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6.845 Problem Set 2: Basic Training for the BQP Army


Do any 7 of the 10 problems—the remaining 3 are extra credit. 

1.	 Distinguishing two quantum states. 

(a) Show that there exists a measurement that, given as input either ψ� = a 0� + b 1� or |ϕ� = 
2 + b2	

| | |
a|0� − b|1�, for some real numbers a, b with a = 1, correctly identifies which state it was 
given with probability 12 (a + b)2 . 

(b) Given two pure quantum states |ψ� = α1|1� + · · · + αN |N� and |ϕ� = β1|1� + · · · + βN |N�, recall 
that their inner product is 

+ α∗�ψ|ϕ� = α∗ 
1β1 + · · · N βN . 

Show that unitary transformations preserve inner product: that is, if |ψ�� = U |ψ� and |ϕ�� = U |ϕ�, 
then �ψ�|ϕ�� = �ψ|ϕ�. 

(c) Show that there exists a measurement that, given as input either ψ� or |
1 
2	 1 − |�ψ|ϕ�| 

ϕ� each with probability |
21 , correctly identifies which state it was given with probability 1 

2	 2 . [Hint: Use+ 
symmetry to reduce to part (a.).] 

2.	 Trace distance. Recall the formalism of density matrices from pset1. A density matrix ρ is an 
N × N Hermitian positive semidefinite matrix with trace equal to 1. If a quantum system in state ρ 
is measured in the standard basis, the result is |i� with probability (ρ)ii; if a unitary transformation 
U is applied to the system, then the density matrix of the transformed system is UρU−1 . Given two 
N × N density matrices ρ and σ, their trace distance is defined to be 

1 
= sup tr�ρ − σ�tr 2 U 

UρU−1 − UσU−1 , 

where the supremum is over all N × N unitary matrices U and the absolute value of a matrix is taken 
entrywise. Trace distance is a measure of the distance between two quantum states. 

(a) Show that 0 ≤ �ρ − σ�tr ≤ 1 for all quantum states ρ and σ. 

(b) Show that if a measurement accepts the state ρ with probability p and accepts the state σ with 
probability q, then |p − q| ≤ �ρ − σ�tr. 

(c) Show that for pure states, trace distance is related to inner product via the following formula: 
2 

= .�(|ψ��ψ| − |ϕ��ϕ|)�tr 1 − |�ψ|ϕ�| 

(d) Combining (b.) and (c.), show that the measurement you designed in problem 1 was the optimal 
one. That is, any measurement either mistakes 
1 1 2 

2 .2 − 1 − |�ψ|ϕ�| 
|ψ� for |ϕ� or vice versa with probability at least 
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3.	 Density matrices and quantum algorithms. Let f : {1, . . . , N} → {0, 1} be a Boolean function. 
Consider a quantum algorithm that first prepares an equal superposition over all inputs x ∈ {1, . . . , N}, 
then computes f in superposition, then runs the f algorithm backwards to uncompute garbage. This 
algorithm proceeds through the following three states: 

N N	 N

√
N 

|x� → √
N 

|x�|garbagex�|f(x)� → √
N 

|x�|f(x)�. 

Describe the density matrix of the |x� register only for each of these three states. [Here you can 
assume the map x garbagex is injective. You can also fix a particular f for definiteness: for→
example, f(x) = 1 if x ≥ N/2 and f(x) = 0 otherwise.] 

� 

=1 =1 =1x x x

4. Errors in a quantum computation build up linearly rather than exponentially. 

(a) Show that trace distance (defined in problem 2) satisfies the triangle inequality: 

�ρ − ξ�tr ≤ �ρ − σ�tr + �σ − ξ�tr 

1 1 1 

(b) Let U1, . . . , UT be “ideal” unitary matrices, and let Vt be a noisy approximation to Ut 

UtρU
† − VtρVt

†
t 

that our 

quantum computer actually implements. Suppose 
tr 
≤ ε for all mixed states ρ 

and all t. Show that for all ρ, 

UT · · · U1ρU1
† · · · UT

† − VT · · · V1ρV1
† · · · VT

†
tr 
≤ εT. 

[Hint: This doesn’t follow directly from part (a.) – do you see why not? – though you’ll certainly 
want to use part (a.)] 

5.	 Uniformity. Recall the definition of BQP as the class of languages L ⊆ {0, 1}∗ 
decidable with bounded 

probability of error by a uniform family {Cn}n≥1 of polynomial-size quantum circuits. Here uniform 
means there exists a deterministic (classical) algorithm that, given n as input, outputs a description of 
Cn in time polynomial in n. Show that we get the same complexity class, if we instead allow a BQP 
algorithm to output Cn (or more precisely, a probability distribution over Cn’s). 

6.	 Complete problems. For our purposes, say a problem B is complete for the complexity class C if 
(i) B is in C, and (ii) every problem in C can be reduced to B in deterministic polynomial time (i.e., 
C ⊆ PB ). 

(a) Let	PromiseBQP be the class of promise problems efficiently solvable by a quantum computer: 
that is, the set of all ordered pairs ΠY ES ⊆ {0, 1}∗, ΠNO ⊆ {0, 1}∗ 

such that 

•	 ΠY ES ∩ ΠNO = ∅, and 

•	 there exists a uniform family of polynomial-size quantum circuits that decides, given an input 
x, whether x ∈ ΠY ES or x ∈ ΠNO with bounded probability of error, promised that one of 
these is the case. 

Give an example of a promise problem that’s complete for PromiseBQP. [Hint: This problem 
just requires understanding the definitions; it does not require cleverness.] 

(b) Explain the basic difficulty in finding a language L ⊆ {0, 1}∗ 
that is complete for BQP. 
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7.	 Improved upper bound on BQP. Probabilistic Polynomial-Time, or PP, is defined as the class of 
languages L ⊆ {0, 1}∗ 

for which there exists a probabilistic Turing machine M such that for all inputs 
x: 

•	 If x ∈ L then M (x) accepts with probability ≥ 1/2. 

•	 If x /∈ L then M (x) accepts with probability < 1/2. 

It is clear that BPP ⊆ PP ⊆ P#P . Show that BQP ⊆ PP, thereby improving the result from class that 
BQP ⊆ P#P . [Hint: First show how to write the acceptance probability pC of a quantum circuit C as 
the sum of exponentially many complex numbers, each computable in polynomial time. Then show 
how this implies the existence of a PP machine to decide whether pC ≥ 1/2.] 

8.	 Equivalence of two types of quantum queries. In class, we saw two types of quantum queries. 
Given 

f 
a 
(x)
Boolean function f : {0, 1} n → {0, 1}, a phase query maps each basis state |x, a, z� to 

(−1)a· |x, a, z�, where a is a “control qubit” that is set to 1 if and only if the query should happen. 
A XOR query maps each basis state |x, a, z� to |x, a ⊕ f (x) , z�, where a is a 1-qubit “answer register”. 

(a) Show how to simulate a phase query to f using a single XOR query. [Hint: What happens when 
you Hadamard a before querying?] 

(b) Show how to simulate a XOR query to f using a single phase query. 

9.	 Reals vs. complex amplitudes. Show that any quantum computation involving complex ampli­
tudes, can be polynomially simulated by another quantum computation involving real amplitudes only. 
[Hint: Double the number of basis states.] 

10.	 Number of quantum states. Let HN be the set of pure quantum states over the basis |1� , . . . , |N�
(in other words, unit vectors in CN ). Also, fix a constant c > 0. 

(a) Show that one can find T = 2Ω(N) states ψ1� , . . . , ψT � in HN , such that |�ψi ψj �| ≤ c for all | |	 �N 
|

xii =� j. [Hint: It suffices to restrict attention to states of the form √1
N i=1 (−1) |i�. Do you 

see a connection to error-correcting codes?] 

(b) Let G be a finite, universal set of quantum gates. Using part (a.), show that there exist quantum 
states |ψ� of n qubits that require 2Ω(n)) gates from G to prepare even approximately. In other 
words, the exponential dependence on n in the Solovay-Kitaev Theorem is necessary. 

(c)	 [Extra credit] Show that when c is close to 1, the bound from part a. can be sharpened to � �Ω(N)
1 .T ≥ 1−c 
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