6.845 Problem Set 2: Basic Training for the BQP Army

Do any 7 of the 10 problems—the remaining 3 are extra credit.
1. Distinguishing two quantum states.

(a) Show that there exists a measurement that, given as input either |¢)) = al0) + b|1) or |¢) =
al0) — b[1), for some real numbers a,b with a® + b% = 1, correctly identifies which state it was
given with probability (a + b)?.

(b) Given two pure quantum states |[1)) = ay|1) + -+ + an|N) and |p) = B1]|1) + -+ + Bn|N), recall
that their inner product is

(Ylp) = aip+ -+ ayBn.
Show that unitary transformations preserve inner product: that is, if [¢/') = Uly) and |¢') = Ulp),
then (¢'[¢") = (Ylp).
(c¢) Show that there exists a measurement that, given as input either |¢) or |p) each with probability

1, correctly identifies which state it was given with probability 3 + $1/1 — ||} 2. [Hint: Use
symmetry to reduce to part (a.).]

2. Trace distance. Recall the formalism of density matrices from psetl. A density matrix p is an
N x N Hermitian positive semidefinite matrix with trace equal to 1. If a quantum system in state p
is measured in the standard basis, the result is |¢) with probability (p);;; if a unitary transformation
U is applied to the system, then the density matrix of the transformed system is UpU~!. Given two
N x N density matrices p and o, their trace distance is defined to be

1 _ _
lp—oll, = 5SLI}ptr|UpU L—UsUTY,

where the supremum is over all N x N unitary matrices U and the absolute value of a matrix is taken
entrywise. Trace distance is a measure of the distance between two quantum states.
(a) Show that 0 < ||p — o||,, <1 for all quantum states p and o.

(b) Show that if a measurement accepts the state p with probability p and accepts the state o with
probability ¢, then |p — g < [lp — ol|,.

(¢) Show that for pure states, trace distance is related to inner product via the following formula:
(1) ] = 1) (@Dl = /1 = [l

(d) Combining (b.) and (c.), show that the measurement you designed in problem 1 was the optimal
one. That is, any measurement either mistakes |¢) for |¢) or vice versa with probability at least
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3. Density matrices and quantum algorithms. Let f:{1,..., N} — {0,1} be a Boolean function.

Consider a quantum algorithm that first prepares an equal superposition over all inputs « € {1,..., N},
then computes f in superposition, then runs the f algorithm backwards to uncompute garbage. This
algorithm proceeds through the following three states:

N
=Yl = me )lgarbage, )| (z Z|x e

Describe the density matriz of the |x) register only for each of these three states. [Here you can
assume the map z — garbage, is injective. You can also fix a particular f for definiteness: for
example, f(z) =1if x > N/2 and f(z) = 0 otherwise.]

. Errors in a quantum computation build up linearly rather than exponentially.

(a) Show that trace distance (defined in problem 2) satisfies the triangle inequality:
lp =&l < llp = ol + llo =&l

(b) Let Uy,...,Ur be “ideal” unitary matrices, and let V; be a noisy approximation to U; that our
quantum computer actually implements. Suppose HUtpUtT — VipV,
and all ¢. Show that for all p,

< ¢ for all mixed states p
tr

HUT...UlpUlT...U:TF_VT...leVIT...VZiHt <eT.

[Hint: This doesn’t follow directly from part (a.) — do you see why not? — though you’ll certainly
want to use part (a.)]

. Uniformity. Recall the definition of BQP as the class of languages L C {0,1}" decidable with bounded
probability of error by a uniform family {C)}, -, of polynomial-size quantum circuits. Here uniform
means there exists a deterministic (classical) algorithm that, given n as input, outputs a description of
C,, in time polynomial in n. Show that we get the same complexity class, if we instead allow a BQP
algorithm to output C,, (or more precisely, a probability distribution over C,,’s).

. Complete problems. For our purposes, say a problem B is complete for the complexity class C if

(i) Bisin C, and (ii) every problem in C can be reduced to B in deterministic polynomial time (i.e.,
C C PP).

(a) Let PromiseBQP be the class of promise problems efficiently solvable by a quantum computer:
that is, the set of all ordered pairs Iy gg C {0,1}", lIyo C {0,1}" such that
e [Iyps NIlyo = &, and
e there exists a uniform family of polynomial-size quantum circuits that decides, given an input

x, whether z € Illygg or « € llyo with bounded probability of error, promised that one of
these is the case.

Give an example of a promise problem that’s complete for PromiseBQP. [Hint: This problem
just requires understanding the definitions; it does not require cleverness.]

(b) Explain the basic difficulty in finding a language L C {0,1}" that is complete for BQP.



7.

10.

Improved upper bound on BQP. Probabilistic Polynomial-Time, or PP, is defined as the class of
languages L C {0,1}" for which there exists a probabilistic Turing machine M such that for all inputs
x:

o If x € L then M (z) accepts with probability > 1/2.
o If © ¢ L then M (z) accepts with probability < 1/2.

It is clear that BPP C PP C P#P. Show that BQP C PP, thereby improving the result from class that
BQP C P#P. [Hint: First show how to write the acceptance probability pc of a quantum circuit C as
the sum of exponentially many complex numbers, each computable in polynomial time. Then show
how this implies the existence of a PP machine to decide whether pc > 1/2.]

Equivalence of two types of quantum queries. In class, we saw two types of quantum queries.
Given a Boolean function f : {0,1}" — {0,1}, a phase query maps each basis state |z,a,z) to
(=1)*f@)|z, a, z), where a is a “control qubit” that is set to 1 if and only if the query should happen.
A XOR query maps each basis state |z, a, z) to |z,a® f (x), z), where a is a 1-qubit “answer register”.

(a) Show how to simulate a phase query to f using a single XOR query. [Hint: What happens when
you Hadamard a before querying?]

(b) Show how to simulate a XOR query to f using a single phase query.

Reals vs. complex amplitudes. Show that any quantum computation involving complex ampli-
tudes, can be polynomially simulated by another quantum computation involving real amplitudes only.
[Hint: Double the number of basis states.]

Number of quantum states. Let Hy be the set of pure quantum states over the basis [1),...,|N)
(in other words, unit vectors in CV). Also, fix a constant ¢ > 0.

(a) Show that one can find T' = 2%™) states |¢1),...,[¢r) in Hy, such that |(¢;[¢;)] < ¢ for all
1 # j. [Hint: Tt suffices to restrict attention to states of the form ﬁ vazl (—1)*
see a connection to error-correcting codes?]

7). Do you

(b) Let G be a finite, universal set of quantum gates. Using part (a.), show that there exist quantum
states 1)) of n qubits that require 2%(") gates from G to prepare even approximately. In other
words, the exponential dependence on n in the Solovay-Kitaev Theorem is necessary.

(¢) [Extra credit] Show that when ¢ is close to 1, the bound from part a. can be sharpened to
Q(N)
T> (1i0) .
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