
6.851: Advanced Data Structures	 Spring 2012

Lecture 17 — April 24
Prof. Erik Demaine

1 Overview

Up until now, we have mainly studied how to decrease the query time, and the preprocessing time
of our data structures. In this lecture, we will focus on maintaining the data as compactly as
possible. The for this section is to get very “small” space, that is often for static data structure.
Going to look a binary tries, using binary alphabets. Another way is to use bit strings. It is easy
to do linear space, it it is not optimal. Our goal will be to get as close the information theoretic
optimum as possible. We will refer to this optimum as OPT. Note that most ”linear space” data
structures we have seen are still far from the information theoretic optimum because they typically
use O(n) words of space, whereas OPT usually uses O(n) bits. This strict space limitation makes
it really hard to have dynamic data structures, so most space-efficient data structures are static.

Here are some possible goals we can strive for:

•	 Implicit Data Structures – Space = information-theoretic-OPT + O(1). Focusing on bits, not
words. The ideal is to use O(n) bits. The O(1) is there so that we can round up if OPT is
fractional. Most implicit data structures just store some permutation of the data: that is all
we can really do. As some simple examples, we can refer to Heap which is a Implicit Dynamic
Data Structure, and Sorted array which is static example of these data structures.

•	 Succinct Data Structures – Space = OPT + o(OPT). In other words, the leading constant is
1. This is the most common type of space-efficient Data Structures.

•	 Compact Data Structures – Space = O(OPT). Note that some ”linear space” data structures
are not actually compact because they use O(w·OPT) bits. This saves at least an O(w) from
the normal data structures. For example, suffix tree has O(n) words space, but its information
theoretic lower bound is n bits. On the other hand, BST can be seen as a Compact Data
Structure.

Succinct is the usual goal here. Implicit is very hard, and compact is generally to work towards a
succinct data structure.

1.1 mini-survey

•	 Implicit Dynamic Search Tree – Static search trees can be stored in an array with ln n per
search. However, in order to inserts and deletes makes the problem more tricky. There

1

is an old results that was done in lg2n using pointers and permutation of the bits In 2003,
Franceschini and Grossi [1] developed an implicitly dynamic search tree which supports insert,
delete, and predecessor in O(log(n)) time worst case, and it is cache-oblivious.

•	 Succinct Dictionary – This is static, which has no inserts and deletes. In a universe of size u,
u lg (u)

u +O(n(lg lg n)2
how many ways are there to have n items. Use lg +O n bits [2] or lg)n lg lg lg u n lg n
bits [6] , and support O(1) membership queries, same amount of time but with less space
than normal dictionaries; u is the size of the universe from which the n elements are drawn.

•	 Succinct Binary Tries – The number of possible binary tries with n nodes is the nth Catalan
u

number, Cn = (n)/(n + 1) ≈ 4n . Thus, OP T ≈ log(4n) = 2n. We note that this can be
derived from a recursion formula based on the sizes of the left and right subtrees of the root.
In this lecture, we will show how to use 2n + o(n) bits of space. We will be able to find the
left child, the right child, and the parent in O(1) time. We will also give some intuition for
how to answer subtree-size queries in O(1) time. Subtree size is important because it allows
us to keep track of the rank of the node we are at. Motivation behind the research was to fit
the Oxford dictionary onto a CD, where space was limited.

kn+1•	 Almost Succinct k-ary trie – The number of such tries is Ck = /(kn+1) ≈ 2(log(k)+log(e))n .n n
Thus, OPT = (log(k) + log(e))n. The best known data structures was developed by Benoit
et al. [3]. It uses (ilog(k)l + ilog(e)l)n + o(n) + O(loglog(k)) bits . This representation
still supports the following queries in O(1) time: find child with label i, find parent, and find
subtree size.

•	 Succinct Rooted Ordered Trees – These are different from tries because there can be no absent
children. The number of possible trees is Cn, so OPT = 2n. A query can ask us to find the
ith child of a node, the parent of a node, or the subtree size of a node. Clark and Munro [4]
gave a succinct data structure which uses 2n + o(n) space, and answers queries in constant
time.

•	 Succinct Permutation – In this data structure, we are given a permutation π of n items, and
the queries are of the form πk(i). Munro et. al. present a data structure with constant query
time and space (1 + E)n log(n) + O(1) bits in [7]. They also obtain a succinct data structure
with ilog n!l + o(n) bits and query time O(log n/ log log n).

•	 Compact Abelian groups – Represent abelian group on n items using O(lg n) bits, and represent
an item in that list with lg n bits.

•	 Graphs – More complicated. We did not go over any details in class.

•	 Integers – Implicit n-bit number of integers can do increment or decrement in O(lg n) bits
reads and O(1) bit writes.

OPEN: O(1) word operations.

Level Order Representation of Binary Tries

As noted above, the information theoretic optimum size for a binary trie is 2n bits, two bits per
node. To build a succinct binary trie, we must represent the structure of the trie in 2n + o(n) bits.

2

2

We represent tries using the level order representation. Visit the nodes in level order (that is, level
by level starting from the top, left-to-right within a level), writing out two bits for each node. Each
bit describes a child of the node: if it has a left child, the first bit is 1, otherwise 0. Likewise, the
second bit represents whether it has a right child.

As an example, consider the following trie:

We traverse the nodes in order A, B, C, D, E, F, G. This results in the bit string:

11 01 11 01 00 00 00
A B C D E F G

External node formulation Equivalently, we can associate each bit with the child, as opposed
to the parent. For every missing leaf, we add an external node, represented by · in the above
diagram. The original nodes are called internal nodes. We again visit each node in level order,
adding 1 for internal nodes and 0 for external nodes. A tree with n nodes has n + 1 missing leaves,
so this results in 2n + 1 bits. For the above example, this results in the following bit string:

1 1 1 0 1 1 1 0 1 0 0 0 0 0 0
A B C · D E F · G · · · · · ·

Note this new bit string is identical to the previous but for an extra 1 prepended for the root, A.

2.1 Navigating

This representation allows us to compute left child, right child, and parent in constant. It does not,
however, allow computing subtree size. We begin by proving the the following theorem:

Theorem 1. In the external node formulation, the left and right children of the ith internal node
are at positions 2i and 2i + 1.

3

Proof. We prove this by induction on i. For i = 1, the root, this is clearly true. The first entry of
the bit string is for the root. Then bits 2i = 2 and 2i + 1 = 3 are the children of the root.

Now, for i > 1, by the inductive hypothesis, the children of the i−1st internal node are at positions
2(i−1) = 2i− 2 and 2(i−1)+1 = 2i−1. We show that the children of the ith internal immediately
follow the i − 1st internal node’s children.

Visually, there are two cases: either i − 1 is on the same level as i or i is on the next level. In the
second case, i − 1 and i are the last and first internal nodes in their levels, respectively.

Figure 1: i − 1 and i are on the same level.

Figure 2: i − 1 and i are different levels.

Level ordering is preserved in children, that is, A’s children precede B’s children in the level ordering
if and only if A precedes B. All nodes between the i − 1st internal node and the ith internal node
are external nodes with no children, so the children of the ith internal node immediately follow the
children of the i − 1st internal node, at positions 2i and 2i + 1.

As a corollary, the parent of bit position i is li/2J. Note that we have two methods of counting
bits: we may either count bit positions or rank only by 1s. If we could translate between the two
in O(1) time, we could navigate the tree efficiently.

4

3 Rank and Select

Now we need to establish a correspondence between positions in the n-bit string and actual internal
node number in the binary tree.

Say that we could support the following operations on an n-bit string in O(1) time, with o(n) extra
space:

• rank(i) = number of 1’s at or before position i

• select(j) = position of jth one.

This would give us the desired representation of the binary trie. The space requirement would be
2n for the level-order representation, and o(n) space for rank/select. Here is how we would support
queries:

• left-child(i) = 2rank(i)

• right-child(i) = 2rank(i) + 1

• parent(i) = select(li/2J)

Note that level-ordered trees do not support queries such as subtree-size. This can be done in the
balanced parentheses representation, however.

3.1 Rank

This algorithm was developed by Jacobsen, in 1989 [5]. It uses many of the same ideas as RMQ.
The basic idea is that we use a constant number of recursions until we get down to sub-problems √
of size k = lg(n)/2. Note that there are only 2k = n possible strings of size k, so we will just
store a lookup table for all possible bit strings of size k. For each such string we have k = O(log(n))
possible queries, and it takes log(k) bits to store the solution of each query (the rank of that √
element). Nonetheless, this is still only O(2k · k log k) = O(n lg(n) lg lg(n)) = o(n) bits.

Notice that a naive division of the entire n-bit string into chunks of size 1 lg n does not work. 2
nbecause we need to save relative indices, each taking up to lg n bits, for a total of Θ(n) bits, lg n

which is too much. Thus, we need to use a technique that uses indirection twice.

1Step 1: We build a lookup table for bit strings of length 2 lg n. As we argued before, this takes √
O(n lg n lg lg n) = o(n) bits of space.

Step 2: Split the the n-bit string into (lg2 n)-bit chunks.

At the end of each chunk, we store the cumulative rank so far. Each cumulative rank would take lg n

n nbits. And there are at most n/ lg2 n chunks. Thus, the total space required is O(lg n) = O()

lg2 n lg n

bits

Step 3: Now we need to split each chunk into (1 lg n)-bit sub-chunks.
 2

Then, at the end of each sub-chunk, we store the cumulative rank within each chunk. Since each
chunk only has size lg2 n, we only need lg lg n bits for each index. There are at most O(n/ lg n)

nsub-chunks. Thus, the total space required is O(lg lg n) = o(n) bits. Notice how we saved space lg n
because the size of the cumulative rank within each small chunk is less.

5

Figure 3: Division of bit string into chunks and sub-chunks, as in the rank algorithm

Step 4: To find the total rank, we just do:

Rank = rank of chunk + relative rank of sub-chunk within chunk + relative rank of element within
sub-chunk (via lookup table).

lg lg nThis algorithm runs in O(1) time, and it only takes O(n) bits. lg n

nIt is in fact possible to improve the space to O() bits for any constant k. But this is not covered
lgk n

in class.

3.2 Select

This algorithm was developed by Clark and Munro in 1996 [4]. Select is similar to rank, although
more complicated. This time, since we are trying to find the position of the ith one, we will break
our array up into chunks with equal amounts of ones, as opposed to chunks of equal size.

Step 1: First, we will pick every (lg n lg lg n)th 1 to be a special one. We will store the index
of every special one. Storing an index takes lg n bits, so this will take O(n lg n/(lg n lg lg n)) =
O(n/ lg lg n) = o(n).

Then, given a query, we can find divide it by lg n lg lg n to teleport to the correct chunk containing
our desired result.

Step 2: Now, we need to restrict our attention to a single chunk, which contains lg n lg lg n 1 bit.
Let r be the total number of bits in a chunk.

If r > (lg n lg lg n)2 bits:

This is when the 1 bits are sparse. Thus, we can afford to store an array of indices of every 1 bit

6

Figure 4: Division of bit string into uneven chunks each containing the same number of 1’s, as in
the select algorithm

in this chunk. There are (lg n lg lg n) 1 bits. Storing each would take up at most lg n space (The
size of the chunk is already polylog(n), so lg n bits is more than enough). And there are at most

n such sparse chunks. So, in total, we use space:
(lg n lg lg n)2

n nO() bits.
(lg n lg lg n)2 (lg n lg lg n) lg n) = o(lg lg n

If r < (lg n lg lg n)2 bits:

We have reduced to a bit string of length r ≤ (lg n lg lg n)2 . This is good, because analogously to
Rank, these chunks are small enough to be divided into sub-chunks without requiring too much
space for storing the sub-chunk’s relative indices.

Step 3: We basically repeat steps 1 and 2 on all reduced bit strings, and further reduce them into
bit strings of length (lg lg n)O(1).

Step 1’:

With the reduced chunks of length O(lg n lg lg n)2, we again pick out special 1’s, and divide it into
every (lg lg n)2th 1 bit. Since within each chunk, the relative index only takes O(lg lg n) bits, the
total space required is:

n nO(lg lg n) = O() bits.
(lg lg n)2 lg lg n

Step 2’:

Within groups of (lg lg n)2 1 bits, say it has r bits total:

nif r ≥ (lg lg n)4, then store relative indices of 1 bits. There are such groups, within each
(lg lg n)4

there are (lg lg n)2 1 bits, and each relative index takes lg lg n bits to store. For a total of:

n nO() bits.
(lg lg n)4 (lg lg n)2 lg lg n) = O(lg lg n

1if r < (lg lg n)4, then r < lg n. Then it is small enough for us to use step 4: 2

1Step 4: use lookup table for bit string of length ≤ lg n. Like in rank, the total space for the 2
lookup table is at most:

√
O(n lg n lg lg n).

nThus, we again have O(1) query time and O() bits space. lg lg n

7

Again, this result can be improved to O(n/ lgk n) bits for any constant k, but we will not show it
here.

4 Subtree Sizes

We have shown a Succinct binary trie which allows us to find left children, right children, and
parents. But we would still like to find sub-tree size in O(1) time. Level order representation does
not work for this, because level order gives no information about depth. Thus, we will instead try
to encode our nodes in depth first order.

In order to do this, notice that there are Cn (catalan number) binary tries on n nodes. But there
are also Cn rooted ordered trees on n nodes, and there are Cn balanced parentheses strings with
n parentheses. Moreover, we will describe a bijection: binary tries ⇔ rooted ordered trees ⇔
balanced parentheses. This makes the problem much easier because we can work with balanced
parentheses, which have a natural bit encoding: 1 for an open parentheses, 0 for a closed one.

4.1 The Bijections

Figure 5: An example binary trie with circled right spine.

We will use the binary trie in Figure 5. Finding the right spine of the trie, then recurse until every
node lives in a spine. To make this into a rooted ordered tree, we can think of rotating the trie
45 degrees counter-clockwise. Thus, the top three nodes of the tree will be the right spine of the
trie (A,C,F). To make the tree rooted, we will add an extra root *. Now, we recurse into the left
subtrees of A,C, and F. For A, the right spine is just B,D,G. For C, the right spine is just E: C’s
only left child. Figure 6 shows the resulting rooted ordered tree. There is a bijection between the
two representations.

To go from rooted ordered trees to balanced parentheses strings, we do a DFS (or Euler tour) of
the ordered tree. We will then put an open parentheses when we first touch a node, and then a
closed parentheses the second time we touch it. Figure 7 contains a parentheses representation of
the ordered tree in Figure 2.

8

Figure 6: A Rooted Ordered Tree That Represents the Trie in Figure 5.

((() () ()) (()) ())
* A B B C C D D A E F F G G E *

Figure 7: A Balanced Parentheses String That Represents the Ordered Tree in Figure 6

Now, we will show how the queries are transformed by this bijection. For example, if we want to
find the parent in our binary trie, what does this correspond to in the parentheses string? The
bold-face is what we have in the binary trie, and under that, we will describe the corresponding
queries from the 2 bijections.

Binary Trie Rooted Ordered Tree Balanced Parentheses

Node Node Left Paren[and matching right]
Left Child First Child Next char [if ‘(’, else none]
Right Child Next Sibling Char after matching ‘)’ [if ‘(’]
Parent Previous Sibling or Parent if prev char ‘)’, its mathcing ‘(’; if ‘(’, that ‘(‘
Subtree size size(node)+size(right siblings) 1/2 distance to enclosing ‘)’

Could use rank and select to find the matching parenthesis for the balanced parenthesis represen­
tation.

References

[1] G. Franseschini, R.Grossi Optimal Worst-case Operations for Implicit Cache-Oblivious Search
Trees, Prooceding of the 8th International Workshop on Algorithms and Data Structures
(WADS), 114-126, 2003

[2] A.Brodnik, I.Munro	 Membership in Constant Time and Almost Minimum Space, Siam J.
Computing, 28(5): 1627-1640, 1999

[3] D.Benoit, E.Demaine, I.Munro, R.Raman, V.Raman, S.Rao Representing Trees of Higher De­
gree, Algorithmica 43(4): 275-292, 2005

[4] D.Clark, I.Munro Eifficent Suffix Trees on Secondary Storage, SODA, 383-391, 1996.

[5] G.Jacobson Succinct Static Data Structures, PHD.Thesis, Carnegie Mellon University, 1989.

9

[6] R. Pagh:	 Low Redundancy in Static Dictionaries with Constant Query Time, SIAM Journal
of Computing 31(2): 353-363 (2001).

[7] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and Satti Srinivasa Rao:	 Succinct Represen­
tations of Permutations, ICALP (2003), LNCS 2719, pp. 345-356.

10

MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

