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 Lecture 21 — May 8, 2012 
Prof. Erik Demaine

1 Overview 

In the last lecture we introduced Euler tour trees [3], dynamic data structures that can perform 
link-cut tree operations in O(lg n) time. We then showed how to implement an efficient dynamic 
connectivity algorithm using a spanning forest of Euler tour trees, as demonstrated in [4]. This 
yielded an amortized time bound of O(lg2 n) for update operations (such as edge insertion and 
deletion), and O(lg n/ lg lg n) for querying the connectivity of two vertices. In this lecture, we 
switch to examining the lower bound of dynamic connectivity algorithms. Until recently, the best 
lower bound for dynamic connectivity operations was Ω(lg n/ lg lg n), as described by Fredman and 
Henzinger in [1] and independently by Miltersen in [2]. However, we will show below that it is 
possible to prove Ω(lg n), using the method given by Pǎtraşcu and Demaine in [6]. 

2 Cell Probe Complexity Model 

The Ω(lg n) bound relies on a model of computation called the cell probe complexity model, originally 
described in the context of proving dynamic lower bounds by Fredman and Saks in [5]. The cell 
probe model views a data structure as a sequence of cells, or words, each containing a w-bit field. 
The model calculates the complexity of an algorithm by counting the number of reads and writes to 
the cells; any additional computation is free. This makes the model comparable to a RAM model 
with constant time access. Because computation is free, the model is not useful for determining 
upper bounds, only lower bounds. 

We empirically assume that the size of each cell, w, is at least lg n. This is because we would like 
the cells to store pointers to each of our n vertices, and information theory tells us that we need 
lg n bits to address n items. For the the following proof, we will further assume that w = Θ(lg n). 
In this sense, the cell probe model is a transdichotomous model, as it provides a bridge between the 
problem size, n, and the cell or machine size, w. 

3 Dynamic Connectivity Lower Bound for Paths 

The lower bound we are trying to determine is the best achievable worst-cast time for a sequence 
of updates and queries to a path. We will prove the following: 

Theorem 1. Under the cell probe model, the lower bound worst-case cost is Ω(lg n) per operation. 

It is possible to show that the lower bound is also Ω(lg n) in the amortized case, but we will only 
examine the worst case cost. 
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3.1 Path Grid
 

√ √ 
We start by arranging the n vertices in a n by n grid, as shown in Figure 1. The grid has perfect √ 
matching between consecutive columns Ci and Ci+1. This results in a graph with n disjoint paths 
across the columns. The paths can be coded by the permutations π1, π2, . . . π√ 

n−1, where πi is the 
permutation of edges that joins column Ci and Ci+1. 

√ √ 
Figure 1: A n by n grid of vertices, with one of the disjoint paths darkened. 

3.2 Block Operations 

There are two operations that we define on the grid: 

•	 UPDATE(i, π) – √Replaces the ith permutation πi in the grid with permutation π. This is 
equivalent to O( n) edge deletions and insertions.  i•	 VERIFY SUM(i, π) – Check if (πj ) = π. In other words, check if the first i permutations j=1 √ 
π1, π2, . . . πi is equivelent to a single permutation π. This is equivalent to O( n) connectivity 
queries. 

We can now described the dynamic connectivity problem in terms of these operations and cell probe 
operations. Thus, we make the following claim: 

√	 √ 
Claim 2. Performing n UPDATE(i, π) operations and n VERIFY SUM(i, π) operations requires √ √ 
Ω( n n lg n) = Ω(n lg n) cell probes. 

3.3 Construction of Bad Access Sequences 

To prove the above claim, we need to use a family of random, “bad” sequences so as to ensure that 
we achieve the true lower bound. Otherwise, it would be possible for the data structure to tune to 
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the input sequences, allowing it to take advantage of patterns in the sequences and run faster than 
it would in the worst case. We want to come up with the most difficult sequence of operations and 
sequences possible to ensure a worst case lower bound. 

First, we will alternate the update and query operations, UPDATE(i, π) and VERIFY SUM(i, π). 
Then, we will carefully select the arguments to these operations as follows: 

•	 π for UPDATE – The permutation π for each UPDATE operation will be uniformly random, 
which will randomly change the result of each SUM operation (where SUM computes the sum 
of i permutations, which must also be performed by VERIFY SUM). 

•	 π for VERIFY SUM – Using uniformly random permutations is not appropriate, because it 
is easy for the operation to check that a permutation doesn’t match the sum; it only needs to 
find one path in the sum that doesn’t satisfy π. The worst case permutation is actually the 

i“correct” permutation, π = (πj ), because this forces the operation to check every pathj=1

before returning TRUE. 

•	 i – For both operations, the i’s follow the bit reversal sequence. To generate this sequence, 
take all n-bit numbers ni, write them in binary, then reverse (or “mirror”) the bits in each 
number ni to create a new number mi. This results in a new sequence of numbers with 
some special properties. For example, the sequence maximizes the WILBER 1 function, as it 
chooses a path with the maximal number of non-preferred children at each step. 

Example Using the argument selection rules above, we will alternate between update and query 
operations using worst case arguments, resulting in a “bad” access sequence. For example, with 
3-bit cells, the bit reversal sequence is 

(0002, 1002, 0102, 0112, 0012, 1012, 0112, 1112) = (0, 4, 2, 6, 1, 5, 3, 7) 

The access sequence we would give would then be 

QUERY (0, πcorrect), UP DAT E(0, πrandom), QUERY (4, πcorrect), UP DAT E(4, πrandom), . . . 

Notice that the sequences of queries defined above interleaves betwen adjacent blocks perfectly. 

3.4 Tree of Time 

To keep track of the order of the order of the sequence of acesses, we can create a binary tree 
in which each leaf represents one QUERY/UP DAT E pair of operations, and the leaves are in 
chronological order. We will refer to this as the tree of time. Note that for all h and m, the 
mth node at height m has all leaves with i such that i’s last h digits are the bit reversal of m as 
descendents. As a result, the leaves in the left and right subtrees of any non-leaf node in this tree 
are interleaved. This implies that one can determine exactly what updates were performed in the 
left subtree of any node by making the right queries on values of i represented by leaves in the right 
subtree. The need to store and then retrieve this information is what makes this access sequence 
hard. 

3
 

∑



� � � �
 
� � � �
 

� � � �
 
� � � �
 

� � � �
 

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
� 

        

        

        

        

        

0 4 2 6 1 5 3 7 

_ 
Time 

Figure 2: The tree of time for w = 3 

Claim 3. For any non-leaf node of the tree of time, v, let £ be the number of leaves in each of its √ 
subtrees. Then the series of operations represented in the right subtree of v must execute Ω(£ n) 
probes of cells that were last modified during operations represented in the left subtree of v. 

For any given cell probe, there is at most one leaf that represents the step when the cell was last 
modified, and one leaf representing the step in which this probe occurs. So, the only node that √ 
includes this probe in its Ω(£ n) probes is the least common ancestor of these two leaves. 

√ 
There are n leaves total, so the sum of the values of £ corresponding to all of the nodes on a given √ 
level is n. There are Ω(log n) levels; therefore, this claim implies that the total number of cell √ √ 
probes used by this sequence of operations is Ω(log n) · Ω( n · n) = Ω(n log n). Thus, this claim 
implies claim 2. 

3.5 Plan for proving claim 3 

In order to prove Claim 3, we will show that for any node, v, in order to answer the queries √ 
represented in v’s right subtree the program will need to use Ω(£ n log n) bits of information that 
were set during operations represented in the left subtree of v. 

Assuming that we knew the exact configuration of the paths prior to the operations represented in 
v’s subtrees, it is possible to determine exactly what permutations were used by each UP DAT E 
operation represented in v’s left subtree by executing the right series of V ERIFY SUM operations √ 
using i with leaves in v’s right subtree. There are 

√ 
n = 2θ( n log n) possible permutations of 

√ 
n√ 

elements, so it takes Ω(£ n log n) bits of information to track the set of modifications performed 
in the left subtree of v. 
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3.6 Simplified proof using SUM 

Rather than doing the relevant proof immediately, we will start with a warmup. So, imagine that 
instead of using V ERIFY SU < as our queries, we are using 

i 
SUM(i) = πj 

j=0 

In other words, SUM(i) returns the composition of the first i permutations. 

Let R be the set of all cells accessed during the right subtree of v and W be the set of all cells 
written during the left subtree of v. Assuming that the size of each cell is w = θ(log n), R ∩ W 
can be encoded in O(|R ∩ W |w) bits, and I claim that the full series of operations performed in 
the right subtree of v can be simulated using only a recording of the states of the cells immediately 
before the left subtree of v began, and an encoding of R ∩ S. 

Each time our simulation needs to know the information in a cell, there are three possible cases, 
based on where in the tree of time that cell was last modified. 

1.	 v’s right subtree: Its current value was set by another operation in the simulation, so we can 
easily determine it. 

2.	 v’s left subtree: This cell must be in R ∩ W , so we can get its value from the encoding of 
R ∩ W . 

3. past subtrees: We can simply look its value up in the recording of the cells’ states before v’s 
subtree started executing. 

In every case, we can give the simulation the data it needs to continue correctly, so it can give the 
correct outputs in response to all queries. Having the values of SUM(i) for each leaf in v’s right 
subtree provides enough information to determine exactly what permutations were performed in v’s 
left subtree, so the output of the simulation must be different for each possible set of permutations 
that could be performed there. The only part of the simulation’s input that depends on which 
permutations were performed in v’s left subtree is R∩W , so there must be at least as many possible √ 
values of R ∩ W as there are possible sets of permutations. Thus, |R ∩ W | = Ω(£ n log n)/ log n = √ 
Ω(£ n). 

3.7 Proof using VERIFY SUM 

√ 
We have shown that Claim 3’s bound of Ω(l n) cell probes is necessary to transfer the information 
from the UPDATE operations on the left subtree to the SUM operations on the right. Now we will 
try to prove a similar result using VERIFY SUM. 

Query: VERIFY SUM(i, π): i (πj ) = 
? 

π. Returns TRUE if the composition of the first ij=1

permutations is equivalent to permutation π, and returns FALSE otherwise. 
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Setup: Again, we assume we know the entire past. However, this time, we will not assume that 
we know updates in the left subtree or queries in the right subtree. We do know though, that for 
any i, only one π will result in TRUE. Furthermore, recall that we are using the worst case π inputs 
for VERIFY SUM operations. Because the worst case π is the “correct” permutation, we know that 
VERIFY SUM will always return true! 

Encoding: As before, define R, W , and P . Instead of just having to encode the sums, however, 
we also have to encode the input π’s. This is avoided by noting that the input π must always 
be the permutation that causes VERIFY SUM to return true, as described in the setup. Instead of 
encoding π, we can just recover during decoding by trying all possible πi permutations and selecting 
the one which matches the encoded P permutation. 

Decoding: We start by simulating all possible input permutations to VERIFY SUM so as to 
recover π, as described above. As before, the decoding algorithm relies on the knowledge of where 
the cell was last written. Unfortunately, this is no longer easy to discern. Because we simulated 
all possible input permutations, we queried cells in set R' as well as in R. Let R' be the set of 
cells read by these incorrect queries. If we read cell r ∈ R' \ R, then the permutation π must be 
incorrect. However, there is a chance that r will intersect with W in cells not in P , so that the state 
data needed to evaluate these read operations will get the value from the past, instead of getting 
data written during the left subtree. Since the algorithm is reading incorrect bits on its cell probes 
when the query has an answer that should be no, it might return yes instead, resulting in a false 
positive. 

Result: We could get around this problem by encoding all of R or W , allowing us to check 
whether r ∈ W \ R or r ∈ past \ P . However, this requires a large number of bits; W could 
be as large as £ 

√ 
n log n cells, or £ 

√ 
n log2 n bits, prevent our encoding from fitting in the desired √ 

£ n log n space. Instead, we will try to find a way to cheaply encode whether we are in R \ W or 
W \ R. 

3.8 Separators 

To solve the decoding problem described for VERIFY SUM queries, we encode a separator. 

Definition 4. A separator family for size m sets is a family S ⊂ 2U with the property that for 
any A, B ⊂ U , with (|A|, |B| ≤ m) and (A ∩ B = ∅), there exists a C ∈ S, such that (A ⊂ C) and 
(B ⊂ U \ C). 

Theorem 5. There exist separator families S such that |S| ≤ 2O(m+log log U). 

Theorem 5 results from the fact that we can have a perfect hash family H with |H| ≤ 2O(m+lg lg |U |), 
which maps A ∪ B to an O(m)-size table with no collisions. Each of these table entries stores two 
bits indicating if that element is in A or B. Storing the perfect hash function takes lg |H| bits, 
and the table entries take 2O(m) bits, so overall lg |H| + 2O(m) = O(m + lg lg |U |) + O(m) = 
O(m + lg lg |U |) = lg |S|. 
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Figure 3: Venn diagram showing the intersections of R, W , and R ' . 

Therefore, we can encode a separator S in O(|R| + |W | + lg lg n) bits. The separator will have the 
property that R \ W ⊆ S and W \ R ⊆ S. By encoding the separator S along with P , we can 
successfully decode each write in the following manner. 

Decoding (with Separator): To decode, we first simulate all input permutations to VER­
IFY SUM so as to recover π. Then, we determine when the cell being read was last written: 

•	 Right subtree – As before, we have knowledge of the permutations performed on the right 
subtree, so decoding here is trivial. 

•	 P – We again use the information encoded in the simulated P set to determine what permu­
tations were performed. 

•	 S – If the cell is in S but not R \ W , then it must have last been written in the past, and we 
assume we know the effects of past permutations 

•	 S – If the cell is not in S, then it must not be in R, meaning that this can’t be the correct π. 
So we abort this decoding and look elsewhere for the appropriate π. 

3.9 Conclusion 

We have shown that we can decode the permutations caused by the left subtree UPDATE operations 
by using an encoded representation of P and a separator S of size O(|R| + |W | + lg lg n), giving us 
a lower bound of √ 

|P |O(lg n) + O(|R| + |W | + lg lg n) = Ω(£ n lg n). 

There are two possibilities to consider. 
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Figure 4: The separator S distinguishing between R \ W and W \ R. 

√ 
• |R| + |W | = Ω(£ n lg n) – If |R| + |W | is large, then we have not proven anything, because 

our estimate is then trivially true. However, in this case, there were a total of O(£) operations √ 
handled by each of the left and right subtrees, each of which does n dynamic connectivity 
operations. Then at least one of those dynamic connectivity operations used Ω(lg n) time, 
and the main theorem holds. 

√ 
• |R| + |W | = o(£ n lg n) – This implies that there were at least that many cell probes were 

forced on the right subtree by the left subtree, which is exactly what we were trying to show. 

References 

[1] M. L. Fredman and M. R. Henzinger. Lower bounds for fully dynamic connectivity problems 
in graphs. Algorithmica, 22(3):351362, 1998. 

[2] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia. Complexity models for incre­
mental computation. Theoretical Computer Science, 130(1):203236, 1994. 

[3] M. R. Henzinger, V. King,	 Randomized dynamic graph algorithms with polylogarithmic time 
per operation. STOC 1995: 519-527 

[4] J. Holm, K. Lichtenberg, M. Thorup, Poly-logarithmic deterministic fullydynamic algorithms 
for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 2001: 48(4): 
723-760 

[5] M. Fredman, M. Saks,	 The cell probe complexity of dynamic data structures. STOC 1989: 
345-354 
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