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6.896 Quantum Complexity Theory November 6, 2008 

Lecture  
Lecturer: Scott Aaronson Scribe: Joshua Horowitz 

On Election Day, November 4, 2008, the people voted and their decision was clear: Prof. 
Aaronson would talk about quantum computing with closed time-like curves. But before we move 
into strange physics with even stranger complexity-theoretic implications, we need to fill in a more 
basic gap in our discussion so far – quantum space-complexity classes. 

1 BQPSPACE 

Recall that PSPACE is the class of all decision problems which can be solved by some classical 
Turing machine, whose tape-length is bounded by some polynomial of the input-length. To make 
BQPSPACE, we quantize this in the most straightforward way possible. That is, we let BQPSPACE 
be the class of all decision problems which can be solved with a bounded rate of error (the B) 
by some quantum Turing machine (the Q), whose tape-length is bounded by some polynomial of 
the input-length (the PSPACE). As we’ve seen before, allowing quantum computers to simulate 
classical ones gives the relationship PSPACE ⊆ BQPSPACE. 

If we believe that BQP is larger than P, we might suspect by analogy that BQPSPACE is larger 
than PSPACE. But it turns out that the analogy isn’t such a great one, since space and time seem 
to work in very different ways. As an example of the failure of the time-space analogy, take PSPACE 
vs. NPSPACE. We certainly believe that nondeterminism gives classical machines exponential time 
speed-ups for some problems in NP, making P = NP at least in our minds. But Savitch’s theorem 
demonstrates that the situation is different in the space-domain: PSPACE = NPSPACE. That is, 
nondeterministic polyspace algorithms can be simulated in deterministic polyspace. It turns out 
even more than this is true. Ladner proved in 1989 that PSPACE = PPSPACE, establishing PSPACE 
as a truly solid rock of a class. 

This is the result we need to identify BQPSPACE. Using the same technique we used to prove 
BQP ⊆ PP, we can prove that BQPSPACE ⊆ PPSPACE, and then using PPSPACE = PSPACE ⊆
BQPSPACE we have BQPSPACE = PSPACE. 

2 Talking to Physicists 

Some physicists have been known to react to the stark difference between time- and space-complexity 
with confusion and incredulity. “How can PTIME =� PSPACE,” they ask, “if time and space are 
equivalent, as suggested by Einstein’s theory of relativity?” 

The basic answer to this question is that time and space are in fact not perfectly equivalent. 
Einstein’s theory relates them in a non-trivial way, but distinctions remain. At the very least, they 
correspond to opposite signs in the metric tensor. And, for whatever reason, though objects can 
move about space at will, movement through time is constrained to the “forward” direction. Thus, 
our inability to travel back in time is in a sense the reason why (we believe) P = PSPACE! 
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3 Time Travel 

But are we really so sure that time travel is impossible? Special relativity says that it takes infinite 
energy to accelerate faster than the speed of light and into the past. But general relativity extends 
our concept of space-time, allowing it to take the form of whatever sort of topologically crazy 4D 
manifold we want (more or less). Is it possible that such a manifold could have loops of space-time 
which extended forwards in time but ended up bringing us back to where we started? That is, can 
the universe have closed time-like curves (CTCs)? 

In an amusing coincidence for a class on complexity theory, one of the first people to investigate 
this question was Kurt Gödel, who in 1949 constructed a solution to the general-relativistic field 
equations which included CTCs, and gave it to Einstein as a birthday gift. Like all good birthday 
gifts, this left Einstein somewhat troubled. The solution was fairly exotic, however, involving such 
strange constructions as infinitely long massive cylinders. 

The problem came up again in the 1980s, when Carl Sagan asked his physicist friend Kip 
Thorne if there was a scientific basis for the time travel in his novel-in-progress Contact. Though 
Thorne initially dismissed the possibility, he later began to look into whether wormholes could 
be used for time travel. The problem turned out to be surprisingly difficult and subtle. The 
conclusion reached by Thorne and his collaborators was that such wormholes were theoretically 
possible, though they would require the presence of negative energy densities. Given that such 
negative energy densities have been known to arise in quantum situations such as the Casimir 
effect, Thorne’s work effectively linked the question of wormhole time-travel to that of quantum 
gravity (the “P vs. NP” of theoretical physics). 

Of course, it is not the place of computer scientists to say whether something actually exists or 
not. They need only ask “what if?”. So we will suppose that we have computers capable of sending 
information back in time, and see where that takes us. 

4 Computing with CTCs: The Näıve Proposal 

The first scheme many people think of for speeding up computations with CTCs is very simple: 

1. Perform your computation however you like. 

2. Send the answer back in time to whenever you wanted it. 

At first glance, this sounds pretty good. It makes every computation constant-time! Conceivably, 
even negative-time. . . 

But there are problems with this scheme, which is fortunate for anyone hoping time-travel 
computation would be anything other than completely trivial. 

•	 It encourages “massive deficit spending”: Life may be easy for you, now that you’ve received 
the answer to your NP-complete question in no time at all, but the accounting of time as O(0) 
ignores the possible millennia of computation your computer still has to do to get that answer. 
Keeping a computer running that long could be extraordinarily costly or even impossible if 
the run-time exceeds the lifetime of the universe itself. 

•	 Complexity theory is all about knowing exactly how much of each computational resource 
you need in order to solve a problem. However, in the above treatment, we are completely 
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ignoring the CTC as a computational resource. If we accounted for its length, we would soon 
discover just how blithely we were constructing exponentially long wormholes in our näıve 
attempt to defeat complexity itself. 

•	 There must be a fundamental flaw in the way we are modeling time travel, since, the way 
we’ve been talking, there’s nothing to prevent “grandfather” paradoxes1 . As a computational 
example of this, suppose we had a computer which took its input, NOTed it, and then sent 
that back in time to serve as its own input. If the machine sent a 0, it would receive a 0 and 
thus send a 1, and visa versa, so the machine’s existence creates a physical contradiction. 

Deutsch’s Solution and PCTC 

Of the problems mentioned above, the most pressing one to solve is problem the last. How can the 
universe allow time travel at all if this creates time-loop paradoxes? 

In 1991, David Deutsch proposed a resolution to this problem. He claimed that time-loop 
paradoxes such as the NOTing computer above (or the grandfather paradox itself) can only occur 
in classical universes. In a quantum universe, such as our own, the universe can always find a way 
to maintain consistency (according to Deutsch). 

As an example of this sort of resolution, take the grandfather paradox, and represent the two 
possibilities as a vector �v which can be either 

1 you kill your grandfather 0← 
or	 .

0	 1 you do not kill your grandfather ← 

Your murderous time-travelling adventure puts a constraint on �v:
� � 

�v = 
0 
1 

1 
0 

�v. 

Clearly, neither the two possibilities mentioned above satisfies this fixed-point equation; the two 
possibilities flip into each other. This is just a restatement of the grandfather paradox. But this 

1
restatement presents an interesting idea: what if we could have �v = 1

2 1 
? This “superposition” 

of the two states is a fixed point of the matrix map above. As suggested by the normalization 1
2 

out in front, we are interpreting it as a vector of probabilities. (Truly quantum states will come 
later; for now we will use a semi-classical or probabilistic approach.) 

Does turning every time-loop constraint into a matrix and looking for general fixed-point vectors 
always work? That is, if some computation in a CTC establishes the constraint �v = M�v, is there 
always a solution for �v? This certainly isn’t true for any matrix M , but matrices which come from 
time-loop constraints will satisfy additional properties, since they have to take probability vectors 
to probability vectors. A necessary and sufficient pair of conditions which guarantees that M does 
this is that M ’s entries are non-negative and that each of its columns sums to one. A matrix with 
these properties is said to be a stochastic matrix. 

Fortunately for us, it is well-known that every stochastic matrix has at least one probability 
vector as a fixed point. This is exactly what we need to ensure that the universe can find a 

1The story is that, by traveling back in time and killing your own grandfather, you prevent your own birth, thus 
preventing your going back in time to kill your grandfather, thus enabling your own birth, etc. 
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probability distribution over the classical states which is preserved by the time loop! So in our 
model, our computer’s design will determine for Nature a stochastic matrix M , and Nature will in 
turn provide the computer with some fixed-point probability distribution which it can sample by 
observation. (As good computer scientists, we will assume that Nature chooses this distribution as 
an adversary.) 

Let’s make this rigorous: We will have some classical computer C. It will have two input reg­
isters, one for the CTC-looping bits, called RCTC, and one for the standard “causality-respecting” 
bits, called RCR: 

R CTC R CR

C

0 0 0

Answer

Given a set of inputs to RCR, C determines a map from RCTC to RCTC. This map can be represented 
by a stochastic matrix, which we know must have some fixed-point probability distribution. Each 
such probability distribution gives a probability distribution for values of C’s answer bits. 

In the case of decision problems, C has exactly one answer bit. We say that our CTC computer 
accepts (resp. rejects) some input if every non-zero-probability value of RCTC in every fixed-point 
probability distribution causes C to give an answer of 1 (resp. accepts). Since we are permitting 
no uncertainty in the actual output of the computer, these concepts of accepting/rejecting are 
appropriate for defining the complexity class PCTC of polynomial-time computers with closed time-
like curves. The only other subtlety is that we should make sure we only use a polynomially large 
number of CTC bits. 

5.1 An Example: Search 

To illustrate the power of CTCs, let us use them to solve an NP-complete problem: search. That 
is, given a polytime computable function f : {0, 1}n → {0, 1}, we want to find an x ∈ {0, 1}n such 
that f(x) = 1, or to know that no such x exists. One approach to solving this with CTCs is to find 
a map for which fixed points correspond to xs with f(x) = 1. The simplest candidate is 

C(x) =	
x f(x) = 1 
x + 1 (mod 2n) f(x) = 0 

and it turns out that this works perfectly! If there is a x with f(x) = 1, the fixed-point distributions 
of C will be non-zero only on such solutions (since probability flows towards these solutions under 
the action of the matrix M). If there is no such x, then C acts as a 2n-cycle on the values of RCTC, 
and the only fixed-point distribution is the uniform distribution over all possibilities. Thus, by 
taking the value of RCTC and testing the value of f at that value, we can determine conclusively 
whether that value is a solution or that there is no solution at all. (Note that, though the value of 
the RCTC bits is in general probabilistic or undetermined, the final answer is always exactly what 
we want.) 
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Therefore, the search problem is in PCTC. Since the search problem is NP-complete, we have 
NP ⊆ PCTC. Assuming P =� NP, this gives us a separation between P and PCTC. 

6 A New Sort of Paradox? 

We know that by allowing probabilistic superpositions of states, we have successfully averted the 
problem of time-loop paradoxes (fixed-point-less CTC constraints). But in its stead, we have 
produced a new sort of problem. CTCs allow us to make programs which can find the answers to 
problems “out of thin air”, without doing any of the work to find the solution. This is much like 
the time-travel paradox of going back in time to 1904 and giving Einstein his own papers, which he 
looks over with great interest and proceeds to furtively publish a year later. Who actually wrote 
the papers? 

Of course, this is not a true paradox of mathematical or physical contradiction (a falsidical 
paradox ), but one of a derived result contradicting natural intuition (a veridical paradox ). It seems 
that if we are to allow time travel, we must abandon some of our intuitions about causality and 
information. “Plays get written, plexiglass gets invented, and NP-complete problems get solved,” 
without anyone having to put in the work. 

7 PCTC Vs. PSPACE 

We would like to understand exactly what is possible in polynomial time using closed time-like 
curves. That is, we would like tight bounds on PCTC. We already have a lower bound of NP ⊆ PCTC. 

There is also good upper bound: PSPACE. Simulating a PCTC with a PSPACE machine is fairly 
straightforward: We can visualize the action of our computation on RCTC as a directed graph 
in every vertex has out-degree 1. Such a graph will have the structure of a collection of disjoint 
cycles, possibly with trees of edges flowing into the cycles. Thus, starting with any vertex, repeated 
application of the computation will eventually bring you to a vertex in one of the cycles, which 
will have non-zero probability on a fixed-point distribution. Since it’s no fun to detect whether a 
vertex is in a cycle or not, we will just play it safe and iterate the computation on the arbitrarily 
chosen point 2n times: we must end up in a cycle, or there would be no cycle, which is impossible. 

The more surprising fact is that we can improve PCTC’s lower bound from NP to PSPACE, thus 
proving that PCTC = PSPACE. Apparently CTCs allow us to interchange time and space, like the 
physicists suspected! 

To do this, we must find a way to perform every PSPACE computation in polytime with CTCs. 
The basic idea is to store the PSPACE machine’s tape in the the CTC register and have the PCTC 

machine perform a single step of the PSPACE machine’s computation. But we have to be careful to 
define our computation so that we can read the final result of the simulated PSPACE computation 
off of the fixed-point distribution. 

We do this by adding an auxiliary bit to the CTC register which represents the outcome of the 
computation. Usually this auxiliary bit remains untouched, but we redirect every halting state to 
the initial state with the appropriate auxiliary bit (1 if the halting state was accepting, 0 if it was 
rejecting). 

The directed graph of this operation is shown below (in a situation where the machine accepts): 
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As this diagram shows, the only cycle in the graph will be one going from the initial state all the way 
to a halting state and then back to the start, with every state having the auxiliary bit determined by 
whether that halting state was accepting or rejecting. Thus, by giving us a fixed-point distribution, 
Nature is doing the entire computation for us and telling us how it went. 

Notice exactly how our scheme exploits the relationship between PSPACE and PCTC. Since 
our tapes have polynomial length, a single computation step can be done in polynomial time. 
In contrast, we cannot use this technique to put EXPSPACE inside PCTC, which is good, since 
PCTC ⊆ PSPACE and EXPSPACE is certainly not a subclass of PSPACE. 

Quantum Computation and Time Travel: BQPCTC 

Though our model of time-travelling computers was inspired by quantum physics, we haven’t 
actually given our computers the quantum capabilities which we’ve been studying all semester. 
What would that look like? 

When we had classical computers with time-loops, the time-loop constraint was of the form 
�vCTC = M�vCTC for some stochastic matrix M . What sort of time-loop constraint could a quantum 
computer make? A good first guess would be |ψCTC� = U |ψCTC� for some unitary U . But this 
isn’t quite right. Though our computation as a whole, from [input bits + CTC bits] to [output bits 
+ CTC bits] can be represented by a unitary U , restricting this to a map from [CTC bits] to [CTC 
bits] does not give a unitary. In fact, the possibility of entanglement between the output bits and 
the CTC bits means that it doesn’t make any sense to think of the state of the CTC bits as a pure 
quantum state: |ψCTC� doesn’t exist. 

The right way to represent a substate of a quantum state is with a density matrix ρ = 

i pi |ψi� �ψi|. How are we allowed to transform density matrices into each other? Well, every 
unitary map on a pure-state supersystem restricts to a transformation on the mixed-state sub­
system. There is an exact mathematical characterization of the form such transformations can 
take: � � 

ρ �→ EiρEi
† where Ei

†Ei = I. 
i i 

This characterization is exact in the sense that the restriction of any unitary to a mixed-state 
subsystem gives such a transformation, and every such transformation comes from the restriction 
of a unitary on a pure-state supersystem. We call these transformations superoperators (the analogy 
to remember is “Pure state : Mixed state :: Unitary : Superoperator”). 
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So, in general, we can expect our quantum computer to create a constraint of the form ρCTC = 
S(ρCTC) for some superoperator S. Fortunately for the coherence of space-time, such an equation 
is always solvable! That is, every superoperator has a fixed point. So if we do the same sort of 
thing we did above to define PCTC but on quantum computers instead, and require only a bounded 
rate of error rather than perfection, we’ll get BQPCTC. 

Now to bound this complexity class. Quite trivially, PCTC ⊆ BQPCTC, and PCTC = PSPACE, so 
we can bound BQPCTC below by PSPACE. We expect that adding quantum capabilities will extend 
our abilities, though, so what’s the upper bound? 

Well, it turns out that our expectation is wrong: BQPCTC is also bounded above by PSPACE. 
Once again, we are face-to-face with the solidity of the rock that is PSPACE! The fact that 
BQPCTC = PSPACE was proven by Aaronson & Watrous in 2008. The title of their paper, “Closed 
Timelike Curves Make Quantum and Classical Computing Equivalent”, raises an interesting ques­
tion: why are we spending so much time trying to get quantum computers to work if they would 
be rendered totally obsolete by CTC computers? 
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