
6.849: Geometric Folding Algorithms 
Fall 2012 — Prof. Erik Demaine,

Problem Set 5  

Due: Tuesday, October 23th, 2012 

We will drop (ignore) your lowest score on any one problem. 

Problem 1. Characterize which of the following graphs are generically minimally rigid, generically 
non-minimally rigid, or generically flexible. Justify your answer using any of the theorems from 
lecture. 

(a) (b) 
http://courses.csail.mit.edu/6.849/fall12/psets/rigid a.pdf http://courses.csail.mit.edu/6.849/fall12/psets/rigid b.pdf 

(c) (d) 
http://courses.csail.mit.edu/6.849/fall12/psets/rigid c.pdf http://courses.csail.mit.edu/6.849/fall12/psets/rigid d.pdf 
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http://courses.csail.mit.edu/6.849/fall12/psets/rigid_a.pdf
http://courses.csail.mit.edu/6.849/fall12/psets/rigid_b.pdf
http://courses.csail.mit.edu/6.849/fall12/psets/rigid_c.pdf
http://courses.csail.mit.edu/6.849/fall12/psets/rigid_d.pdf


Solution: 

(a)	 This graph is generically flexible. It has 12 vertices and 16 edges, which is too few to be rigid 
by Laman. 

(b)	 This graph is generically flexible. It has 8 vertices and 11 edges, which is too few to be rigid 
by Laman. 

(c)	 This graph is non-minimally generically rigid. By removing any of the non-crossing edges, it 
is easy to see the resulting graph can be constructed by type 1 Henneberg operations. 

(d)	 This graph is minimally generically rigid. The first three reverse-Henneberg operations are 
shown and the rest of the type-1 Henneberg operations needed can be seen easily. 

Problem 2. Give an efficient algorithm that checks whether a given graph is redundantly rigid, 
i.e., the removal of any single edge results in a graph that is generically rigid (not necessarily 
minimally). 

Solution: One simple way of doing this is to run the pebble covering algorithm on every sub-
graph created by removing a single edge. If all of these are generically rigid, then our condition is 
met. This algorithm runs in O(V 2E) time. 

We can do this more efficently. First, run the original pebble algorithm, making note of the 
edges which are redundant. We now enter a new phase, where we move pebbles from edges not 
marked as redundant to edges marked as redundant, in a BFS manner, untill we see there is no 
path allowing a pebble to be moved off of an edge, or the entire graph is marked as redundant. 
Performing this additional search requires O(V 2) time giving the same running time as the original 
pebble algorithm. 

Problem 3. Write down and solve the linear programs for the infinitesimal motion of the 
tensegrities below. You should be able to solve the linear programs (or prove they have no solution) 
by hand, using geometric arguments. Alternatively, Matlab, Mathematica, and Maple have linear-
program solvers, and there are also online applications to do so. Blue lines represent bars; green, 
double lines represent struts; and red, dashed lines represent cables. Vertices with a box around 
them are pinned to the plane. 
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(a) (b) 
http://courses.csail.mit.edu/6.849/fall12/psets/tenseg a.pdf http://courses.csail.mit.edu/6.849/fall12/psets/tenseg b.pdf 

Solution: 

(a) First, let us label the vertices as such: 
a b 
c d 

The two pinned vertices give us the following constraint:  

dx(a) = dy(a) = dx(c) = dy(c) = 0  

The edges give us the following inequalities: 

ab → dx(b) ≥ 0 
ad → dx(d) ≤ dy(d) 
bc → dx(b) + dy(b) ≤ 0 
bd → dy(b) ≥ dy(d) 
cd → dx(d) ≥ 0 

Solving, either by symmetry or standard methods, we discover that there are no infinitesimal 
motions. 

(b) First, let us label the vertices as such: 

a 
b c 

d 

The two pinned vertices give us the following constraint:  

dx(b) = dy(b) = dx(d) = dy(d) = 0  
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http://courses.csail.mit.edu/6.849/fall12/psets/tenseg_a.pdf
http://courses.csail.mit.edu/6.849/fall12/psets/tenseg_b.pdf


The edges give us the following inequalities: 

ab → dx(a) − 3dy(a) = 0 
ac → 3dx(a) − 3dx(c) − dy(a) + dy(c) = 0 
bc → dx(c) ≥ 0 
cd → dx(c) − dx(d) + 3dy(c) − 3dy(d) = 0 

After manipulating the equations, one can see this admits an instantaneous motion in which 
points a and c move down and to the right with a horizontal velocity three times that of the 
vertical velocity. 
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