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1 Overview 

In this lecture, we look at various data structures for static trees, in which, given a static tree, we 
perform some preprocessing and then answer queries on the data structure. The three problems 
we look at in this lecture are range minimum queries (RMQ), least common ancestors (LCA), and 
level ancestors (LA); we will support all these queries in constant time per operation and linear 
space. 

1.1 Range Minimum Query (RMQ) 

In the range minimum query problem, we are given (and we preprocess) an array A of n numbers. 
In a query, the goal is to find the minimum element in a range spanned by A[i] and A[j]: 

RMQ(i, j) = (arg)min{A[i], A[i + 1], . . . , A[j]} 
= k, where i ≤ k ≤ j and A[k] is minimized 

We care not only about the value of the minimum element, but also about the index k of the 
minimum element between A[i] and A[j]; given the index, it is easy to look up the actual value of 
the minimum element, so it is a more interesting problem to find the index of the minimum element 
between A[i] and A[j]. 

The range minimum query problem is not a tree problem, but it closely related to a tree problem 
(least common ancestor). 

1.2 Lowest Common Ancestor (LCA) 

In the lowest common ancestor problem, we want to preprocess a rooted tree T with n nodes. In a 
query, we are given two nodes x and y and the goal is to find their lowest common ancestor in T : 

x y 

LCA(x, y) 
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1.3 Level Ancestor (LA) 

Finally, we will also solve the level ancestor problem, in which we are again given a rooted tree T . 
Given a node x and an integer k, the query goal is to find the kth ancestor of node x: 

LA(x, k) = parentk(x) 

Of course, k cannot be larger than the depth of x. 

x 

length k 
LA(x, k) 

All of these problems will be solved in the word RAM model, though the use of model is not as 
essential as it has been in the integer data structures we have discussed over the previous lectures. 
Although lowest common ancestor and level ancestor seem like similar problems, fairly different 
techniques are necessary to solve them as far as anyone knows. The range minimum query problem, 
however, is basically identical to that of finding the lowest common ancestor. 

2 Reductions between RMQ and LCA 

2.1 Cartesian Trees: Reduction from RMQ to LCA 

A Cartesian tree is a nice reduction mechanism from an array A to a binary tree T , dating back to 
a 1984 paper by Gabow, Bentley, and Tarjan [1], and provides an equivalence between RMQ and 
LCA. 

To construct a Cartesian tree, we begin with the minimum element of the array A, which we can 
call A[i]. This element becomes the root of the Cartesian tree T . Then the left subtree of T is 
a Cartesian tree on all elements to the left of A[i] (which we can write as A[< i]), and the right 
subtree of T is likewise a Cartesian tree on the elements A[> i]. 

An example is shown below for the array A = [8, 7, 2, 8, 6, 9, 4, 5]. The minimum of the array is 2, 
which gets promoted to the root. This decomposes the problem into two halves, one for the left 
subarray [8, 7] and one for the right subarray [8, 6, 9, 4, 5]. 7 is the minimum element in the left 
subarray and becomes the left child of the root; 4 is the minimum element of the right subarray and 
is the right child of the root. This procedure continues until we get the binary tree in the diagram 
below. 
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[8, 7, 2, 8, 6, 9, 4, 5] 

The resulting tree T is a min heap. More interestingly, the result range minimum query for a given 
range in the array A is the lowest common ancestor of those two endpoints in the corresponding 
Cartesian tree T . 

In the case of ties between multiple equal minimum elements, two options are: 

1. Break ties arbitrarily, picking one of the equal elements as the minimum. 

2. Consider all of the equal elements to be one “node”, making a non-binary tree. 

Because the second option is silghtly messier, in this class we will break ties arbitrarily, though 
either option will not affect the answer. 

2.1.1 Construction in linear time 

Construction of the Cartesian tree according to the naive recursive algorithm will take at least 
n lg n time, and may even take quadratic time. In fact, Cartesian trees can be computed in linear 
time, using a method that is basically the same as the method seen in the last lecture for building 
a compressed trie in linear time. 

Walk through the array from left to right, inserting each element into the tree by walking up the 
right spine of the tree (starting from the leaf), and inserting the element in the appropriate place. 
Because we are building the tree from left to right, each inserted element will by definition be the 
rightmost element of the tree created so far. 

For example, if we have a tree for which the subarray [2, 4, 5] has been inserted, and the next 
element is 3, then insertion has the following result: 

2 

4 

5 

insert(3) 
2 

4 

5 

3 

We walk up the right spine of the tree starting at 5, and continue until we reach 2 (the root), which 
is the first element smaller than 3. The edge between 2 and 4 is replaced with a new edge from 2 
to 3, and the previous right subtree of 2 becomes the left subtree of 3. 
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Each such insertion takes constant amortized time; although sometimes paths may be long, each 
insertion only touches nodes along the right spine of the tree, and any node along the right spine 
that has been touched ends up in the left subtree of the inserted node. Any node along the right 
spine is touched at most once, and we can charge the expensive inserts to the decrease in length of 
the right spine. 

Therefore, construction of Cartesian trees can be done in linear time, even in the comparison model. 

2.2 Reduction from LCA to RMQ 

We can also reduce in the other direction, reducing from LCA to RMQ by reconstructing an array 
A when we are given a binary tree T . To do this, we do an in-order traversal of the nodes in the 
tree. However, we must have numbers to use as the values of the array; to this end, we label each 
node with its depth in the tree. 

0 

1 1 

2 2 2 

3 3 

2, 1, 0, 3, 2, 3, 1, 2 

This sequence behaves exactly like the original array A = [8, 7, 2, 8, 6, 9, 4, 5], from which this tree 
was constructed. The result for RMQ(i, j) on the resulting array A is the same as calling LCA(i, j) 
on the input tree for the corresponding nodes. 

2.3 RMQ universe reduction 

An interesting consequence of the reductions between RMQ and LCA is that they allow us to do 
universe reductions for RMQ problems. There are no guarantees on the bounds of any numbers 
in the original array given for range minimum queries, and in general the elements may be in any 
arbitrary ordered universe. By chaining the two reductions above, first by building a Cartesian tree 
from the elements and then by converting back from the tree to an array of depths, we can reduce 
the range to the set of integers {0, 1, . . . , n − 1}. 

This universe reduction is handy; the algorithms described above assume a comparison model, but 
after the pair of reductions we can now assume that all of the inputs are small integers, which 
allows us to solve things in constant time in the word RAM model. 
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3 Constant time LCA and RMQ 

3.1 Results 

The LCA and RMQ problems can both be optimally solved with constant query time and linear 
storage space. The first known technique is documented in a 1984 paper by Harel and Tarjan, [2]. 
In lecture we looked at an algorithm based on a 2004 paper by Bender and Colton, [3]. 

3.2 Reduction from LCA to ±1 RMQ 

The algorithm by Bender and Colton solves a special case of the RMQ problem where adjacent 
values differ by either +1 or −1 called ±1 RMQ. 

First, we will take a look at a reduction from LCA to ±1 RMQ. The earlier reduction does not 
work as differences might have absolute values larger than 1. For our new approach, we perform 
an Eulerian tour based on the in-order traversal and write down every visit in our LCA array. At 
every step of the tour we either go down a level or up a level, so the difference between two adjacent 
values in our array is either +1 or −1. 

0 

1 1 

2 2 2 

3 3 

0, 1, 2, 1, 0, 1, 2, 3, 2, 3, 2, 1, 2, 1, 0 

Since every edge is visited twice, we have more entries in the array than in the original in-order 
traversal, but still only O(N). To answer LCA(x, y), calculate RMQ(in-order(x), in-order(y)) where 
in-order(x) is the in-order occurrence of the node x in the array. These occurrences can be stored 
while creating the array. Observe that this new array can also be created by filling in the gaps in 
the array from the original algorithm. Thus the minimum between any two original values does 
not change, and this new algorithm also works. 

3.3 Constant time, n lg n space RMQ 

A simple datastructure than can answer RMQ queries in constant time but uses only n lg n space 
can be created by precomputing the RMQ for all intervals with lengths that are powers of 2. There 
are a total of O(n lg n) such intervals, as there are lg n intervals with lengths that are powers of 2 
no longer than n, with n possible start locations. 

We claim that any queried interval is the (non-disjoint) union of two power of 2 intervals. Say the 
query has length k. Then the query can be covered by the two intervals of length 2⌊lg k⌋ that touch 
the beginning and ending of the query. The query can be answered by taking the min of the two 
precomputed answers. Observe that this works because we can take the min of an element twice 
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without any problems. Furthermore, this also enables us to store the location of the minimum 
element. 

3.4 Indirection to remove log factors 

We have seen indirection used to remove log factors of time, but here we will apply indirection 
to achieve a O(n) space bound. Divide the array into bottom groups of size 1 lg n (this specific 2 
constant will be used later). Then, store a parent array of size 2n/ lg n that stores the min of every 
group. 

Now a query can be answered by finding the RMQ of a sequence in the parent array, and at most 
two RMQ queries in bottom groups. Note that we might have to answer two sided queries in 
a bottom group for sufficiently small queries. For the parent array we can use the n lg n space 
algorithm as the logarithms cancel out. 

3.5 RMQ on very small arrays 

′ The only remaining question is how to solve the RMQ problem on arrays of size n = 1 lg n. The 2 
idea is to use lookup tables, since the total number of different possible arrays is very small. 

Observe that we only need to look at the relative values in a group to find the location of the 
minimum element. This means that we can shift all the values so that the first element in the 
group is 0. Then, once we know the location, we can look in the original array to find the value of 
the minimum element. 

Now we will use the fact the array elements differ by either +1 or −1. After shifting the first 
1 √lg nvalue to 0, there are now only 2 2 = n different possible bottom groups since every group is √′ 

In fact, it is small enough so that we can store a lookup table for any of the n possible queries
 

completely defined by its n long sequence of +1 and −1s. This total of n is far smaller than the 
actual number of groups! 

′2 

for any of the 
√ 
n groups in O( 

√ 
n(1 lg n)2 lg lg n) bits, which easily fits in O(n) space. Now every 2 

group can store a pointer into the lookup table, and all queries can be answered in constant time 
with linear space for the parent array, bottom groups, and tables. 

3.6 Generalized RMQ 

We have LCA using ±1 RMQ in linear space and constant time. Since general RMQ can be reduced 
LCA using universe reduction, we also have a linear space, constant time RMQ algorithm. 

4 Level Ancestor Queries (LAQ) 

First we introduce notation. Let h(v) be the height of a node v in a tree. Given a node v and level 
l, LAQ(v, l) is the ancestor a of v such that h(a)− h(v) = l. Today we will study a variety of data 
structures with various preprocessing and query times which answer LAQ(v, l) queries. For a data 
structure which requires f (n) query time and g(n) preprocessing time, we will denote its running 

6
 



time as (g(n), f (n)). The following algorithms are taken from the set found in a paper from Bender 
and Farach-Colton[4]. 

4.1 Algorithm A: (O(n2), O(1)) 

Basic idea is to use a look-up table with one axis corresponding to nodes and the other to levels. 
Fill in the table using dynamic programming by increasing level. This is the brute force approach. 

4.2 Algorithm B: (O(n log n), O(log n)) 

The basic idea is to use jump pointers. These are pointers at a node which reference one of the 
node’s ancestors. For each node create jump pointers to ancestors at levels 1, 2, 4, . . . , 2k . Queries 
are answered by repeatedly jumping from node to node, each time jumping more than half of the 
remaining levels between the current ancestor and goal ancestor. So worst-case number of jumps 
is O(log n). Preprocessing is done by filling in jump pointers using dynamic programming. 

√ 
4.3 Algorithm C: (O(n), O( n)) 

The basic idea is to use a longest path decomposition where a tree is split recursively by 
removing the longest path it contains and iterating on the remaining connected subtrees. Each 
path removed is stored as an array in top-to-bottom path order, and each array has a pointer from 
its first element (the root of the path) to it parent in the tree (an element of the path-array from the 
previous recursive level). A query is answered by moving upwards in this tree of arrays, traversing 
each array in O(1) time. In the worst case the longest path decomposition may result in longest 
paths of sizes k, k − 1, . . . , 2, 1 each of which has only one child, resulting in a tree of arrays with √ 
height O( n). Building the decomposition can be done in linear by by precomputing node heights 
once and reusing them to find the longest paths quickly. 

4.4 Algorithm D: (O(n), O(log n)) 

The basic idea is to use ladder decomposition. The idea is similar to longest path decomposition, 
but each path is extended by a factor of two backwards (up the tree past the root of the longest 
path). If the extended path reaches the root, it stops. From the ladder property, we know that node 
v lies on a longest path of size at least h(v). As a result, one does at most O(log n) ladder jumps 
before reaching the root, so queries are done in O(log n) time. Preprocessing is done similarly to 
Algorithm C. 

4.5 Algorithm E: (O(n log n), O(1)) 

The idea is to combine jump pointers (Algorithm B) and ladders (Algorithm D). Each query will 
use one jump pointer and one ladder to reach the desired node. First a jump is performed to get 
at least halfway to the ancestor. The node jumped to is contained in a ladder which also contains 
the goal ancestor. 
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4.6 Algorithm F: (O(n), O(1)) 

An algorithm developed by Dietz[5] also solves LCA queries in (O(n), O(1)) but is more compli­
cated. Here we combine Algorithm E with a reduction in the number of nodes for which jump 
pointers are calculated. The motivation is that if one knows the level ancestor of v at level l, 
one knows the level ancestor of a descendant of v at level l ′ . So we compute jump pointers only 
for leaves, guaranteeing every node has a descendant in this set. So far, preprocessing time is 
O(n + L log n) where L is the number of leaves. Unforunately, for an arbitrary tree, L = O(n). 

n4.6.1 Building a tree with O( ) leaves log n 

Split the tree structure into two components: a macro-tree at the root, and a set of micro-trees 
1(of maximal size 4 log n) rooted at the leaves of the macro-tree. Consider a depth-first search, 

keeping track of the orientation of of the ith edge, using 0 for downwards and 1 for upwards. A 
micro-tree can be described by a binary sequence, e.g. W = 001001011 where for a tree of size n, 
|W | = 2n − 1. So an upper bound the number of micro-trees possible is 22n−1 = 22( 

1

4 log n)−1 = √ 
O( n). But this is a loose upper bound, as not all binary sequences are possible, e.g. 00000 . . .. A 
valid micro-tree sequences has an equal number of zeros and ones and any prefix of a valid sequence 
as at least as many zeros as ones. 

4.6.2 Use macro/micro-tree for a (O(n), O(1)) solution to LAQ 

nWe will use macro/micro-trees to build a tree with O( ) leaves and compute jump pointers only log n 
for its leaves (O(n) time). We also compute all microtrees and their look-up tables (see Algorithm √ 
A) in O( n log n) time. So total preprocessing time is O(n). A query LAQ(v, l) is performed in 
the following way: If v is in the macro-tree, jump to the leaf descendant of v, then jump from the 
leaf and climb a ladder. If v is in a micro-tree and LAQ(v, l) is in the micro-tree, use the look-up 
table for the leaf. If v is in a micro-tree and LAQ(v, l) is not in the micro-tree, then jump to the 
leaf descendant of v, then jump from the leaf and climb a ladder. 

References 

[1] H. Gabow, J. Bentley, R. Tarjan. Scaling and Related Techniques for Geometry Problems. In 
STOC ’84: Proc. 16th ACM Symp. Theory of Computing, pages 135-143, 1984. 

[2] Dov Harel, Robert Endre Tarjan, Fast Algorithms for Finding Nearest Common Ancestors, 
SIAM J. Comput. 13(2): 338-355 (1984) 

[3] Michael A. Bender, Martin Farach-Colton, The LCA Problem Revisited, LATIN 2000: 88-94 

[4] M. Bender, M. Farach-Colton. The Level Ancestor Problem simplified. Lecture Notes in Com­
puter Science. 321: 5-12. 2004. 

[5] P. Dietz. Finding level-ancestors in dynamic trees. Algorithms and Data Structures, 2nd Work­
shop WADS ’91 Proceedings. Lecture Notes in Computer Science 519: 32-40. 1991. 

8 



MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



