
6.851: Advanced Data Structures Spring 2012

Lecture 3 — February 23, 2012
Prof. Erik Demaine

1 Overview

In the last lecture we saw the concepts of persistence and retroactivity as well as several data
structures implementing these ideas.

In this lecture we are looking at data structures to solve the geometric problems of point location
and orthogonal range queries. These problems encompass applications such as determining which
GUI element a user clicked on, what city a set of GPS coordinates is in, and certain types of
database queries.

2 Planar Point Location

Planar point location is a problem in which we are given a planar graph (with no crossings)
defining a map, such as the boundary of GUI elements. Then we wish to support a query that
takes a point given by its coordinates (x, y) and returns the face that contains it (see Figure 1 for
an example). As is often the case with these problems, there is both a static and dynamic version
of this problem. In the static version, we are given the entire map beforehand and just want to be
able to answer queries. For the dynamic version, we also want to allow the addition and removal
of edges.

Figure 1: An example of a planar map and some query points

1

2.1 Vertical Ray Shooting

A closely related problem to planar point location is vertical ray shooting. Just as in planar
point location, we are interested in a planar graph defining a map. In this case, when we query a
point (x, y) we are interested in the first line segment lying above it. Equivalently, if we imagine
shooting a vertical ray from the query point, we want to return the first map segment that it
intersects (see Figure 2).

We can use vertical ray shooting to solve the planar point location problem in the static case by
precomputing, for each edge, what the face lying below it is. For the dynamic planar point location
problem, we can again use this technique, but we need to maintain the face data dynamically,
leading to an O(log n) additive overhead. The vertical ray shooting problem can be solved with a
technique called a line sweep.

Figure 2: The same map and query points in the ray shooting view

2.2 Line Sweep

The line sweep is a relatively general technique for reducing the dimension of a geometric problem
by 1. Given a geometric problem in d-dimensional space, we can consider a “vertical” (d − 1)­
dimensional crosssection, meaning a hyperplane perpendicular to the x1 axis. Now we imagine
our geometry problem within just that hyperplane and consider how it changes as we move the
hyperplane along the x1 axis. If this x1 dimension has a suitable “timelike” interpretation, as it
does in vertical ray shooting, then a persistent or fully retroactive data structure for the (d − 1)­
dimensional problem will allow us to solve the d-dimensional problem.

In the case of vertical ray shooting, in one dimension we can solve the problem with a balanced
binary search tree. More specifically, we are doing successor queries. In the last lecture we saw how
to make a partially persistent balanced binary search tree with O(log n) time queries, and we know
that a fully retroactive successor query structure can be made with O(log n) queries as well. Note,
however, that in this case the successor structure only allows us to handle horizontal segments, as

2

the comparison function between general segments depends on the x-coordinate. What happens
when we apply line sweep to solve the two dimensional problem?

As our vertical crosssection sweeps from left to right, we first note that no two line segments ever
change order because of the assumption that there are no crossings in our map. This means that the
tree structure only changes at a few discrete times. In particular, when we reach the left endpoint
of a segment we are performing an insertion of that segment, and when we reach the right endpoint
we are performing a deletion.

Supposing we implement this line sweep using a partially persistent balanced binary search tree,
to make a vertical ray shooting query for the point (x, y), we find the update corresponding to the
x-coordinate and make a query (using persistence) for (x, y) in that version of the data structure.
It is also useful to note that this structure can be computed in O(n log n) preprocessing time, as
shown by Dobkin and Lipton in [8].

Additionally, if we use the fully retroactive successor data structure, we can solve the dynamic
vertical ray shooting problem with horizontal segments with O(log n) time queries. See [4] and [10].

Several variants of the vertical ray shooting problem are still open. Examples include:

•	 OPEN: Can we do O(log n) dynamic vertical ray shooting in a general planar graph?

•	 OPEN: Can we do O(log n) static ray shooting when the rays do not have to be vertical?
Note that the three dimensional version of this problem is motivated by ray tracing.

2.3 Finding Intersections

The line sweep method can also be used to find intersections in a set of line segments, and this
problem gives a good illustration of the line sweep method.

Given a set of line segments in the plane defined by their endpoints, we wish to find all of the
intersections between them. See Figure 3 for an example of the problem.

Figure 3: A line sweep for detecting intersections

3

3

To solve this problem, we use the line sweep technique where we store the line segments in a
balanced binary search tree. The modifications to the search tree are as follows.

•	 The left endpoint of a segment causes us to insert that segment into the tree.

•	 The right endpoint of a segment causes us to delete that segment from the tree.

•	 Two segments crossing cause us to interchange their order within the tree.

We can use these ideas to solve the line segment intersection problem in O(n log n + k) when there
are k intersections. To do this, we need to be able to efficiently determine the next time two
segments would cross. We note that if a crossing would occur before we add or delete any more
segments, it would have to involve two segments that are currently adjacent in the tree order. Then
for each segment, we track when it would cross its successor in the tree and each internal node
tracks the earliest crossing in its subtree. It is not difficult to maintain this extra data in O(log n)
time per update, and when performing a swap can be done in constant time.

Orthogonal range searching

In this problem we’re given n points in d dimensions, and the query is determining which points
fall into a given box (a box is defined as the cross product of d intervals; in two dimensions, this
is just a rectangle). See Figure 4 for an example. This is, in a sense, the inverse of the previous
problem, where we were given a planar graph, and the query was in the form of a point.

Figure 4: Orthogonal range searching

In the static version of the problem we can preprocess the points, while in the dynamic version
points are added and deleted. In both cases, we query the points dynamically. The query has
different versions:

•	 Are there any points in the box? This is the “existence” version of the problem, and it’s the
easiest.

•	 How many points are in the box? This can solve existence as well.

4

•	 What are all the points in the box? Alternatively, what is a point, or what are ten points, in
the box?

These questions are very similar, and we can solve them with the same efficiency. Once exception
is the last question - for a given input, the answer may involve returning every point in the set,
which would take O(n) time. We’re therefore looking for a solution something like O(log n + k),
where k is the size of the output.

3.1 Range Trees

Let’s start with the 1-dimensional case, d = 1. To solve it, we can just sort the points and use
binary search. The query is an interval [a, b]; we can find the predecessor of a and the successor
of b in the sorted list and use the results to figure out whether there are any points in the box;
subtract the indices to determine the number of points; or directly print a list of points in the box.
Unfortunately arrays don’t generalize well, although we will be using them later.

We can achieve the same runtimes by using a structure called Range Trees. Range trees were
invented by a number of people simultaneously in the late 70’s [3], [2], [11], [12], [16].

We can build a range tree as follows. Consider a balanced binary search tree (BBST) with data
stored in the leaves only. This will be convenient for higher dimensions. Each non-leaf node stores
the min and max of the leaves in its subtrees; alternatively, we can store the max value in the left
subtree if we want to store just one value per node.

Again, we search for pred(a) and succ(b) (refer to Figure 5). As we search, we’ll move down the
tree and branch at a number of points. (As before, finding pred(a) and succ(b) takes O(log n)
time.) Once the paths to pred(a) and succ(b) diverge, any time we turn left at a node while

Figure 5: Branching path to pred(a) and succ(b)

searching for pred(a), we know that all the leaves of the right subtree of that node are in the given
interval. The same thing is true for left subtrees of the right branch. If the left tree branches right
or the right tree branches left, we don’t care about the subtree of the other child; those leaves are
outside the interval. The answer is then implicitly represented as follows: If we store the size of
each node’s subtree in the node, we can compute the number of elements in our list in O(log n)
time. To find the first k numbers, we can visit the first k elements after pred(a) in O(k) time
(the operations in the previous two sentences might be easier to visualize with reference to Figure
6). These are the same results we received with arrays, but range trees are easier to generalize to
higher d.

Let’s look at the 2 − d case, searching for points between a1 and b1 in x and a2 and b2 in y. We can
build a range tree using only the x coordinate of each point, and then repeat the above procedure

5

Figure 6: The subtrees of all the elements between a and b

to figure out which points fall between a1 and b1.

We now want to sort the points by y coordinate. We can’t use a range tree over all the points,
because we’re only interested in the points which we know are between a1 and b1, rather than every
point in the set. We can restrict our attention to these points by creating, for each x subtree, to
a corresponding one dimensional y range tree, consisting of all the points in that x subtree, but
now sorted by their y-coordinate. We’ll also store a pointer in each node of the x range tree to
the corresponding y tree (see Figure 7 for an example). For example, αx, βx, and γx point to

Figure 7: Each of the nodes at the x level have a pointer to all of the children of that node sorted
in the y dimension, which is denoted in orange.

corresponding subtrees αy, βy, and γy. γx is a subtree of βx in x, but γy is disjoint from βy (even
though γy and γx store the same set of points).

This structure takes up a lot of space: every point is stored in log n y range trees, so we’re using
θ(nlogn) space. However, we can now do search efficiently - we can first filter our point set by x
coordinate, and then search the corresponding y range trees to filter by the y coordinate. We’re
searching through O(log n) y subtrees, so the query runs in O(log2 n) time.

6

We can extend this idea to d dimensions, storing a y subtree for each x subtree, a z subtree for each
y subtree, and so on. This results in a query time of O(logd n). Each dimension adds a factor of
O(log n) in space; we can store the tree in O(n logd−1 n) space in total. If the set of points is static,
we can preprocess them in O(n logd−1) time for d > 1; sorting takes O(n log n) time for d = 1.
Building the range trees in this time bound is nontrivial, but it can be done.

3.2 Layered Range Trees

We can improve on this data structure by a factor of log n using an idea called layered range
trees (See [9], [17], [15]). This is also known as fractional cascading, or cross linking, which
we’ll cover in more detail later. The general idea is to reuse our searches.

In the 2 − d case, we’re repeatedly performing a search for the same subset of y-coordinates, such
as when we search both α2 and γ2 for points between a2 and b2.

To avoid this, we do the following. Instead of a tree, store an array of all the points, sorted by
y-coordinate (refer to Figure 8). As before, have each node in the x tree point to a corresponding
subarray consisting of those points in the tree, also sorted by their y-coordinate.

Figure 8: Storing arrays instead of range trees

We can do the same thing as before, taking O(log n) time to search through each array by y; but
we can also do better: we can search through just one array in y, the array corresponding to the
root of the tree, which contains every element, sorted by y.

We want to maintain this information as we go down the x range tree. As we move from a node
v in the x tree to one of its children, say vr, vr will point to an array, sorted in y, that contains a
subset of the y array v points to. This subset is arbitrary, as it depends on the x-coordinate of the
points.

7

Figure 9: Here is an example of cascading arrays in the final dimension. The large array contains
all the points, sorted on the last dimensions. The smaller arrays only contain points in a relevant
subtree (the small subtree has a pointer to the small array). Finally, the big elements in the bih
array has pointers to its “position” in the small array.

Let’s store a pointer in each element of v’s array to an element in vr’s array. If the element is in both
arrays, it should point to itself; otherwise, let it point to its successor in vr’s array. (Each element
will actually store two pointers, one to vr’s array and one to vW’s array.) Then, in particular, we
can find the predecessor and successor of a2 and b2 in any subtree by just following pointers. This
lets you query the y-coordinate in O(log n + k) time, so we avoid the extra log factor from the
previous strategy, allowing us to solve the 2 − d problem in O(log n) time in total. For arbitrary
d, we can use this technique for the last dimension; we can thereby improve the general query to
O(logd−1 n + k) time for d > 1.

3.3 Dynamic Point Sets

We can make the previous scheme dynamic using amortization. In general, when we update a tree,
we only change a few things, usually near the leaves. Updating a tree near its leaves takes constant
time, as we’re only changing a few things. Occasionally, we’ll need to update a large section of the
tree, which will take a longer time, but this happens infrequently.

It turns out that if we have O(n logd−1 n) space and preprocessing time, we can make the structure
dynamic for free using weight balanced trees.

3.4 Weight Balanced Trees

There are different kinds of weight balanced trees; we’ll look at the oldest and simplest version,
BB[α] trees [14]. We’ve seen examples of height-balanced trees: AVL trees, where the left and
right subtrees have heights within an additive constant of each other, and Red-Black trees, where

8

the heights of the subtrees are within a multiplicative factor of each other.

In a weight balanced tree, we want to keep the size of the left subtree and the right subtree roughly
the same. Formally, for each node v we want

size(left(v)) ≥ α · size(v)

size(right(v)) ≥ α · size(v)
We haven’t defined size: we can use the number of nodes in the subtree, the number of leaves in

1the subtree, or some other reasonable definition. We also haven’t selected α. If α = 2 , we have a
problem: the tree must be perfectly balanced at all times. Taking a small α, however, (say, α = 1),10
works well. Weight balancing is a stronger property than height balancing: a weight balanced tree
will have height at most log1/α n.

We can apply these trees to our layered range tree. [12][15] Updates on a weight balanced tree can
be done very quickly. Usually, when we add or delete a node, it will only affect the nodes nearby.
Occasionally, it will unbalance a large part of the tree; in this case, we can destroy that part of the
tree and rebuild it. When we do so, we can rebuild it as a perfectly balanced tree.

Our data structure only has pointers in one direction - each parent points to its children nodes, but
children don’t point to their parents, or up the tree in general. As a result, we’re free to rebuild
an entire subtree whenever it’s unbalanced. And once we rebuild a subtree, we can make at least
θ(k) insertions or deletions before it becomes unbalanced again, where k is the size of the subtree.

When we do need to rebuild a subtree, we can charge the process of rebuilding to the θ(k) updates
we’ve made. Since each node we add can potentially unbalance every subtree it’s a part of (a total
of log(n) trees), we can update the tree in log(n) amortized time (assuming that a tree can be
rebuilt in θ(k) time, which is easy).

So, for layered range trees, we have O(logd n) amortized update, and we still have a O(logd−1 n)
query.

3.5 Further results

For static orthogonal range searching, we can achieve a O(logd−1 n) query for d > 1 using less c r
logd−1(n)

space: O n [5]. This is optimal in some models.
log log n

We can also achieve a O(logd−2 n) query for d > 2 using O(n logd(n)) space [6], [7]. A more recent
result uses O(n logd+1−E(n)) space [1]. This is conjectured to be an optimal result for queries.

There are also non-orthogonal versions of this problem - we can query with triangles or general
simplices, as well as boxes where one or more intervals start or end at infinity.

4 Fractional Cascading

Fractional cascading is a technique from Chazelle and Guibas in [6] and [7], and the dynamic version
is discussed by Mehlhorn and Näher in [13]. It is essentially the idea from layered range trees put
into a general setting that allows one to eliminate a log factor in runtime.

9

4.1 Multiple List Queries

To illustrate the technique of fractional cascading, we will use the following problem. Suppose you
are given k sorted lists L1, . . . , Lk each of length n, and you want to find the successor of x in
each of them. One could trivially solve this problem with k separate binary searches, resulting in
a runtime of O(k log n). Fractional cascading allows this problem to be solved in O(k + log n).

To motivate this solution we can look at the layered range trees above and think about how we can
retain information when moving from one list to the next. In particular, if we were at a certain
element of L1, we could store where that element lies in L2, and then quickly walk from one list to
the next. Unfortunately, it might be the case that all of the elements of L2 lie between two of the
elements of L1, in which case our position in L1 doesn’t tell us anything. So we should add some
more information to L1. This leads to the idea of fractional cascading.

Define new lists Li
1, . . . , L

i by Li = Lk, and for i < k, let Li be the result of merging Li with every k k i
1other element of Li Note that |Li | = |Li| + |Li |, so |Li| ≤ 2n = O(n).i+1. i 2 i+1

For each i < k, keep two pointers from each element. If the element came from Li, keep a pointer to
the two neighboring elements from Li

i+1, and vice versa. These pointers allow us to take information
of our placement in Li and in O(1) turn it into information about our placement in Li and our i
placement in half of Li

i+1.

Figure 10: An illustration of fractional cascading

Now to make a query for x in all k lists is quite straightforward. First, query Li
1 for the location of

x with a binary search. Now to find the location of x in Li from the location of x in Li , find the i+1 i

two neighboring elements in Li
i+1 that came from Li

i using the extra pointers. Then these elements
have exactly one element between them in Li To find our actual location in Li

i+1, we simply i+1.
do a comparison with that intermediate element. This allows us to turn the information about
x’s location in Li into information about x’s location in Li in O(1) time, and we can retrieve i i+1
x’s location in Li from its location in Li in O(1), and thus we can query for x in all k lists in i
O(k + log n) time.

4.2 General Fractional Cascading

To generalize the above technique, we first note that we can replace “every other element” with “α
1of the elements, distributed uniformly”, for any small α. In this case, we used α = 2 . However, by

using smaller α, we can do fractional cascading on any graph, rather than just the single path that

10

we had here. To do this, we just (modulo some details) cascade α of the set from each vertex along
each of its outgoing edges. When we do this, cycles may cause a vertex to cascade into itself, but
if we choose α small enough, we can ensure that the sizes of the sets stays linearly bounded.

In general, fractional cascading allows us to do the following. Given a graph where

•	 Each vertex contains a set of elements

•	 Each edge is labeled with a range [a, b]

•	 The graph has locally bounded in-degree, meaning for each x ∈ R, the number of incoming
edges to a vertex whose range contains x is bounded by a constant.

We can support a search query that finds x in each of k vertices, where the vertices are reachable
within themselves from a single node of the graph so the edges used form a tree with k vertices. As
before, we could do the search query in O(k log n) with k separate binary searches and fractional
cascading improves this to O(k + log n), where n is the largest size of a vertex set.

References

[1] S. Alstrup, G. Stolting Brodal, T. Rauhe, New data structures for orthogonal range searching,
Foundations of Computer Science, 2000. Proceedings, 41st annual symposium, 198-207.

[2] J.L. Bentley, Multidimensional Binary Search Trees in Database Applications, IEEE Transac­
tions on Software Engineering, 4:333-340, 1979.

[3] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms
and Applications, Springer, 3rd edition, 2008.

[4] G. Blelloch, Space-efficient dynamic orthogonal point location, segment intersection, and range
reporting, SODA 2008:894-903.

[5] B. Chazelle,	 Reportin and counting segment intersections, Journal of Computer and System
Sciences 32(2):156-182, 1986.

[6] B. Chazelle, L. Guibas, Fractional Cascading: I. A Data Structuring Technique, Algorithmica,
1(2):133-162, 1986.

[7] B. Chazelle, L. Guibas,	 Fractional Cascading: II. Applications, Algorithmica, 1(2):163-191,
1986.

[8] D. Dobkin, R. Lipton,	 Multidimensional searching problems, SIAM Journal on Computing,
5(2):181-186, 1976.

[9] Gabow H., Bentley J., Tarjan R., Scaling and related techniques for geometry problems, Sym­
posium on Theory of Computing, 1984. Proceedings, 16th annual

[10] Y. Giyora, H. Kaplan, Optimal dynamic vertical ray shooting in rectilinear planar subdivisions,
ACM Transactions on Algorithms, 5(3), 2009.

11

[11] D.T. Lee, C.K. Wong, Quintary trees: a file structure for multidimensional database systems,
ACM Transactions on Database Systems, 5(3), 1980.

[12] G. Lueker, A data structure for orthogonal range queries, Foundations of Computer Science,
1978. Proceedings, 19th annual symposium, 28-34.

[13] K. Mehlhorn, S. Näher, Dynamic Fractional Cascading, Algorithmica, 5(2): 215-241, 1990.

[14] J. Nievergelt, E. M. Reingold, Binary search trees of bounded balance, Symposium on Theory
of Computing, 1972. Proceedings, 4th annual symposium.

[15] D.E. Willard, New Data Structures for Orthogonal Range Queries, SIAM Journal on Comput­
ing, 14(1):232-253. 1985.

[16] D.E. Willard, New Data Structures for Orthogonal Queries, Techincal Report, January 1979.

[17] D.E. Willard, Ph.D. dissertation, Harvard University, 1978.

12

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

