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6.896 Quantum Complexity Theory Octobor 16th, 2008 

Lecture 13 
Lecturer: Scott Aaronson 

Last time we finished quantum query complexity of boolean functions. Recall that the quantum 
query complexity of recursive AND-OR tree is Θ(

√
n). We then studied the collision problem: 

Collision Problem. Given oracle access to a function f : {1, . . . , n} → {1, . . . , n}, 
decide whether f is 1-to-1 or 2-to-1, promised that one of those is the case. 

Today, we’ll prove the query lower bound for this problem, and discuss two applications of the 
lower bound. There are two motivations to study this question. 

Motivations 

Scott’s original motivation is to understand the computation power of hidden variable theory. 
Imagine that nature knows not only the quantum state, but also the “real state” about what 
outcome would be if you perform a measurement, even if you do not look at it. So at any time, 
there is not only a superposition of particles, but also the “real place” where the particles are. 
If we believe that, then the real position of particles must follow some trajectory overtime. The 
trajectory is necessarily guided by the quantum state, because it has to agree with the prediction 
of the quantum mechanics. But in addition to that, it has to be a real particle trajectory. This is 
the kind of things you see in Bohm mechanics, a famous reformulation of quantum mechanics in 
1950s to involve hidden variables. 

The question Scott asked was: suppose you can see the entire trajectory of the hidden variable, 
what would that give you the power to do? One thing we can do with this ability is to solve the 
collision problem in a single query, and O(log n) computational steps. If f is 2-to-1, it is easy to 
prepare a superposition of a collision pairs (1/

√
2)(| |y�), where f(x) = f(y) (by going to a x� + 

superposition of all input x’s, computing f(x) in the superposition, and measuring the f register.) 
Now, if only we can range things so that we can see both x and y then we would find the collision 
and solve the collision problem. If we can see the entire trajectory of hidden variables, that is 
exactly the thing we can do. We can arrange so that the hidden variable starts being x, and varies 
to y and vice versa. 

Thus, a lower bound on the quantum query complexity of collision problem proves a separation 
in the block box world between the ordinary quantum computing, and the quantum computing in 
the hidden variable theories. 

However, a person on the street doesn’t necessary care about this interpretation of quantum 
mechanics. On the other hand, people care more about graph isomorphism, and breaking crypto­
graphic hash functions. These are the “real application” that you could do if you have a quantum 
algorithm for solving the collision problem. We are interested in rule out this possibility by lower 
bounds on the collision problem. This would imply, for example, to break the cryptographic hash 
functions, we have to exploit the structure of the hash functions somehow. Likewise, to solve graph 
isomorphism, we have to exploit the graph structure. 

13-1 



2 The Lower Bound 

We have seen on Tuesday that there is a O(n1/3)-query quantum algorithm for solving the collision 
problem. It turns out to be optimal. Today, we will show a lower bound Ω(n1/4). 

We have mentioned that the difficult for proving the lower bound is that sort of all the ap­
proaches we saw before are based on the hardness of finding a single needle in a haystack. The 
underlying principle is that a quantum algorithm cannot monitor the change of many disjoint 
places. For example, the block sensitivity argument says that we need 

�
(# of blocks) queries to 

detect the change of any single block. However, in this problem, the block sensitivity is only 2. 
We use polynomial method to prove the lower bound. For every x, h ∈ {1, . . . , n}, define 

variables Δx,h = 1 if f(x) = h, and Δx,h = 0 otherwise. The acceptance probability of a quantum 
algorithm can be expressed as a polynomial over Δx,h’s. 

Lemma 1 Let Q be a quantum algorithm makes T queries to f . Then Q’s acceptance probability 
is a degree 2T multi-linear polynomial p(f) over variables Δx,h’s. Furthermore, every monomial of 
p(f) is of the form Δx1,h1 Δxd,hd with distinct xi’s.· Δx2,h2 · · · 

Proof: (sketch) This is essentially the same as what we have seen before. Every amplitude can 
be written as a polynomial over Δx,h. A unitary operation does not change the degree since it is 
linear. A query can be expressed as 

� 
αx,z|x, z� �→ 

� 
αx,z|x, z ⊕ f(x)� = 

��� 
αx,z⊕h · Δx,h 

� 

|x, z�, 
x,z x,z x,z h 

so increase the degree by at most 1. The factor 2 comes from squaring the amplitude to get the 
probability. Since every variable Δx,h is either 0 or 1, Δ2 = Δ2 , and we can assume p(f) is x,h x,h

multi-linear. Furthermore, observe that for every x, there is only one h such that Δx,h = 1, and 
other Δx,h’s are 0, we can assume every monomial does not contain two variables with the same 
subscript x. � 

The next step is to reduce the number of variables. This time, we define q(k) = Ef : k-to-1[p(f)], 
where the notation means expected value over uniformly random k-to-1 function f : {1, . . . , n} → 
{1, . . . , n}. We hope q(k) to be a polynomial with small degree in k. However, a technicality is 
that n may not divisible by k, so there is no perfect k-to-1 functions. This is the main difficulty to 
apply the polynomial method. For now, we first make the unrealistic assumption that n is divisible 
by k for every k. We will come back to this technicality later. 

Lemma 2 Let q(k) = Ef : k-to-1[p(f)], where p(f) is defined as above. Assume that n is divisible 
by k for every k, then q(k) is a polynomial in k, and deg(q) ≤ deg(p) ≤ 2T . 

Proof: Let p(f) = 
�

I αI I(f), where each I(f) = Δx1,h1 Δxd,hd is a monomial of f· Δx2,h2 · · · 
with distinct xi’s. By linearity of expectation, 

q(k) = 
� 

αI E [I(f)]. 
f : k-to-1I 

Fix a I(f) = Δx1,h1 Δxd,hd with d ≤ deg(p(f)) ≤ 2T , let us compute Ef : k-to-1[I(f)].· Δx2,h2 · · · 
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Observe that I(f) = 1 if f(x1) = h1, . . . , f(xd) = hd, and I(f) = 0 otherwise. Ef : k-to-1[I(f)] 
is the fraction of k-to-1 functions that satisfy the d constraints f(xi) = hi. The number of k-to-1 
functions is


n
 n!

. 

n/k 
· 
(k!)n/k 

(We first decide the range of a function, and then decide how to map the domain to the range.) 
To compute the number of functions satisfying f(xi) = hi, we need the following variables. Let s 
be the number of distinct h values in I(f). Let i1, i2, . . . , is be the number of each h in I(f) (so 
i1 + + is = d). The number of functions satisfying f(xi) = hi is· · · 

(n − d)!
n − s

(n/k) − s


.
·

(k!)n/k−s (k − i1)!· · · · · · (k − is)!

(Again, the first factor is to pick the range of a function. Every hj appears in I(f) must in the 
range. The second factor is to decide the map from n − d unfixed domain to the range.) Staring 
at the expression for a while, we have 

·
(n − d)!
n−s 
(n/k)−s (k!)n/k 

n!
E [I(f)] = 

f : k-to-1 (k!)n/k−s 
n/k(k − i1)! (k − is)! 

· · · · · · n ·
 ·


(n − s)! (n − d)! (n/k)!(n − (n/k))!(k!)n/k 

= 
· 

((n/k) − s)!(n − (n/k))!(k!)(n/k)−s(k − i1)! (k − is)! 
· 

n! n!
· · · ·

(n/k)!(k!)s 

= r(n, d, s) for some function r· 
((n/k) − s)!(k − i1)! (k − is)!· · · 

·

⎛
⎝


s

j=1 

⎞
⎠
= r(n, d, s) (n/k)((n/k) − 1) ((n/k) − s + 1) · · · · k(k − 1) (k − ij + 1) · · · 

= r(n, d, s) (n)(n − k) (n − (s − 1)k)
· · · ·
 ·

⎛
⎝


s

j=1 

⎞
⎠
(k − 1) (k − ij + 1) · · · 

is a polynomial over k of degree (s−1)+(i1 −1)+ +(is −1) = i1 + + is −1 = d−1. Therefore, · · · · · ·

q(k) = 
� 

αI E [I(f)] 
f : k-to-1I 

is a polynomial over k of degree at most 2T . � 
Now, suppose p(f) is the acceptance probability of a quantum algorithm solving the collision 

problem, then 

0 ≤ q(1) = E [p(f)] ≤ 1/3, and 2/3 ≤ q(2) = E [p(f)] ≤ 1. 
f : 1-to-1 f : 2-to-1

For k ≥ 2, since p(f) represents a probability, we have 

0 ≤ q(k) = E [p(f)] ≤ 1. 
f : k-to-1
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We can then apply Markov inequality as in Lecture 10 to lower bound the degree of q(k), which 
gives query lower bound on Q. However, recall the technicality that n may not divisible by k. The 
price to resolve this technicality is that the above argument is only valid for small k. (Intuitively, the 
divisibility problem produces some error, which will hurt us when k is too large.) Originally, Scott’s 
paper got Ω(n1/5). This was subsequently improved to Ω(n1/4). Yaoyun Shi gave a sophisticated 
way to resolve it, and achieved tight lower bound Ω(n1/3). We do not go through the detail in this 
lecture, but only intuitively argue that the above is valid up to k = Ω(n1/2), and so we can get a 
lower bound Ω(n1/4). The following argument should be able to turn into a rigorous proof. 

When n is not divisible by k, there is no perfect k-to-1 functions, but there are almost k-to-1 
functions. Intuitively, the difference is only on the left-over (n mod k) < k inputs. Recall the 
intuition from the Grover lower bound that a quantum algorithm needs 

√
n/s queries to notice a 

change of f on s inputs. Therefore, when k = O(n1/2), a quantum algorithm with O(n1/4) query 
can not notice this difference. 

Theorem 3 Any quantum algorithm for the collision problem needs to make Ω(n1/4) queries. I.e., 
Q(Collision) = Ω(n1/4). 

Proof: Let Q be a quantum algorithm for the collision problem making T queries to f , and the 
corresponding p(f) and q(k) be defined as above. From the above argument, we have deg(q) ≤ 2T , 
0 ≤ q(1) ≤ 1/3, 2/3 ≤ q(2) ≤ 1, and 0 ≤ q(k) ≤ 1 for k = 3, 4, . . . , Ω(n1/2). Now, we are in the 
same situation as Lecture 10. We have q�(k) ≥ 1/3 for some k ∈ [1, 2], and the Markov inequality 
says �

Length MaxDeriv 
�

Ω(n1/2) 1/3
deg(q) ≥ · · 

= Ω(n 1/4). 
Height 

≥ 
O(1) 

Therefore, the number of query T = Ω(n1/4). � 
We next discuss some applications of this lower bound of collision problem. 

Implication to Element Distinctness Problem 

The first application is to the query lower bound of element distinctness problem. We start by the 
problem definition. 

Element Distinctness Problem. Given oracle access to x1, x2, . . . , xn, decide whether 
there exists i = j such that xi = xj . 

Compare to the collision problem, this problem has much less structure to exploit. There might 
be only one collision pair, instead of many pairs. What is the query complexity of the element 
distinctness problem? Let us consider the upper bound first. A good thing to try is to apply 
Grover’s algorithm, and see what we get. If we apply Grover in a naive way, there are n2 pairs, and 

2we need 
√

n = n queries to find collision pairs. Can we use Grover in a smarter way to do better? 
The idea is a bit tricky when you see it first time. Let U = {x1, . . . , xn}. Consider the following 

algorithm. 

1. Randomly pick 
√

n elements S ⊂ U , and query those elements classically. 

13-4 



4 

2. If we find collision in S, output the collision. 

3. Use Grover’s algorithm to find collisions between S and U − S. 

What is the query complexity of the algorithm? The first step makes 
√

n queries. The third 
step uses Grover to search xj ∈ U − S such that xj = xi for some xi ∈ S. This uses O(

√
n queries. 

In total, the algorithm uses O(
√

n) queries. 
What is the success probability of this algorithm? Suppose for the worst case, there is only 

one collision pair xi = xj . For the algorithm to be able to find the collision, either xi or xj needs 
to be picked in S in the first step. This happens with probability Ω(1/

√
n). When this happens, 

the algorithm can find the collision with constant probability in Step 2 or 3. Therefore, the overall 
success probability is Ω(1/

√
n). 

Now, suppose we invoke the above algorithm O(
√

n) times, we can see a collision with high 
probability. Doing so naively requires O(

√
n) O(

√
n) = O(n) queries. However, we can use · 

another Grover on top of the O(
√

n) invocation of the algorithm to find a success invocation. 
Searching over O(

√
n) items only requires O(

�√
n) queries. Overall, the two layers Grover only 

requires O(n1/4) O(
√

n) = O(n3/4).· 
On the other hand, what is the lower bound? Ω(

√
n) lower bound is easy to observe. Suppose 

there is only one collision xi = xj , and we know xi at beginning, then the task reduce to find xj . 
This is exactly the Grover’s problem. Therefore, Grover’s lower bound gives Ω(

√
n) lower bound 

for the element distinctness problem. Can we do better? 
By applying the collision lower bound, we can improve the lower bound to Ω(n2/3). Consider 

the contrapositive, if we can solve the element distinctness problem in o(n2/3) queries, can we 
solve the collision problem in o(n1/3) queries? The answer is yes: to solve the collision problem, 
we randomly pick O(

√
n) elements, and run the element distinctness algorithm on those O(

√
n) 

elements. If f is 2-to-1, by birthday paradox, we can see a collision with constant probability, and 
so it reduces to the element distinctness problem on O(

√
n) elements. Thus, the above reduction 

solves the collision problem in o(n1/3) queries, a contradiction. 
Now, we have O(n3/4) upper bound, and Ω(n2/3) lower bound. People are always interested 

in closing the gap. It turns out that the lower bound is tight. Ambainis gave a sophisticated 
O(n2/3)-query algorithm for the element distinctness problem based on quantum walks. 

Oracle Separation to SZK � BQP 

Another application of the collision lower bound is an oracle relative to which SZK � BQP. What 
is SZK? It stands for statistical zero knowledge, which means a protocol where a verifier interact 
with a prover, and the result of this interaction is that the verifier become convinced that some 
statement is true, but he does not learn anything else. In particular, the verifier does not gain the 
ability to convince anyone else that the statement is true. It sounds paradoxical at beginning, but 
there is a canonical example to illustrate the point. Let us consider the graph non-isomorphism 
problem. 

Graph Non-isomorphism Problem. Given two graphs G and H, decide whether G 
and H are not isomorphic. (The answer is yes if G and H are not isomorphic.) 

Let us introduce two characters. The verifier Arthur is a skeptical polynomial time king, and 
the prover Merlin is an omniscient wizard, but not trustworthy. Merlin wants to convince Arthur 
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that G and H are not isomorphic, but does not want Arthur to learn anything else. Arthur has to 
test Merlin to discover whether it is the case. How should we design the protocol? 

The idea is what called the Coke-Pepsi test. Someone claims that Coke and Pepsi are different 
but does not able to pin point the difference. How can he convince you? One way to do it is to 
perform a blind test to see if he can tell them apart or not. Apply this idea, we can do the following. 

Arthur randomly picks one graph, permutes the vertices, send the result to Merlin, and ask, • 
“which graph did I start with?” 

Merlin answers Arthur’s challenge. • 

If G and H are not isomorphic, then any permutations of G are different to any permutations 
of H. Since Merlin is an omniscient wizard, he can always answer the challenge. On the other 
hand, suppose G and H are isomorphic, then the set of permutation of G are exactly the same as 
the set of permutation of H. Thus, Merlin has no way of knowing the answer, and can only guess 
correctly with probability 1/2. We can run this protocol several times to make the probability as 
lower as we want. 

Can Arthur learn anything from the protocol? Let us argue this intuitively. First of all, Arthur 
has the graphs at beginning, so he does not learn anything new from the graphs. Does he learn 
anything from Merlin? Merlin tells him which graph he started with. But Arthur already knew 
that. So, intuitively, Arthur has not learnt anything new, and yet, he is convinced that G and H 
are not isomorphic if it is the case. This is what we mean by zero knowledge proof. 

The way to formalize the concept of not learning anything is that, Arthur should be able to 
simulate the entire interaction with Merlin, without even bringing Merlin into the picture at all. 
Note that this is the case for our example, Arthur just need to answer the challenge he produced 
by himself, who apparently knows the answer. 

We will not give the formal definition of SZK. Basically, SZK is the class of problem for 
which yes answer can be proved by a protocol like this one. That is, there is a protocol for which 
a polynomial time Arthur interacts with computationally unbounded Merlin that satisfies three 
properties: 

Completeness: Arthur should accept when the answer is yes. • 

Soundness: Arthur should reject with high probability whenever the answer is no. • 

Zero Knowledge: Arthur should not learn anything beyond the answer. • 

We saw before that Grover lower bound gives an oracle relative to which NP � BQP. We claim 
that the collision lower bound gives an oracle relative to which SZK � BQP. The oracle encode 
the collision problem. The collision lower bound says that there is no efficient BQP algorithm to 
distinguish 1-to-1 functions from 2-to-1 functions. We need to show that this problem has a SZK 
protocol. The question is, can Merlin convince Arthur f is an 1-to-1 function without giving any 
other information? The idea is as follows. 

Arthur randomly picks an x, computes f(x), send it to Merlin, and ask, “what is the inverse • 
x?” 

Merlin answers Arthur’s challenge. • 
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If f is 1-to-1, then Merlin can always answer the challenge. If f is 2-to-1, then Merlin can only 
succeed with probability 1/2. Can Arthur learn anything? Merlin tells Arthur the inverse x of 
f(x), which Arthur already knew it if he follows the protocol. In this case, Arthur learns nothing. 
However, Arthur may not be honest, and sends Merlin some y that he is interested in. He can then 
learn the inverse of y from Merlin. Intuitively, this seems not zero knowledge. Indeed, the protocol 
is zero knowledge only when Arthur is honest. However, there is a powerful theorem says that there 
is a way to modify the protocol so that it is zero knowledge even if Arthur is dishonest. Therefore, 
the collision problem has statistical zero knowledge protocol. By standard diagonalization trick, 
we can get an oracle relative to which SZK � BQP. 

Like BQP vs. NP, we do not know the relation between SZK and NP. But under some 
hypothesis that most people believed in, SZK is contained in NP ∩ coNP. Thus, we do not 
believe NP-complete problems have statistical zero knowledge proof protocols. On the other hand, 
they have computational zero knowledge proof protocols, assuming cryptographic assumption. If 
Merlin could encode his proof to Arthur cryptographically, and then selectively decode parts of the 
answer, then there is a computational zero knowledge protocols for NP-complete problems, due to 
Goldreich, Micali, Widgerson. 

As an interesting side note, we mentioned that there is a whole industry of taking things in 
classical computation, putting a letter Q in from of them. This is no exception. There is a whole 
literature now about quantum statistical zero knowledge. Recall that honest verifier and dishonest 
verifier are equivalent for statistical zero knowledge (and also for computational zero knowledge.) 
Interestingly, in the quantum world, NP-complete problems have honest verifier quantum statistical 
zero knowledge protocol, but apparently not with dishonest verifier. 
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