
6.896 Quantum Complexity Theory	 October 14, 2008 

Lecture 12 
Lecturer: Scott Aaronson 

1 A second non-symmetric example 

1.1	 Limitations of speed-ups without structure 

In the preceeding lectures, we examined the relationship between deterministic query complexity 
and quantum query complexity. In particular, we showed 

Theorem 1 ∀Boolean fD(f) = O(Q(f)6) 

so we won’t ever obtain a superpolynomial improvement in the query complexity of total functions, 
and to obtain a superpolynomial speed-up, we can’t treat the problem as a black-box like Grover’s 
algorithm does. We need to exploit some kind of structure, possibly in the form of a promise on the 
function, as Shor’s algorithm does. Moreover, for symmetric Boolean functions – OR, MAJORITY, 
PARITY, and the like – the largest separation possible is only quadratic, which is achieved by the 
OR function, as demonstrated by Grover’s algorithm and our various lower bounds. For functions 
such as MAJORITY, which switches from 0 to 1 around the middle Hamming weight, the advantage 
only diminishes, and any quantum algorithm can be shown to require Ω(n) queries, just as classical 
algorithms do. 

We don’t have such a clear picture of the state of affairs for non-symmetric Boolean functions, 
but a few concrete examples have been worked out. A natural next question is to consider what 
happens when our simple functions are composed. For example, we saw last time that for the two 
level OR-AND tree (with 

√
n branches at each level), the quantum query complexity is Θ(

√
n), 

with the upper bound provided by a recursive application of Grover’s algorithm, and the lower 
bound obtained via Ambainis’ adversary method (stated without proof)—the quantum extension 
of the BBBV hybrid argument and variants, where we argue about what a quantum algorithm 
can do step-by-step. By contrast, we still don’t know how to obtain the lower bound using the 
polynomial method, where we reduce questions about quantum algorithms to questions about low­
degree polynomials, (the “pure math” approach) which is elegant when it works. Thus, these two 
methods seem to have complementary strengths and weaknesses. 

1.2	 The AND-OR tree, or: the power of randomization in black-box query 
complexity 

The second example which we understand is also an AND-OR tree, but it is deeper, consisting 
of log n levels with two branches at each node (see Figure 1). We think of this as modeling a 
log n-round game of pure strategy between two players in which the players have two options at 
each round (we could think of it more generally as a constant number of moves), and the winner is 
determined by a black-box evaluation function—the natural computational question in such a game 
is, “is there a move I can make such that for every move you can make, I can force a win?” This 
is precisely the problem of game tree evaluation. This black-box assumption allows us to begin 
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Figure 1: log n-depth AND-OR tree 

to address the question of what kind of a speed-up we can hope to obtain by using a quantum 
algorithm for playing games. The kind of question we know how to address is again about the 
number of queries we require—how many of the leaves of the tree (labeled with bits) we need to 
examine to determine its value. 

The best classical algorithm turns out to be very simple: 
Algorithm EV AL − TREE: For the tree rooted at vertex v, 

1. Let u be the left or right child, chosen uniformly at random; run EV AL − TREE(u). 

2. If v is an AND and EV AL − TREE(u) = 0 or v is an OR and EV AL − TREE(u) = 1, 
return 0 or 1, respectively. 

3. Otherwise, if w is the other child, return EV AL − TREE(w). 

The randomization is very important, since otherwise we might “get unlucky” at each level and 
need to evaluate every branch of the tree. It is actually an easy exercise to analyze the running 
time of this algorithm—what is more difficult to see is that this algorithm is actually optimal: 

√


Theorem 2 (Saks-Wigderson ’86) R(AND − OR) = Θ(nlog 1+ 
4 

33 
). (where log 1+

√
33 .754)

4 ≈

This function is conjectured to exhibit the largest separation possible between classical query 
complexity and randomized query complexity (without promises). It is certainly, at least, the largest 
known separation. Of course, the caveat about promises is essential here too—if we are promised 
that the input has Hamming weight either at least 2/3n or at most 1/3n and we need to decide 
which, then deterministic algorithms need more than n/3 queries, but randomized algorithms only 
need one query. 

In any case, the situation with randomized algorithms is similar to the one we faced with 
quantum algorithms. In the following, let Rǫ denote the query complexity of a randomized algorithm 
that is allowed to err with probability ǫ. It is easy to see that for “Las Vegas” algorithms (i.e., 
ǫ = 0, like our pruning algorithm), R0(f) ≥ C(f), since the algorithm must see a certificate before 
it halts—otherwise, there’s both a 0-input and a 1-input that are consistent with the bits queried so 
far, so we would err on some input. Since we also saw D(f) ≤ C(f)2, we find that D(f) ≤ R0(f)2 

for all Boolean total functions f , but we don’t know whether or not this is tight—the log n-level 
AND-OR tree obtains the largest known speed-up. Likewise, for “Monte-Carlo” algorithms (ǫ > 0), 
observe that if f has block sensitivity k, then we have to examine each of our disjoint blocks with 
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Figure 2: Two-level AND-OR trees computing x ⊕ y (left) and (x ⊕ y) (right). ¬

probability at least 1 − 2ǫ, since again otherwise there would be a 1-input and a 0-input that only 
differ in some unexamined block, and then even if we randomly output 0 or 1, we are still incorrect 
with proabability greater than (1/2)2ǫ = ǫ. Since we showed D(f) ≤ bs(f)3 , D(f) = O(Rǫ(f)3). 
Once again, the AND-OR tree obtains the largest known gap, and we don’t know if this cubic gap 
is exhibited by any function. These facts, along with the application to game playing, are why 
this AND-OR tree is considered to be an extremely interesting example (the “fruit fly” of query 
complexity). 

1.3 The quantum query complexity of the AND-OR tree 

We now turn examining the quantum query complexity of this problem. We can get an easy 
quantum lower bound by a reduction from the parity problem. Observe that the parity of two 
bits x and y and its negation are computed by two-level binary AND-OR trees (see Figure 2). By 
recursively substituting these trees for the variables x and y, it is easy to see that we obtain the 
parity of n bits in 2 log n levels—that is, in a tree with n′ = O(n2) leaves. Given an instance of the 
parity problem, it is not hard to see how, given the path to a leaf, we could recursively decide which 
bit xi of the input we should place at that leaf and whether or not that bit should be negated. Since 
we saw using the polynomial method that the parity of n bits required n/2 queries to compute, 
this AND-OR tree requires Ω(

√
n ) queries to evaluate. (Since a more efficient query algorithm ′

for evaluating the AND-OR tree would yield an impossibly query efficient algorithm for computing 
the parity of n bits.) Alternatively, it is possible to use Ambainis’ adversary method to obtain the 
Ω(

√
n)-lower bound as well. 

We don’t know how to obtain a better lower bound. It is also not easy to see how we can 
obtain an algorithm that is more efficient than our O(n.753)-query classical algorithm—it isn’t clear 
how to obtain an upper bound by applying, e.g., Grover’s algorithm recursively to this problem 
since we only have subtrees of size two and moreover there is a recursive build-up of error at the 
ω(1) internal nodes. Despite this, in 2006, Farhi, Goldstone, and Gutmann found a O(

√
n)-query 

“Quantum walk” algorithm – sort of a sophisticated variant of Grover’s algorithm – for evaluation 
of these AND-OR trees using intuitions from scattering theory and particle physics. (Contrary to 
our experience earlier in the course, this is an example where knowledge of physics turned out to 
be useful in the design of an algorithm.) Thus in fact, our easy Ω(

√
n) lower bound turns out to be 

tight. Interestingly, this is an example of a function where the quantum case is simpler than the 
classical (randomized) case—Θ(

√
n) versus Θ(n.754), where the classical lower bound was a highly 

nontrivial result. 
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2 The Collision Problem 

We will conclude our unit on quantum query complexity with an interesting non-boolean problem, 
“the collision problem.” It is a problem that exhibits more structure than Grover’s “needle-in-a­
haystack” problem, but less structure than the period finding problem, “interpolating” between the 
two (in some sense). Informally, rather than looking for a “needle in a haystack,” we are merely 
looking for two identical pieces of hay: 

The Collision Problem. Given oracle access to a function f : {1, . . . , n} → {1, . . . , n} with n 
even (i.e., the oracle maps |x〉|b〉 to |x〉|b⊕f(x)〉) promised that either f is one-to-one or two-to-one, 
decide which. 

Variant: Promised that f is two-to-one, find a collision. 
Clearly, the decision problem is easier than this search variant, since an algorithm for the search 

problem would provide a witness that a function is not one-to-one, i.e., that the function must be 
two-to-one given the promise (and of course, it would fail to find a collision in a one-to-one function). 

Key difference: One way that this problem has “more structure” than Grover’s problem is that 
any one-to-one function must have distance at least n/2 from any two-to-one function. Thus, 
any fixed one-to-one function can be trivially distinguished from any fixed two-to-one function by 
querying a random location. (They agree with probability at most 1/2.) 

Obviously, the deterministic query complexity of this problem is (exactly) n/2 + 1, since if we 
are unlucky, we might see up to n/2 distinct elements when we query a two-to-one function. It is 
also not hard to see that the randomized query complexity is Θ(

√
n) by the so-called “Birthday 

Paradox.” Similar to our analysis of Simon’s algorithm, suppose we choose a two-to-one function f 
uniformly at random. Then, for any fixed pair of distinct locations, xi and xj , the probability that 
f(xi) = f(xj) is 1 , so we know that by a union bound, the total probability of seeing a collision in 

k 1 any k queries is 
n

2 

−1 

n−1 . Thus, in particular, for k(n) = o(
√

n), the probability of seeing a collision 
is o(1) and we can’t obtain a sufficiently small error probability. By contrast, for k(n) = Ω(

√
n) 

queries to random locations in any two-to-one function, it is easy to see (using, e.g., Chebyshev’s 
inequality) that the expected number of collisions is Ω(1), so we can find a collision with constant 
probability, solving the search variant of the problem. 

2.1 Motivation 

This problem is interesting for a few reasons. First of all, graph isomorphism reduces to this 
problem. Fix a graph G, and consider the map σ 7→ σ(G) (for σ ∈ Sn). Notice that, for the graph 
G∪H (assuming G and H are rigid, i.e., only have a trivial automorphism), this map is two-to-one 
if G and H are isomorphic and it is one-to-one otherwise. So, one might wonder if there could be 
a O(log n)-query algorithm for the collision problem, since that would lead to a polynomial-time 
algorithm for the graph isomorphism problem—in particular, if we could find a random collision, 
we could remove the restriction on rigidity (we could use approximate counting). In any case, note 
that since the map here is on a domain of size (2n)!, we would need a poly log(2n!) ∼ poly(n)-query 
algorithm for this application. That is, we wonder whether or not there is an efficient algorithm 
for graph isomorphism when we ignore the group structure. 
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There’s also an application to breaking cryptographic (collision-resistant) hash functions, used 
in digital signatures on the internet, for example—the hash function is applied to some secret 
message (credit-card number, etc.) to create a “signature” of that message. Often, the security of 
a protocol depends on the assumption that it is computationally intractible to find a collision in 
the hash function – to find two messages m and m that map to the same hash value – e.g., this ′ 

might happen if the purpose of the hash value was to commit to a value without revealing it. (It 
may also be that finding a collision helps us find a stronger break in a hash function.) 

There is a classical attack based on the “Birthday Paradox,” – the “birthday attack” – which 
proceeds by hashing random messages and storing their results until two messages are found that 
hash to the same value. For N = 2n, it follows from the Birthday Paradox that this attack finds 
a collision in O(

√
N) evaluations with constant probability—a quadratic improvement over what 

one might naively expect. Again, if there were a poly log N -query quantum algorithm for this 
problem or, more generally, for finding collisions in any k-to-one function – we can assume that the 
collisions are evenly distributed, since this minimizes the total number of collision pairs, and any 
unbalanced distribution generally only makes an algorithm’s task easier (this is not a proof, but 
in what follows, our upper bounds will work in the non-uniform case, and our lower bounds will 
apply in the uniform case, so we will have covered this, in any case) – that would yield a poly(n) 
time quantum algorithm for breaking any cryptographic hash function. 

2.2 Algorithms for the collision problem 

We now consider quantum algorithms for this problem. We have talked at length about how this 
problem has “more structure” than Grover’s problem; how can we use the additional structure 
exhibited by this problem to find a better algorithm? We start by showing a different (easy) 

√
N ­

query algorithm for finding collisions: we query f(1), and we use Grover search to find the other 
index i such that f(i) = f(1). We could also have used Grover’s algorithm on all possible collision 
pairs (xi, xj). 

It is possible to combine this Grover search algorithm with our “Birthday” algorithm to obtain 
a O(n1/3)-query algorithm as follows: 

Algorithm. (Brassard-Høyer-Tapp 1997) 

1. Make n1/3 classical queries at random: f(x1), . . . , f(xn1/3 ) 

2. Enter superposition over the remaining n2/3 positions. 

3. Apply Grover search to find an element in the initial list. 

Grover’s algorithm takes O(n1/3) queries to find such an element in the final step, so this algorithm 
uses O(n1/3) queries overall. (Clearly, the n1/3 was chosen to optimize the trade-off we obtain.) 

We know, by the correctness of Grover’s algorithm, that this algorithm will work when there’s 
a collision between the elements sampled in phase 1 and the elements in the superposition in phase 
2. Thus, to see that this algorithm works, we only need to examine the probability of a collision. 
We observe that there are n1/3n2/3 = n pairs of phase-1 and phase-2 elements. A uniformly chosen 

1pair of distinct elements would have probability n−1 of being a collision pair, but this doesn’t quite 
apply here since our n pairs are not uniformly chosen—there are correlations. Nevertheless, the 
probability of a collision between a fixed pair in the two lists is still Ω(1/n) so we can apply an 
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analysis similar to the standard analysis of the Birthday Paradox to find that a collision exists with 
constant probability. 

Is this optimal? It is challenging to find a super-constant lower bound for this problem: for 
example, it is hard to find a hybrid argument, since it is hard to interpolate between any one-to-one 
function and any two-to-one function (since they differ in so many places). Likewise, if we tried 
to apply our block sensitivity lower bound, we find that the block sensitivity of this problem is 2 
(there are at most two disjoint ways of changing a one-to-one function to a two-to-one function), 
so our block sensitivity lower bound yields a mere Ω(

√
2)-query lower bound. 

There is another, more illuminating way of framing the difficulty: a quantum algorithm can 
“almost” find a collision pair in just a constant number of queries! Suppose we prepare a superpo­
sition √1

n 
n
x=1 |x〉|f(x)〉 and measure the second register; this yields a superposition |x〉+

2 
|y〉 for a 

random pair x and y such that f(x) = f(y) in the first register. Thus, if we could only measure 
this state twice, we could find a collision pair. (By constrast, it isn’t clear how measuring twice 
would allow one to solve the Grover problem in a constant number of queries.) 

Next time, we’ll see a Ω(n1/5)-query lower bound (A. 2002) which was improved in subsequent 
weeks to Ω(n1/4) and then Ω(n1/3) by Yao and Shi, with some restrictions—only when the range of 
the function was much larger than n. These restrictions were later removed by Kutin and Ambainis, 
so the O(n1/3) algorithm again turns out to be optimal. 

2.3	 The collision problem and “hidden variable” interpretations of quantum 
mechanics 

An additional motivation for this problem (described in A. 2002) was studying the computational 
power of “hidden variable theory” interpretations of quantum mechanics. This school of thought 
says that a quantum superposition is at any time “really” in only one basis state. This basis state is 
called a “hidden variable” (although ironically, it is the one state that is not “hidden,” but rather 
is directly experienced). So, like in many-worlds interpretations, there is a quantum state with 
amplitudes for basis states for the many possibilities of states that the world could be in, but in 
contrast to the many-worlds interpretation, most of these states are just some guiding field in the 
background, and the world is actually in one distinguished state. 

What significance does this have to quantum computing? One might think, “absolutely noth­
ing,” since all of these interpretations make the same experimental predictions, and thus lead to 
the same computational model. But, if we could see a complete history of these true states, we 
could solve the collisions problem – and hence the graph isomorphism problem – in a constant 
number of queries. We could prepare a superposition over a collision pair as described earlier, and 
apply transformations (e.g., Hadamards) to “juggle” the true state between the basis states of the 
superposition. Thus, given a lower bound for the collision problem, we see that the additional 
information in this history provably gives additional computational power. 
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