2−Minimal spanning tree. O(m2) easy. OPEN: o(m2)? O(n
1 
6 ) for H-minor-free graphs (e.g.
 

planar) [AEGH98]. 
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