
6.851 Advanced Data Structures (Spring’12) 

Prof. Erik Demaine 

Problem 8 Sample solution 

Signature compression. We will first multiply the input word x by an integer m which will 
arrange h1, h2, · · · , hk into a lg2 n bit segment, then shift this segment to the least significant bits 
of the word, and finally mask out all of the other bits. This consists of 3 word-RAM operations, 
thus it clearly runs in O(1) time. 

0w/k−lg n−110w/k−lg n−11 0w/k−lg n−11.Let m = · · · m ∗ x consists of each hi shifted left by 
(w/k − lg n)j and added together. In x, hi appears at position w/k(i − 1) so the version of it which 
is shifted left by j = k −i appears at position w −w/k −(k +i) lg n. And since each block hi has size 
lg n, h1, · · · , hk lie adjacent in m ∗ x at positions w − w/k − (k + 1) lg n through w − w/k − (2k) lg n. 
We can then shift right by w − w/k − (2k) lg n + lg n and mask out the result to get our desired 
0w−k lg nh1h2 · · · hk. 

Level ancestors construction. Create the lookup table for all possible subtrees of size k = 
1/4 lg n by iterating through the binary string representations of them (of which there are 4k). For 
each tree, iterate through each level ancestor query that falls within it (of which there are k2) and 
determine the answer by looping up the tree (in O(k) time). Thus the lookup table is constructed 
in O(4kk3) = o(n) time. Prune off the small subtrees, by recursively computing the size of the 
subtrees rooted at each node. 

In order to compute the ladder decomposition, first compute the long-path decomposition, and 
then iterate through each path and extend it into a ladder in O(n) time. To compute the long-path 
decomposition, first traverse the tree and compute the maximum depth below each node, as well 
as a pointer to the maximum depth child of each node. Next build the paths by following these 
pointers and recursively building the paths from the other children. 

To compute the jump pointers from each leaf, we will use the ladder decomposition. All lg n 
jump pointers fall within O(lg n) ladders from the leaf to the root, so simply follow these ladders 
and extract all of the jump pointers in O(lg n) time per leaf. 

1
 



MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



