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A Substitution Model for Scheme 

1 Introduction 

These notes describe a Scheme Substitution Model: an accurate, simple mathematical model of 
Scheme evaluation based on rules for rewriting one Scheme expression into another. The model 
captures a significant portion of Scheme, including asssignment (set!) and control abstraction 
(call/cc). 

We assume the reader already has an understanding of Scheme at the level taught in an intro­
ductory Scheme programming course. In particular, we assume the concepts of free and bound 
variables, and the scoping rules for lambda and letrec, are understood. 

The rules of the game in a Substitution Model are that the only objects manipulated in the Model 
are Scheme expressions: no separate data structures for environments, cons­cells, or continu­
ations. Evaluation of an expression, M , is modelled by successive application of rewrite rules 
starting with M . Each rule transforms an expression into a new Scheme expression. Rewriting 
continues until an expression is reached for which no rule is applicable. This final expression, if 
any, gives a direct representation either of the value returned by the expression, or of the kind of 
dynamic error that first occurs in the evaluation. 

At most one rule is applicable to each expression, reflecting the deterministic character of Scheme 
evaluation. The way an expression rewrites is determined solely by the expression, not the se­
quence of prior rewrites that may have led to it. If M � is an expression reached at any point by 
rewriting starting at M , then evaluating M � in Scheme’s initial environment will result in the same 
final value, the same kind of error, or the same “runaway” behavior (divergence) as evaluation of 
M . 

The environment in which an expression is to be evaluated will be represented by surrounding 
an expression with an outermost letrec that binds variables in the environment to the expres­
sions representing their values. Immutable lists and pairs are represented as combinations with 
operators list or cons. 

Mutable lists do not fit well into a Substitution Model. They could be shoe­horned in, but we 
haven’t found a tasteful way to do it. The problem is that we haven’t found a reasonable class 
of Scheme expressions that evaluate directly to circular list structures and that could serve as 
canonical forms for these structures. So we have omitted mutable lists from this Substitution 
Model; vectors are omitted for similar reasons. We have omitted characters altogether, ensuring 
that strings are immutable. 

Side­effects involving input/output also don’t fit and have been omitted. So procedures such as 
set­car!, string­set!, display, or read are not included in the Model. 
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2 Control Syntax for the Substitution Model 

A simplified Backus­Naur Form (BNF) grammar for Scheme is given in an Appendix. According 
to the official Scheme specification, the standard builtin operators such as +, symbol?, cons, 
apply are variables that can be reassigned. This is a regrettable design decision, because with few 
exceptions, it is a really bad idea for a programmer to redefine the builtins. In this Substitution 
Model, these identifiers are treated as constants rather than variables. 

The Substitution Model requires some additional syntactic concepts, namely, syntactic values and 
control contexts. 

2.1 Syntactic Values 

Scheme’s values are numbers, Booleans, symbols, and similar atomic types; procedures; and lists 
and pairs of values. Each value will be represented by a canonical expression called a syntactic 
value. In particular, compound procedures are represented as lambda­expressions. Here is the 
grammar1: 

�syntactic­value� ::= �immediate­value� �list­value� �pair­value�| |
�immediate­value� ::= �self­evaluating� �symbol� �procedure�| |

�list­value� ::= (list �syntactic­value�∗) 
�pair­value� ::= (cons �syntactic­value� �immediate­value�) 

(cons �syntactic­value� �pair­value�)|

Note that syntactic values may contain letrec’s only within procedure bodies. 

2.2 Control Contexts for Kernel Scheme 

An important technical property of the Substitution Model is that the rewrite rule to apply at any 
evaluation step wiil be uniquely determined. The order in which subexpressions are evaluated 
is formalized in terms of control contexts. A control context is an expression with a “hole,” [ ], 
indicating the subexpression that an evaluator would begin working on. We’ll illustrate with an 
example before giving the formal definitions. 

Definition 2.1. If R is an expression with a hole, and M is an expression, we write R[M ] to denote 
the result of replacing the hole in R by M without any renaming of bound variables. 

Example 2.2. Let 

M = (+ 1 (if (pair? (list (list) ’a)) 2 3) (* 4 5)). 

1In these grammars, superscript “∗ ” indicates zero or more occurrences of a grammatical phrase, and superscript 
“+” indicates one or more occurrences. 
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M is a combination, and not all the operands are values, so Scheme would start to evaluate one of 
the operands. Using left­to­right evaluation, the operand 

(if (pair? (list (list) ’a)) 2 3) 

would be the one to start evaluating, since + and 1 represent final values. This corresponds to 
parsing M as 

R1[(if (pair? (list (list) ’a)) 2 3)] 

where R1 is the control context 

R1 ::= (+ 1 [ ] (* 4 5)). 

The test of this if expression is a combination 

P ::= (pair? (list (list) ’a)) 

whose operator and operand are values, so next, Scheme would actually apply the operator pair? 
to the operand (list (list) ’a). This corresponds parsing M as R[P ] where 

R ::= (+ 1 (if [ ] 2 3) (* 4 5)). 

The fact that Scheme will apply the operator pair? is captured by the fact that P is an immediate

redex.


The fact that the rewrite rule to apply at any evaluation step is uniquely determined follows from

the fact that every nonvalue Scheme expression parses in a unique way as a control context with 
an immediate redex in its hole. 

Formally, we specify control contexts and immediate redexes by the following grammars: 

�control­context� ::= �hole� 
(if �control­context� �expression� �expression�)|
(begin �control­context� �expression�+)|
(set! �variable� �control­context�)|
( �let­keyword�|

( �value­binding�∗ ( �variable� �control­context�) �binding�∗) 
�expression�) 

( �syntactic­value�∗ �control­context� �expression�∗)|
�hole� ::= [ ]


�value­binding� ::= ( �variable� �syntactic­value�)


Note that letrec’s all of whose �init�’s are syntactic values may only appear in control contexts 
when they are within procedure bodies. 
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�immediate­redex� ::= �variable�

(if �syntactic­value� �expression� �expression�)
|
( �let­keyword� ( �value­binding�∗) �expression�)|
( �nonpairing­procedure� �syntactic­value�∗)|
(begin �expression�)|
(begin �syntactic­value� �expression�∗)|
(set! �variable� �syntactic­value�)|

Definition 2.3. An outermost letrec binding variables to values—used to model a Scheme environment— 
is called the environment letrec. An expression is said to be in environment form when it has an 
environment letrec, namely, it is of the form 

(letrec ( �value­binding�∗) N ) 

for some �expression�, N . We use Env(N ) as an abbreviation for this form. 

Definition 2.4. Let M be a Scheme expression, R be a control context, and P be an immediate 
redex. Then M is said to control­parse into R and P iff either 

1. M is of the form Env(R[P ]), or 

2. M = R[P ] for R = �hole�, or 

3. M = P , R = �hole�, and P is not in environment form . 

Definition 2.4.3 reflects that fact that a non­outermost letrec binding of variables to values will 
be the redex of a rule to incorporate the bindings into the outermost environment letrec. On the 
other hand, we do not want to parse the environment letrec in this way. For example, consider 
the expression 

(letrec ((x 1)) (letrec ((y 2)) (+ x y))). (1) 

Expression (1) control parses into 

R =(letrec ((x 1)) [ ]),

P =(letrec ((y 2)) (+ x y)).


On the other hand, (1) is itself is an �immediate­redex� according to the grammatical rules, so it 
could also be parsed as R�[P �], where R� = �hole�, and P � is (1) itself. However, Definition 2.4.3 
disallows this second parse as a control parse because P � is in environment form. 

Lemma 2.5. (Unique Control Parsing) If a Scheme expression, M , is not a syntactic value, then there is 
a unique control context, R, and immediate redex, P , such that M = R[P ]. If M is a syntactic value, then 
it is not control­parsable. 

Proof. By structural induction on M . If M is: 
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•	 [�self­evaluating�, �symbol�, or �procedure�] In this case M is a �syntactic­value�, and we 
must show that it cannot be parsed as R[P ]. But it follows immediately from the definitions 
of �syntactic­value� and �control­context�, that the only control context R such that M = 
R[N ] for some N , is R = [ ], in which case N = M . But since N = M is an �syntactic­value�, 
it is not an �immediate­redex�, proving that M is not control­parsable. 

•	 [a variable] In this case R = �hole� and P = M . 

•	 [a combination] Then if: 

– [the operator or some operand is not a �syntactic­value�] Then M is of the form 

(V 0 . . . N M0 . . . ) 

where V0 . . . is a (possibly empty) sequence of syntactic values, N is not a syntactic 
value, and M0 . . . is a (possibly empty) sequence of expressions. In this case, M is 
neither a syntactic value nor an immediate redex. Now it follows immediately from the 
definitions of �syntactic­value� and �control­context�, that any control context R such 
that M = R[M �] for some M �, must be of the form R = (V 0 . . . R� M0 . . . ) for some 
�control­context�, R� such that R�[M �] = N . But by induction, N = R�[P ] for a unique 
�control­context�, R�, and �immediate­redex�, P . Hence, M = R[P ] for these uniquely 
determined R and P . 

–	 [the operator and all operands are �syntactic­value�’s] Then M is of the form (op V0 . . . ) 
where V0 . . . is a (possibly empty) sequence of syntactic values and op is a syntactic 
value. By induction, there is no �control­context�, R� such that R�[P ] = op or R�[P ] = Vi 

for some immediate redex P and operand Vi. Now it follows immediately from the def­
initions of �syntactic­value� and �control­context�, that the only control context, R, such 
that M = R[P ] for some immediate redex, P , must be with R = �hole� and P = M . 
If op is not a �pairing­operator�, then M = P is an immediate redex, and R and P are 
uniquely determined as required. On the other hand, if op is a �pairing­operator�, then 
M is a value, not an immediate redex, so M is not control­parsable, as required in this 
case. 

•	 [etc.] The remaining cases are similar. 

Problem 1. Verify that if R1 and R2 are control contexts, then so is R1[R2]. 

3 Scheme Rewrite Rules 

This section contains all the rewrite rules necessary to specify the evaluation of kernel Scheme 
expressions. 

We will not consider rewrite rules for the derived expressions. The Revised5 Scheme Manual de­
scribes how to translate (“desugar”) expressions using derived syntax into Kernel Scheme. These 
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translations can easily be described with rewrite rules, and these desugaring rules could be in­
corporated directly into a Substitution Model. The desugaring rules raise no new issues beyond 
those we consider for the kernel rules, so we have omitted them. 

In the following sections, R denotes a control context, B denotes a sequence of zero or more 
�value­binding�’s of distinct variables, V denotes a syntactic value, V1 . . . a sequence of one or 
more syntactic values, and x denotes a variable. 

3.1 Simple Control Rules 

Definition 3.1. A simple control rule is a rewrite rule of the form 

R[P ] R[T ]→ 

or 

(letrec (B ) R[P ]) → (letrec (B ) R[T ]). 

Such a pair of simple control rules may be abbreviated as P T , showing only the subexpressions →
that are changed by the rule. In this case, P will be an immediate redex and is called the immediate 
redex of the rule, and T is called the immediate contractum. 

3.1.1 Rules for Kernel Scheme 

The redexes and contracta for the kernel Scheme simple control rules are: 

• if: 

(if #f M N ) →N 

(if V M N ) →M, for V = #f 

• lambda no args: 

((lambda () M )) → M 

• begin: 

(begin M ) →M 

(begin V �expression�+) →(begin �expression�+) 

• procedure?: 

(procedure? V ) →#t, for V a �procedure� 
(procedure? V ) →#f, for other V . 
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• builtin operations: 

(+ 2 3) 5
→ 

(string­append "ab" "cde") "abcde"
→ 

(boolean? "ab") #f
→ 
. . . 

• symbols: 

(symbol? (quote S)) #t→ 

(symbol? V ) #f, if V is not (quote S)→ 

(eq? (quote S) (quote S)) #t→ 

(eq? (quote S1) (quote S2)) → #f, if S1 �= S2, 

where S is an �identifier�. 

• lists: 

(cons V �nil�) (list V )→ 

(cons V (list V1 . . . )) (list V V1 . . . )→ 

(car (list V1 . . . )) V1→ 

(cdr (list V1 V2 . . . )) (list V2 . . . )→ 

(null? �nil�) #t→ 

(null? V ) → #f, if V = �nil� 
(pair? (list �syntactic­value�+)) #t→ 

(apply V �nil�) (V )→ 

(apply V (list V1 . . . )) (V V 1 . . . )→ 

• pairs: 

(pair? (cons V1 V2)) →#t 

(pair? V ) →#f, 

V not (list �syntactic­value�+) or (cons . . . ) 

(car (cons V1 V2)) →V1 

(cdr (cons V1 V2)) →V2 

3.2 Environment Rules 

The following rules for Kernel Scheme update the environment letrec. 
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• lambda bind an arg: 

(letrec (B ) R[((lambda (x 1 . . . ) M ) V1 · · · )]) 
(letrec (B (x 1 V1)) R[(( lambda (. . . ) M ) ]),→ · · · )

R[((lambda (x 1 . . . ) M ) ]V1 · · · )
(letrec ((x 1 V1)) R[(( lambda (. . . ) M ) ]).→ · · · )

(letrec (B ) R[((lambda x M ) V1 . . . )]) 
(letrec (B (x (list V1 . . . ))) R[M ]),→ 

R[((lambda x M ) V1 . . . )] 
(letrec ((x (list V1 . . . ))) R[M ]).→ 

• nested letrec: 

R[(letrec (B 2) M )] → (letrec (B 2) R[M ]) for R = �hole�, 
(letrec (B 1) R[(letrec (B 2) M )]) (letrec (B 1 B2) R[M ]).→ 

• instantiation: 

(letrec (B 1 (x V ) B2) R[x]) (letrec (B 1 (x V ) B2) R[V ])→ 

• assignment: 

(letrec (B 1 (x V 1) B2) R[(set! x V2)]) 
(letrec (B 1 (x V 2) B2) R[(quote set!­done)])→ 

3.3 Unique Rewriting 

Definition 3.2. For Scheme expressions M,N , we write M N to indicate that M rewrites to N→
by one application of a Scheme Substitution Model rewrite rule. M �→ means that no rewrite rule 
applies to M . 

From the form of the Substitution Model rewrite rules and the Unique Control Parsing Lemma 2.5, 
we can straightforwardly conclude: 

Corollary 3.3. (Unique Rewriting) There is at most one Scheme Substitution Model rewrite rule whose 
pattern matches an expression M , and if there is such a rewrite rule, its match is unique. Hence, for every 
Scheme expression, M , there is at most one N such that M N .→

Scheme’s evaluation behavior is “sequential.” Namely, if in the process of evaluation, a subex­
pression starts to be evaluated, then evaluation continues “at that subexpression” until a value for 
the subexpression is returned. This happens regardless of how evaluation would proceed once 
a value is returned. In particular, no Scheme evaluation would switch back and forth between 
disjoint subexpressions to evaluate them in parallel. The Control­context Independence Corollary 
makes this precise. 
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Corollary 3.4. (Control­context Independence) 

1. If M2 is not in environment form then 

M1 → M2 implies R[M1] R[M2].→ 

2. If 

(letrec (B 1) M1) → (letrec (B 2) M2) 

then 

(letrec (B 1) R[M1]) → (letrec (B 2) R[M2]). 

3. If M1 is not in environment form and


M1 → (letrec (B ) M2),


then 

≤2 
R[M1] −→ (letrec (B ) R[M2]) 

where 
≤2 −→ indicates successive application of at most two rewriting rules. 

An example of Corollary 3.4.3 where two rule applications are needed is when 

M1 =(letrec ((x 1)) (+ x x)), 

R =(­ [ ]). 

In this case, for 

B = (x 1), 

M2 = (+ 1 x), 

we have M1 → (letrec (B ) M2), but it takes 2 steps to rewrite R [M1] to the desired form: 

R[M1] =(­ (letrec ((x 1)) (+ x x))) 

→ (letrec ((x 1)) (­ (+ x x))) (by the nested letrec rule) 
→ (letrec ((x 1)) (­ (+ 1 x)))


=(letrec (B ) R[M2]).


Problem 2. Prove Corollary 3.4. Hint: Use Problem 1 and Unique Control Parsing.
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4 The Variable Convention 

In this and subsequent sections, we restrict ourselves to expressions from Kernel Scheme. 

Definition 4.1. A Scheme expression satisfies the Variable Convention iff no variable identifier is 
bound more than once, and no identifier has both by bound and free occurrences. 

Problem 3. A Substitution Model rewrite rule preserves the Variable Convention, if when M satisfies 
the Variable Convention and rewrites to N by one application of the rule, then N also satisfies it. 
Most of the rules preserve the Variable Convention; which do not? 

Note that if M N but M does not satisfy the Variable Convention, then N may not be a well­→
formed Scheme expression because the same variable may have two bindings in the outermost, 
“environment,” letrec of N . For example, 

Example 4.2. 

(letrec ((x 1)) ((lambda (x) x) 2))


(letrec ((x 1) (x 2)) ((lambda () x)))
→ 

So we want to ensure that each expression satisfies the Variable Convention before application of 
a rewriting rule. 

It is possible to choose “fresh” names for the bound variables in any Scheme expression and 
thereby obtain an expression satisfying the Variable Convention. The new expression is equiv­
alent to the original one up to renaming. (The Scheme Substitution Model implementation on the 
course web page has a procedure enforce that performs such a renaming.) For historical rea­
sons, this equivalence up to renaming is called α­equivalence. So to ensure that the Substitution 
Model rewriting rules correctly model Scheme behavior, we henceforth assume that the Variable 
Convention will, if necessary, be enforced on Scheme expressions before they are rewritten by a 
Substitution Model rule. A consequence of this assumption is that rewritten expressions are no 
longer determined uniquely; instead, they are only determined up to α­equivalence. 

To give a precise definition of α­equivalence we first have to define the notion of substitution for 
a variable in a Scheme expression. Because Scheme has binding constructs, simple substitution as 
we defined it for arithmetic expressions will not do. First, when we substitute N for a variable 
x in M , in symbols M [x := N ], we want to replace by N only the “free”occurrences of x in M . 
Second, we don’t want any free variables in N to be “accidentally” bound because they happen to 
fall within the scope of a binding construct in M . 

To avoid this, we may have to rename some bound variables of M to “fresh” variables. A variable 
is “fresh” with respect to a given finite set of expressions if it does not occur in any of the expres­
sions. There are many ways to find such fresh variables, and there is no need to go into the details 
of a specific method for finding them. 

It turns out that to define the substitution of a term for a variable, we have to define the more gen­
eral notion of a simultaneous substitution, M [xk := Nk ], of a sequence Nk of expressions N1, . . . , Nk 

for a sequence, xk of distinct variables x1, . . . , xk in M . The definition is by induction on the 
structure of M : 
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Definition 4.3. M [xk := Nk ] ::= P , where, if M is 

•	 [xi], then P ::= Ni, 

•	 [y] for some variable y =� xi, then P ::= M , 

•	 [�self­evaluating�, �symbol�, �procedure­constant�, or �pairing­operator�], then P ::= M , 

•	 [(if T C A)], then P ::= (if T [xk := Nk ] C[xk := Nk ] A[xk := Nk ]), 

•	 [(M 1 . . . Mm)], then P ::= (M 1[xk := Nk ] . . . Mm[xk := Nk ]), 

•	 [(lambda (y m) N )], then 

–	 if {xk } ⊆ {ym}, then P ::= M , 

–	 letting xi1 , . . . , xil be the subsequence of the variables xk that do not appear in {ym}
and zm be fresh variables, then 

P ::= (lambda (z m) N [xi1 , . . . , xil ,ym := Ni1 , . . . , Nil , zm]) 

•	 [(letrec ((y 1 M1) . . . (y m Mm)) N )], then 

–	 if {xk } ⊆ {ym}, then P ::= M , 

–	 let xi1 , . . . , xil be the subsequence of the variables xk that do not appear in {ym}, and 
zm be fresh variables, then 

P ::= (letrec ((z 1 M1
� ) . . . (z m Mm)) N �), 

where 

Mi
� ::= Mi[xi1 , . . . , xil ,ym := Ni1 , . . . , Nil , zm], 

N � ::= N [xi1 , . . . , xil ,ym := Ni1 , . . . , Nil , zm]. 

Definition 4.4. A context, C, is a Scheme expression except that the hole token, �hole�, may serve 
as a free variable; the hole may only occur once. We write C[M ] to denote the result of replacing 
the hole in C by M without any renaming of bound variables. 

Problem 4. Write a BNF grammar for �context�. 

Definition 4.5. α­equivalence is the smallest equivalence relation on expressions such that 

•	 (lambda (x m) N ) = α (lambda (z m) N [xm := zm]),


for any sequence zm of fresh variables,


•	 (letrec ((x 1 M1). . . (x m Mm)) N ) = α (letrec ((z 1 M1
� ). . . (z m Mm)) N �),


where M � ::= Mi[xm := zm], N � ::= N [xm := zm], and zm are fresh variables,
i 
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•	 if M = α N , then C[M ] = α C[N ] for any context C. 

Problem 5. (a) Prove that α­equivalence is an equivalence relation. 

(b) Prove that if M1 = α M2, then M1 is a �syntactic­value� iff M2 is also; likewise M1 is an 
�immediate­redex� iff M2 is also. 

(c) Prove that if M1 = α M2 and M1 → N1, then there is an N2 such that N2 = α N1 and M2 → N2. 

Problem 6. Write a two argument Scheme procedure alpha=? that determines whether its argu­
ments are α­equivalent Scheme expressions. That is, if M, N are α­equivalent Scheme expressions, 
then (alpha=? ’M ’N ) returns #t, otherwise it returns #f. 

We observed that renaming bound variables to ensure expressions satisfy the Variable Convention 
implies that expressions are determined only up to α­equivalence. To avoid constant reference to 
α­equivalence in subsequent sections, we will implicitly identify α­equivalent expressions: from 
now on, when we say two expressions are “equal”, we actually will mean only that they are α­
equivalent, and when we say an expression is “uniquely determined”, we mean it is determined 
up to α­equivalence. 

5 Repeated Rewriting 

Starting with a Scheme expression and successively applying Substitution Model rewrite rules 
leads to a sequence of expressions that correspond to the steps that a standard interpreter would 
perform in evaluating the starting expression. When the rules no longer apply, the evaluation 
is complete—either successfully with the return of the value of the expression, or unsuccessfully 
because of an error of some type. We’ll distinguish errors caused by lookup of an undefined 
variable from other types of errors, because an expression that causes a lookup error may do 
something interesting in an extended environment where the undefined variable is assigned a 
value. 

Definition 5.1. An error combination is 

•	 an expression, M , of the form ( �procedure­constant� �syntactic­value�∗) such that M �→, or 
of the form (V �syntactic­value�∗) where V is a �syntactic­value� but not a �procedure�. 

•	 a �lambda­expression� applied to the wrong number of arguments, namely, an expression of 
the form 

((lambda () �expression�) �syntactic­value�+), 

or 

((lambda (x �variable�+) �expression�)). 
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• (cons �syntactic­value�∗) if there are not exactly two values to which the cons is applied. 

Error combinations cause immediate dynamic errors in Scheme, e.g., 

(+ ’a 0), 

(/ 1 0) 

(’+ 1 0), 

((lambda () (f 1)) 2), 

(cons 1) 

are error combinations. 

Definition 5.2. An error letrec is an expression of the form 

(letrec ( �value­binding�∗ ( �variable� R[x]) �binding�∗) �expression�) 

where the indicated occurrence of x is bound by one of the letrec bindings2. An arbitrary 
Scheme expression, M , is an immediate error if it is of the form R[N ] or Env(R[N ]) for some control 
context, R, and expression N that is an error combination or error letrec. 

An expression, M is a lookup error if it has a free variable, x, and is of one of the forms R[x], 

∗ →

Env(R[x]), R[(set! x �syntactic­value�)], or Env(R [(set! x �syntactic­value�)]). 

Definition 5.3. A final value is a �syntactic­value� or an expression of the form Env(�syntactic­value�). 

Corollary 5.4. Let M be a Scheme expression. Then M �→ if and only if 

1. M is a final value, or 

2. M is an immediate error or a lookup error. 

Note that Corollary 5.4.2 describes the expressions that cause an immediate dynamic error in 
Scheme. 

nDefinition 5.5. The notation M −→ N means that M rewrites to N by n successive applications of 
−→ N for some n ∈ N. nSubstitution Model rewrite rules; M N means that M


∗ → N and N is a final value, called the final value of M . The notation 
N indicates that M converges to N , and M 

M converges to N when M 
indicates that M converges to some final value. M ↓ ↓ 

∗ → N , or there is no N such that M diverges when there is an immediate error, N , such that M 
M

∗ → N and N �→. The notation M indicates that M diverges. ↑ 
∗ →M leads to a lookup error when M N for some lookup error N . 

∗ → N and N �→, then N is uniquely deter­
The Unique Rewriting Corollary 3.3 implies that if M

mined. So we have: 

2Error letrec’s don’t always cause errors in all Scheme implementations, but it is consistent with the Revised5 

Scheme Manual for all of them to cause errors. 
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Lemma 5.6. For every expression, M , exactly one of the following holds: M ↓, M ↑, or M leads to a lookup 
error. 

Note that a closed expression, that is, one with no free variables, cannot lead to a lookup error, so 
it diverges iff it does not converge. 

Lemma 5.7. If M diverges, then so does (letrec (B ) R[M ]). 

Problem 7. Prove Lemma 5.7 

Problem 8. (a) Prove that 

M ↓ (letrec (B 1) V ) implies (letrec (B 2) M ) ↓ (letrec (B 2 B1) V ). 

(b) Prove that 

M ↓ (letrec (B ) 3) implies (+ M M ) ↓ (letrec (B �) 6), 

for some value bindings, B�. 

(c) Exhibit value bindings, B, and an expression, M , such that 

(letrec (B ) M ) ↓ (letrec (B �) 3), 

but 

(letrec (B ) (+ M M )) ↑ . 

Hint: set! will have to appear in M . 

6 Garbage Collection 

Garbage collection refers to the process whereby Lisp­like programming systems recapture inacces­
sible storage space. An attraction of Lisp­like languages is that garbage colection occurs behind 
the scenes, freeing the programmer from responsibility for explicit allocation and deallocation of 
storage blocks. 

There are two rules of the Substitution Model corresponding to garbage collection. These garbage 
collection rules are distinguished from the other rewrite rules because they can be applied at any 
time—just as garbage collection can occur at any time during a computation. In particular, both 
a garbage collection rule and a regular Substitution Model rewrite rule may be applicable to the 
same expression, so the Unique Rewriting Corollary 3.3 will need to be qualified. We’ll explain 
how to reformulate the Unique Rewriting property in Section 6.2 below. 
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6.1 Environment Garbage Collection 

In our Substitution Model, garbage collectable storage in a Scheme computation corresponds to 
unneeded bindings in the environment letrec of an expression. The environment garbage collec­
tion rule is 

(letrec (B ) N ) → (letrec (B �) N ), 

where B� is a subsequence of the value bindings B, and none of the free variables in the contractum 
(letrec (B �) N ) were bound by the omitted bindings, namely, the bindings in B that do not 
appear in B�. For example, 

(letrec ((a (lambda () b))

(b 3)

(c (lambda () (* b (f))))

(d (lambda () f))

(f 4))


(+ 1 (a) ((lambda (c) (c 5 6)) ­)))


can rewrite by this garbage collection rule to 

(letrec ((a (lambda () b))

(b 3)

(f 4))


(+ 1 (a) ((lambda (c) (c 5 6)) ­)))


because there are no free occurrences of c or d in the rewritten expression. This second expression 
could in turn be rewritten by the garbage collection rule to 

(letrec ((a (lambda () b))

(b 3))


(+ 1 (a) ((lambda (c) (c 5 6)) ­)))


Of course, the garbage collection rule would also have allowed the first expression to rewrite 
directly to this last. 

An efficient way to apply the garbage collection rule is to identify all the variables which are 
“needed” by the body of the letrec and erase the bindings for the rest of the variables. Here is a 
recursive way to find these needed variables in an expression (letrec (B ) N ): 

•	 All free variables of N are needed. 

•	 If x is a needed variable and (x V ) is a binding in B, then the free variables of V are also

needed.


A rule that collects all the garbage in an environment can now be described as 

(letrec (B ) N ) → (letrec (B �) N ), 

where B� is the subsequence of B consisting of the bindings of the needed variables in (letrec (B ) N ). 
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6.2 Equivalence up to Garbage Collection 

The garbage collection rules allow an expression to be rewritten in different ways. For example, 
we saw above that 

(letrec ((a (lambda () b))

(b 3)

(c (lambda () (* b (f))))

(d (lambda () f))

(f 4))


(+ 1 (a) ((lambda (c) (c 5 6)) ­)))


can be rewritten to 

(letrec ((a (lambda () b))

(b 3))


(+ 1 (a) ((lambda (c) (c 5 6)) ­)))


by the environment garbage collection rule, but it can also be rewritten in a completely different 
way by instantiating a: 

(letrec ((a (lambda () b) )

(b 3)

(c (lambda () (* b (f))))

(d (lambda () f))

(f 4))


(+ 1 ((lambda () b)) ((lambda (c) (c 5 6)) ­)))


So Unique Rewriting Corollary 3.3 no longer holds, forcing us to consider the possibility that 
expressions may no longer rewrite to a unique final form. But they do: 

Theorem 6.1. If M is a Scheme expression and M 
∗ 

N for some N such that N �→, then this N is uniquely →
determined. 

A simple way to prove this result is to observe that the full set of Substitution Model rules— 
including both the regular and garbage collection rules—satisfies the Diamond Lemma, also known 
as the Strong Confluence property (cf. Mitchell’s text, p. 224). We can even recover a Unique 
Rewriting Corollary by changing uniqueness up to α­equivalence into uniqueness up to garbage 
collection. 

Definition 6.2. Garbage­collection equivalence, = gc, is the smallest equivalence relation on expres­
sions such that 

• if M = α N , or if M rewrites to N by application of a garbage collection rule, then M = gc N , 

• if M = gc N , then C[M ] = gc C[N ] for any context C. 

Now we can recover the Unique Rewriting Corollary above: 

Corollary 6.3. (Unique Rewriting up to Garbage Collection) If M is a Scheme expression, and M →
N1 and M N2 for some Scheme expressions N1, N2, then N1 = gc N2.→ 
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7 Observational Equivalence 

Revising a program to improve performance is a familiar programming activity. A trivial example 
would be to replace an occurrence of a subexpression of the form (+ 1 2) with the subexpression 
3. The revised program would then perform fewer additions, but would otherwise yield the same 
results as the original. Well not quite “the same”—the expressions 

(lambda (x) (* (+ 1 2) x))


and 

(lambda (x) (* 3 x))


obviously describe different procedures—applying the first will lead to an addition operation that 
is not performed by the second. But we would observe the same numerical result if we applied 
either of these procedures to the same numerical argument. Also, we would observe an error if 
we applied either of them to a nonnumerical value. As long as all we care to observe about an 
evaluation is the number, if any, that results from an evaluation, these two procedure values will 
be indistinguishable. This is the sense in which they are ”the same.” 

An observable property of an expression evaluation that is even more fundamental than its nu­
merical value, is whether any value is returned at all. We choose this more general observation of 
convergence as the basis for our definition of distinguishability. 

Definition 7.1. Two Scheme expressions, M and N , are said to be observationally distinguishable iff 
there is a context, C, such that exactly one of C[M ] and C[N ] converges. Such a context is called 
a distinguishing context for M and N . If M and N are not observationally distinguishable, they are 
said to be observationally equivalent, written M ≡ N . 

It is easy to verify that observational equivalence is actually an equivalence relation. Moreover, it 
follows immediately from its definition that it is a congruence relation3, namely, 

M ≡ N implies C[M ] ≡ C[N ] 

for all contexts C. So the sense in which it is always OK to replace (+ 1 2) by 3 is captured by 
noting that (+ 1 2) ≡ 3. 

The following problems show that observing numerical results, rather than just observing conver­
gence, yields the same observational equivalence relation on Scheme expressions. 

Problem 9. (a) Show that if M ≡ N , and M k for some integer k, then, N k.↓ ↓ 

(b) Show that if M and N are distinguishable, and k is an integer, then there is a context, C, such 
that the one of C[M ] and C[N ] has final value k and the other one diverges. 

(c) Conclude that M ≡ N if and only if 

C[M ] has a numerical value iff C[N ] has the same numerical value,

3For this reason, observational equivalence is sometimes called observational congruence.
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for all contexts, C. 

It is implicit in the definition of context that the hole may not be quoted. So, for example, 

(eq? (quote [ ]) (quote hello)) 

is not a context—because when an �identifier� is quoted, it parses as a �symbol� not a �hole�.4 This 
is a minor, but necessary, technicality as indicated in the next problem. 

Problem 10. Explain why no two expressions would be observationally equivalent if contexts 
could have a quoted hole. 

In Scheme, it doesn’t matter in what order the bindings appear in a letrec as long as all the 
variables are bound to syntactic values. “It doesn’t matter” more precisely means observational 
equivalence: 

Lemma 7.2. If Mi,Mj are syntactic values, then 

(letrec ((x 1 M1) . . . (x i Mi) . . . (x j Mj ) . . . ) M ) 

(letrec ((x 1 M1) . . . (x j Mj ) . . . (x i Mi) . . . ) M )≡ 

The proof of Lemma 7.2 is similar to the proof that rewriting preserves α­equivalence in Prob­
lem 5. 

Problem. Prove Lemma 7.2. 

8 Context Rewriting 

A direct approach to proving observational equivalences involves examining how the context of 
an expression can be rewritten, given some limited information about the kind of expression that 
is in the hole, but without knowing the exact expression. 

For example, suppose E1 is the context: 

(letrec

((cpn


(lambda (v n)

(if (zero? n) (list) (cons v (cpn (list v) (­ n 1)))))))


(cpn [ ] 2))


The Instantiation Rule allows the operator cpn to be replaced by the lambda expression: 
4As a matter of fact, in real Scheme, delimiters like “]” and “[“ cannot appear as characters in �identifier�’s, so 

technically, (quote [ ]) is not an �expression�. 



Course Notes 3: A Substitution Model for Scheme 19 

(letrec

((cpn


(lambda (v n)

(if (zero? n) (list) (cons v (cpn (list v) (­ n 1)))))))


((lambda (v n)

(if (zero? n) (list) (cons v (cpn (list v) (­ n 1)))))


[ ] 2))


This resulting expression does not rewrite because it is a lookup error of the hole variable. But 
suppose we can assume that the hole will be replaced by some unknown expression that is guar­
anteed to be a syntactic value. So we can treat the hole as a value, and the rules for lambda can 
be applied. Now, in a few steps, E1 rewrites to: 

(letrec ((cpn ...) (n 2) (v [ ]))

(cons [ ]


((lambda (n)

(if (zero? n) (list) (cons v (cpn (list v) (­ n 1)))))


1)))


Continuing in this way, we can find value bindings, B, such that E1 converges to 

F1 ::= (letrec (B ) (list [ ] (list [ ]))). 

That is, there is a context F1 such that for any syntactic value, V , E1[V ] F1[V ]. Notice that F1 is↓
technically not a context because it has more than one occurrence of a hole; we’ll call F1 a multihole 
context. 

Definition 8.1. A multihole context, C, is a Scheme expression except that the �hole�, may serve as 
a free variable; it may have any number of occurrences. 

If C is a multihole context, we write C[M ] for the result of replacing all occurrences of �hole� in C 
by M , without any renaming of bound variables. More generally, if C has n occurrences of holes, 
then for a sequence Mn ::= M1, . . . ,Mn, of expressions, we write 

C[M1]1 . . . [Mn]n, abbreviated C[Mn], 

to denote the result of replacing the ith occurrence of �hole� in C by Mi, without any renaming of 
bound variables. 

Now let V be the context (lambda (x) (+ x [ ] (* 3 4))), and let E2 ::= E1[V ] and F2 ::= 
F1[V ]. That is, E2 is 

(letrec

((cpn


(lambda (v n)

(if (zero? n) (list) (cons v (cpn (list v) (­ n 1)))))))


(cpn (lambda (x) (+ x [ ] (* 3 4))) 2)),


and F2 is 
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(letrec (B) (list (lambda (x) (+ x [ ] (* 3 4)))

(list (lambda (x) (+ x [ ] (* 3 4)))))).


Since V is a syntactic value, we know that E2 = E1[V ] F1[V ] = F2. Since we concluded this ↓
without any assumptions about what might be in the hole in V , it follows that E2[M ] F2[M ] for↓
every expression, M . 

For a second example, let E3 be the same as the context E2 except that caadr of the body of E2 is 
applied to 5. That is, E3 is 

(letrec

((cpn


(lambda (v n)

(if (zero? n) (list) (cons v (cpn (list v) (­ n 1)))))))


((caadr (cpn (lambda (x) (+ x [ ] (* 3 4))) 2))

5))


Now let F3 be the corresponding modification of F2, namely, F3 is 

(letrec (B)

((caadr (list (lambda (x) (+ x [ ] (* 3 4)))


(list (lambda (x) (+ x [ ] (* 3 4))))))

5)).


Now by Lemma 5.7, with R = ((caadr [ ]) 5), we can conclude that E3 

further rewritten using rules for car and cdr until its body is 

((lambda (x) (+ x [ ] (* 3 4))) 5) 

∗ →F3. But F3 can be 

which will rewrite in a few steps to (+ 5 [ ] (* 3 4)). That is, there is an F4 of the form 

(letrec (B ) (+ 5 [ ] (* 3 4)))


∗ →such that E3 

possible at this point because F4 is a lookup error of the hole variable. 
F4. Notice that the body of F4 is a control context, and no further rewriting is 

∗ →
) for the control context R 

ample, that the numerical value of E3[6] is 23. It also follows that if M↑, then also F4[M ]↑, and 
hence E3[M ] .↑

These examples illustrate how any multihole context can be rewritten, based on partial infor­
mation about the expressions that may appear in its holes. The partial information that is often 
available is the kind of expressions to be proved equivalent, namely: 

Definition 8.2. An expression is of nonvalue kind if it is not a �syntactic­value�. An expression is 
of procedure kind if it is a �nonpairing­procedure�. An expression is of constant kind if it is either 
�self­evaluating� or a �symbol�. An expression is of structured kind if it is either a �pair­value� or a 
�list­value�. 

If Mn is a sequence of expressions of various kinds, then the kind pattern of Mn, is the sequence 
k ::= k1, . . . , kn such that ki ∈ {nonval, proc, constant, struct} indicates the kind of Mi, for 1 ≤ i ≤ n. 

So we can say that E3[M ] [M ] for every expression M , and moreover F4 is of the form F4

[ ] It follows, for ex­(letrec (B )
 (+ 5 [ ] (* 3 4)).R
 =
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Except for the pairing operators list and cons, every Scheme expression is of exactly one of 
these four kinds. The pairing operators play a special role in the Substitution Model, because 
applications of �pairing­operator�’s to values are themselves values, rather than combinations that 
are immediate­redexes. It’s convenient to designate these operators as not having a kind, ensuring 
that list and cons will not by themselves be expressions in set of expressions “of various kinds.” 
(But list and cons may certainly appear as subexpressions of expressions of various kinds). 

The examples above illustrate how to rewrite a context until it is guaranteed to converge or gets 
to a point where more information than the kind of expressions to be placed in the holes is needed 
to continue. A further example is the context 

(if (list [ ]) ’yes ’no). 

Given that the hole will be replaced with a syntactic value, the body can be rewritten to the 
�symbol� ’yes. But if an expression of kind nonvalue is to go in the hole, then rewriting cannot 
proceed without more information about the expression. 

The Standard Context Lemma 8.4 below summarizes the way contexts can be rewritten. To state 
it, we need to generalize control contexts to have multiple holes. 

Definition 8.3. If C is a multihole context with n+ 1 holes one of which is designated as the “main 
hole”, and Mn ::= M1, . . . ,Mn is a sequence of expressions, we write 

C[M1]1 . . . [Mn]n[ ], abbreviated C[Mn][ ], 

to denote the single hole context that results from replacing the n non­main occurrences of �hole�
by the expressions Mn, without any renaming of bound variables. 

A multihole control context for kind pattern k is a multihole context, R, such that R[Mn][ ] is a 
control context for all expressions Mn with kind pattern k. 

For example, 

(+ [ ]1 2 (* [ ]2 [ ] (­ n [ ]3))) 

is a control context for any kind pattern in which the first and second holes would be assigned 
expressions having one of the value kinds proc, constant, struct. Also 

(letrec ((n [ ]4)) (+ [ ]1 2 (* [ ]2 [ ] (­ n [ ]3)))) 

is a control context for any kind pattern in which [ ]1, [ ]2, and [ ]4 have one of the value kinds proc, 
constant, struct; the kind of [ ]3 doesn’t matter. 

This example illustrates the fact that if there are some expressions Mn with kind pattern k such 
that R[Mn][ ] is a control context, then R must be a control context for k. That is, R[M�

n][ ] will 
be a control context for all M�

n with kind pattern k. This follows because the only distinction 
among expressions used by the BNF rules specifying control contexts is whether an expression is 
a syntactic value. In fact R will also be a control context for all patterns k� obtained by changing 
any of the kinds in k into any of the value kinds. 

Lemma 8.4. (Standard Context) Let E be a multihole context, and let k ::= k1, . . . , kn be a kind pattern. 
Then either 
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1. E[Mn] F [Mn] for some some context F and all expressions Mn with kind pattern k, or ↓

[Mn] for some context, F , and variable, x, such that F [Mn] 
expressions Mn with kind pattern k, or 

∗ →2. E[Mn] is a lookup error of x for all F

3. E[Mn]↑ for all expressions Mn with kind pattern k, or 

4. there is a control context, R, and an integer i, 1 ≤ i ≤ n, such that for all expressions Mn with kind 
pattern k, either Mi is of kind 

(a) nonvalue, and E
[Mn] ∗ →R[Mn][Mi]. 

(b) procedure, and there is a (possibly empty) sequence of syntactic values V1, . . . , Vk , such that 

E[Mn] ∗ →R[Mn][ (M i V1 . . . Vk ) ]. 

(c) constant, and there is a sequence of syntactic values V1, . . . , Vk , Vk+1 . . . and a �procedure­constant�, 
op, such that 

E[Mn] ∗ →R
[Mn][ (op V1 . . . Vk Mi Vk+1 . . . ) ]. 

(d) pair, and 

[Mn] ∗ →RE
 [Mn][ (op Mi) ], 

for op ∈ {car, cdr, null?, pair? }. 

The proof of the Standard Context Lemma 8.4 involves analyzing, along the lines of the examples 
above, how a control context for a given kind pattern can control parse. We omit the proof. 

9 Proving Observational Equivalence 

The Standard Context Lemma provides a basis for proving many observational equivalences. For 
example, Scheme subexpressions that diverge can cause an evaluation to diverge, but otherwise 
are useless. In fact, they are all equally useless. More precisely, the following fundamental obser­
vational equivalence holds: 

Theorem 9.1. If M and N↑, then M ≡ N .↑

To prove Theorem 9.1, we need to show that for any context, E, if E[M ] converges, then so does 
E[N ]. Intuitively, this follows from the fact that, since E[M ] and M↑, the subexpression M can↓
never have been evaluated during the evaluation of E[M ], so the convergence of E[M ] does not 
depend on what is in the hole. This intuition is captured in the Standard Context Lemma 8.4, and 
Theorem 9.1 is an easy corollary. 

Proof. We can prove something stronger, namely, if E is a multihole context, and E[M ]↓, then 
E[N ] .↓

So suppose E[M ]↓. One possibility is that Standard Context Lemma 8.4.1 applies, namely E[Mn] ↓
F [Mn] for all Mn. In particular, E[N ]↓, as required. 
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Since M diverges, it is of nonvalue kind. So the only other possibility is that the Lemma 8.4.4a 
[M ] for some control context, R. But R[M ]

↑, a contradiction. 

∗ →applies, namely E
[M ] ↑, by Lemma 5.7, and hence R
E[M ]

The Standard Context Lemma also captures the property that Scheme evaluation is sequential, 
namely, if a context depends on what’s in its holes, then there is a particular hole whose con­
tents are always evaluated first. So behavior that requires evaluating holes in parallel is beyond 
Scheme’s expressive power: 

Corollary 9.2. There is no Scheme context, G, such that for all closed expressions M,N , 

G[M,N ] iff M or N↓ .↓ ↓ 

Proof. Suppose to the contrary that there was such a G.


Now if Standard Context Lemma 8.4.1 applies to G, then G[Mn] for all Mn. In particular,
↓
G[M,M ]↓ for any divergent expression, M , contradicting the fact that G[M,M ] should diverge 
in this case. 

So the only other possibility is that the Lemma 8.4.4 applies. In particular, there is a control context, 
R, for nonvalue kinds and an integer, i, such that G ∗ →

Then choose some M that diverges, 
and let N be some convergent expression of nonvalue kind, e.g., N = (+ 1). By Lemma 5.7, 
R[M,N ][M ] diverges, so G[M,N ] does too, contradicting the fact that G[M,N ] should converge 
because N converges. 

We can now also give a precise formulation of the slogan “A Scheme procedure is a black­box,” 
which reflects the idea that the only way to learn about a procedure is by applying it to arguments. 
Another way to say this is that if two procedures can be distinguished from each other, it is only 
because there is a set of arguments on which they yield distinguishable results. 

Corollary 9.3. [Operational Extensionality] If M1 and M2 are closed expressions of procedure kind and 

(M 1 V1 . . . Vn) ≡ (M 2 V1 . . . Vn) 

for all n ≥ 0 and closed �syntactic­value�’s V1, . . . , Vn, then 

M1 ≡ M2. 

Problem. Prove Corollary 9.3. 

[M1,M2] R[M1,M2][Mi] for all M1,M2 of 
nonvalue kind. Without loss of generality, suppose i = 1. 

Problem 11. Prove Lemma 7.2. 
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Problem 12. Prove that if R is a control context and no free variable of M occurs in R[x], then 

((lambda (x) R[x]) M ) ≡ R[M ]. 

Note that M need not be a �syntactic­value�. 

A fairly powerful method for proving that two expressions are observationally equivalent is to re­
peatedly apply Substitution Model rewrite rules to their subexpressions until the two expressions 
have been rewritten to be the same. The following Lemma shows that this is a sound way to prove 
observational equivalences. 

Lemma 9.4. If M → N , then M ≡ N . 

Problem 13. (a) Let M, N be Scheme expressions such that M N . Call a sequence of expres­→
sions an M, N sequence if it is a sequence of M ’s and N ’s. Show that if C[Mn] for some M, N ↓ 
sequence, Mn, and multihole context, C, then C[M�

n] for all M, N sequences, M�
n. Hint: By↓

induction on the number of steps C[Mn] takes to converge. Use the Context Independence Corol­
lary 3.4. 

(b) Use part (a) to complete a proof of Lemma 9.4. 

Problem 14. (a) Describe an expression M such that (+ M M ) and (* 2 M ) are not observa­
tionally equivalent. What is the distinguishing context? 

(b) Show that if M is closed, then 

(+ M M ) ≡ (* 2 M ). 

The Standard Context Lemma 8.4 also allows us to deduce interesting observational equivalences 
that do not simply follow by rewriting subexpressions or equating divergent ones. 

Lemma 9.5. If E is a context such that for each sequence, Mn, of expressions of procedure kind, E[Mn] 
converges to some number, then in fact E[Mn] converges to the same number for all Mn. 

Proof. Suppose Mn are chosen to be procedures of the form (lambda (x) D) where D is a 
divergent expression. Then since E[Mn]↓, only the first case of the Standard Context Lemma can 
apply. That is, E[Mn] F [Mn] for some context F and all expressions Mn of procedure kind. ↓
Since E[Mn] has a numerical value, F [Mn] must in fact be some number n. Hence F [M�

n] will 
also be n. 
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Problem 15. Let T1, T2 be procedure expressions such that (T 1) ↓ and (T 2) ↑, and let M be any 
closed expression. Prove that 

(­ (M T1 T2) (M T2 T1)) ≡ (* 0 (M T1 T2) (M T2 T1)). 

Hint: Use the Standard Context Lemma and Lemma 9.5. Argue by cases according to whether 
(M T1 T2) converges to a number, converges to a non­number, diverges, or causes a lookup error. 

The samples above illustrate how a rich set of observational equivalences can be verified using the 
Standard Context Lemma. Further examples include several of the list rewriting rules that hold 
as observational equivalences even when the arguments are not values, e.g., 

Example 9.6. 

(cons M1 (list M2 M3)) (list M1 M2 M3),≡ 

(apply M (list N1 . . . )) (M N1 . . . )≡ 

Also, variables can only be instantiated by �syntactic­value�’s, so many equivalences involving 
syntactic values will hold when variables appear instead of values. For example, we observed in 
Problem 14 

(* M M )) �≡ (* 2 M ), 

because M may have side­effects on a free variable, but we have: 

Example 9.7. 

(* x x) (* 2 x)
≡ 

Finally, we state an equivalence that reflects a deeper property of Scheme: external procedures can 
only affect local variables if they are explicitly passed the ability to do so. For example, if only the 
ability to add 2 to some local variable x is passed to an external procedure, pr, and the value of x 
is initially even, then it will still be even if and when the external procedure returns a value: 

Example 9.8. 

(letrec ((x 0)) (begin (pr (lambda () (set! x (+ x 2)))) #t))


(letrec ((x 0)) (begin (pr (lambda () (set! x (+ x 2)))) (even? x)))
≡ 

Problem 16. Prove the equivalence in Example 9.8. Warning: this may be hard. 

10 Calling Continuations 

Most programmimg languages include various “escape” and error handling mechanisms that al­
low processes to be interrupted with direct return of a value. Scheme provides a single, every gen­
eral feature of this kind, called call­with­current­continuation, or call/cc for short. 
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10.1 Rules for call/cc 

There is a fairly simple way to extend the Substitution Model to handle call/cc. We add two 
new procedure constants: 

�nonpairing­procedure� ::= . . . call/cc abort| | 

The call/cc and abort procedures each take one argument. The process of applying call/cc 
involves creation of a new continuation procedure which describes how the evaluation will continue 
once the value of the call/cc application is found. 

In the Substitution Model, the control context surrounding an immediate redex specifies the fur­
ther evaluation to be performed once the value of the redex has been found. This is reflected in 
two control rules for call/cc. The first rule is 

R[(call/cc V )] R[(V (lambda (x ) (abort R[x])))],→ 

where x is fresh. Here the expression (lambda (x) (abort R[x])) describes the current con­
tinuation. 

The second rule is the same as the first but in the context of the environment letrec: 

(letrec (B ) R[(call/cc V )]) 
(letrec (B ) R[(V (lambda (x) (abort R[x])))]).→ 

So continuation procedures are represented as ordinary procedure expressions that abort with a 
value5. 

10.2 Rules for abort 

Aborting means replacing the current continuation with the “top­level” read­eval­print loop (REPL) 
continuation. In the substitution model, this behavior is captured by two rewrite rules for abort. 
The first is 

R[(abort V )] → (abort V ), 

and the second is, again, the same as the first in the context of the outer “environment” letrec: 

(letrec (B ) R[(abort V )]) → (letrec (B ) (abort V )). 
5For expressions with abort to have the same behavior in Scheme as in the Substitution Model, an abort procedure 

has to be installed into Scheme. This can be accomplished by defining abort to have some dummy value in the initial 
environment, (define abort ’dummy), and then evaluating 

(call­with­current­continuation (lambda (repl) (set! abort repl)))


in the top level read­eval­print­loop. Also, this Substitution Model uses the more succint name call/cc, so the defini­
tion 

(define call/cc call­with­current­continuation)


should be evaluated. 
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Note that real Scheme evaluation doesn’t distinguish aborting with a value from successfully re­
turning that value. For example, evaluating 

(call/cc (lambda (c) (c 1)))


in the Scheme REPL returns the value 1.


Applying the preceding continuation rewrite rules to this example, we see that


(call/cc (lambda (c) (c 1)))


((lambda (c) (c 1)) (lambda (x) (abort x)))
→ 

(letrec ((c (lambda (x) (abort x))) (c 1)))
→ 

((lambda (x) (abort x)) 1)
→ 

(letrec ((x 1)) (abort x))
→ 

(abort 1). (2)→ 

However, there is no rule for reducing (abort 1). It seems we should add an additional control 
rule: 

(abort V ) → V. (abort­elim) 

This would allow us to reach the desired conclusion from (2) that 

(call/cc (lambda (c) (c 1))) ↓ 1. 

Indeed, if we include (abort­elim) as a Substitution Model rewrite rule, rewriting will accurately 
reflect Scheme evaluation using call/cc. 

But as natural as (abort­elim) may seem, it is inconsistent with the theory of observational con­
gruence developed up to this point. Most fundamentally, the control­context independence prop­
erty of Corollary 3.4 will fail if we adopt (abort­elim). For example, consider the control context 

R1 ::= (+ 1 [ ]). 

Since (abort 1) → 1 by (abort­elim), if control­context independence held, we could conclude 

R1[(abort 1)] R1[1] 2.→ → 

But in fact, 

R1[(abort 1)] →(abort 1) (by the first abort rule) 
1 (by (abort­elim)).→ 

So to avoid this failure of control­context independence, we will not include (abort­elim) in the 
Substitution Model. Instead, we treat aborted values as values. Namely, we modify the value 
grammar so that if V is an �syntactic­value� according to the current grammar (including abort 
as a �procedure­constant�), then (abort V ) will now also be an �syntactic­value�. 
This creates a minor problem: there is no context for distinguishing different aborted values, and 
consequently all aborted values are observationally congruent. Since this conclusion is not what 
we intend, we extend the definition of observational distinguishability so that expressions that 
abort with distinct printable values are considered distinguishable. 
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Problem 17. (a) Describe a context, C, such that C[(abort 3)] converges, but C [3] diverges. 

(b) Suppose C is a context in kernel Scheme without call/cc or abort. Prove that 

C[(abort V1)] iff C[(abort V2)]↓ ↓ 

for all syntactic values, V1, V2. 

10.3 Control­stack Garbage Collection 

Scheme interpreters and compilers typically represent the current continuation by a stack of fur­
ther operations to be performed, called the control­stack. When the current stack is replaced during 
application of a continuation procedure, it can be garbage collected. This is reflected to a degree 
by the rewrite rule for abort, but that rule would cause the stack to be garbage collected after 
application of a continuation procedure had returned a value. But in fact, the old stack can be 
garbage collected even before the argument of the application is evaluated. 

For example, we can add control­stack garbage collection rules: 

R[(abort M )] →(abort M ),


(letrec (B ) R[(abort M )]) →(letrec (B ) (abort M )),


where M is any expression, not necessarily a syntactic value. As with environment garbage col­
lection, the uniqueness of final values continues to hold with this additional kind of control stack 
garbage collection. 

10.4 Problems with the Rules for call/cc 

Rejecting rule (abort­elim) ensures control­context independence for expressions involving the 
abort constant alone, but control­context independence still fails in the presence of the call/cc 
rules above. As a consequence, rewriting no longer preserves observational congruence, namely, 
Lemma 9.4 no longer holds, and this causes most of the theory of observational equivalence es­
tablished so far to fail for Scheme with call/cc. 

To illustrate this, note that by (2) in the Section 10.2 

(call/cc (lambda (c) (c 1))) ↓ (abort 1). (3) 

If Control­context Independence held, then (3) implies that 

∗
R[(call/cc (lambda (c) (c 1)))] → R[(abort 1)], 

and hence that 

R[(call/cc (lambda (c) (c 1)))] ↓ (abort 1), (4) 

for any control context, R. But letting 

R1 ::= (+ 1 [ ]), 
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we have 

R1[(call/cc (lambda (c) (c 1)))] 
= (+ 1 (call/cc (lambda (c) (c 1)))) 

((lambda (c) (c 1)) (lambda (x) (abort (+ 1 x))))
→ 

(by the first call/cc rule) 

((lambda (x) (abort (+ 1 x))) 1)


(abort (+ 1 1))


(abort 2). (5)→ 

But (5) contradicts (4), and we conclude that Control­context Independence fails. 

10.5 Better rules for call/cc [Optional] 

M. Felleisen and R. Hieb in “The Revised report on the syntactic theories of sequential control 
and state,” Theoretical Computer Science, Elsevier, 103 (1992) 235­271, consider a λ­calculus with a 
control operator similar to call/cc and develop a substitution model for their calculus whose 
rewriting rules do preserve observational congruence. We adapt Felleisen’s and Hieb’s techniques 
to Scheme. 

The troubles described in the previous section arise from having a procedure constant abort that 
always jumps to “top­level.” So the constant abort that would have been created by the rules 
of Section 10.2 will be replaced by an “abort” variable that is bound in the call/cc application. 
We do this by including, in addition to an environment letrec, a top­level call/cc explicitly 
representing the continuation for the expression evaluation. Now a simple control rule specified 
as P T also serves as an abbreviation for a rule of the form →

(call/cc (lambda (abort) R[P ])) 
(call/cc (lambda (abort) R[T ])),→ 

where R parses as a control context, P parses as an �immediate­redex�, abort is a fresh variable, 
and free occurrences of abort in R[P ] are treated as �procedure­constant�’s. Each simple control 
rule also has a version applicable to top­level call/cc’s with the environment letrec: 

(letrec (B ) (call/cc (lambda (abort) R[P ]))) 
(letrec (B ) (call/cc (lambda (abort) R[T ]))).→ 

By extending the meaning of simple rules in this way, we allow all of the previous simple rules to 
be applied immediately within the top­level call/cc. 

We also need versions of the previous non­simple rules, e.g., the first lambda bind an arg rule now 
has a top­level call/cc version: 

(letrec (B ) (call/cc (lambda (abort) R[((lambda (x 1 . . . ) M ) ])))V1 · · · )
(letrec (B (x 1 V1)) (call/cc (lambda (abort) R[(( lambda (. . . ) M ) ]))),→ · · · )

and similarly for the other environment rules. 
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An “abort” variable gets its own rule: 

(call/cc (lambda (abort) R[(abort M )])) (abort) 
(call/cc (lambda (abort) M )).→ 

Expressions with top­level call/cc’s get created by a new rule for call/cc application: 

R[(call/cc V )] (call/cc.1) 
(call/cc (lambda (abort) R[(V (lambda (x) (abort R[x])))]))→ 

where R = �hole�, and abort and x are fresh variables. 

We also need a rule to put an outermost call/cc into top­level form. Namely, if V is a syntactic 
value that is not a lambda­expression, we have 

(call/cc V ) → (call/cc (lambda (abort) (V abort))) (top η) 

where abort is a fresh variable. 

Finally, there is another call/cc application rule for expressions that already have a top­level 
call/cc: 

(call/cc (lambda (abort) R[(call/cc M )])) (call/cc.2) 
(call/cc (lambda (abort) R[(M (lambda (x) (abort R[x])))])),→ 

where x is a fresh variable. Notice how (call/cc.2) incorporates the inner call/cc into the 
top­level one. 

Each of these rules also has an environment form allowing the rule to be applied immediately 
within the environment letrec; to avoid clutter, but we have not written out these environment 
form versions. 

We conjecture that these rules both accurately reflect Scheme evaluation with call/cc, satisfy 
Control­context Independence, and preserve observational equivalence. However, this remains to 
be carefully checked. 

A Scheme Syntax in BNF 

The following Backus­Naur Form (BNF) grammars describe the main constructs of Scheme6. In 
these grammars, superscript “∗” indicates zero or more occurrences of a grammatical phrase, and 
superscript “+” indicates one or more occurrences. 

6For the official, full Scheme grammar, see the Revised5 Scheme Manual available on the web at: 

http://www.schemers.org/Documents/Standards/R5RS
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A.1 The Functional Kernel 

�expression� 

�self­evaluating� 
�numeral� 
�boolean� 
�string� 

�symbol� 
�identifier� 
�variable� 

�keyword� 

�procedure� 
�nonpairing­procedure� 
�lambda­expression� 

�formals� 
�procedure­constant� 

::= �self­evaluating� | �symbol� | �variable� 
| �procedure� | �let­form� | �if� | �combination� 

::= 

::= 

::= 

::= 

�numeral� | �boolean� | �string� |
0 | ­1 | 314159 | . . . 
#t | #f 

"hello there" | . . . 

. . . 

::= (quote �identifier�) 
::= identifiers that are not �self­evaluating� 
::= identifiers that are neither �self­evaluating�, �keyword� 

�procedure­constant�, nor �pairing­operator� 

::= quote | lambda | �let­keyword� | if 

::= �nonpairing­procedure� 
::= 

::= 

�lambda­expression� | �procedure­constant� 
(lambda (�formals�) �expression�) 

::= �variable�∗ (Note: all �variable�’s must be distinct.) 
::= + | ­ | * | / | = | < | atan | string=? | . . . 

| number? | symbol? | procedure? | string? | boolean? | eq? | . . . 

Note that no “side­effect” procedures such as display, set­car!, string­set! nor “pairing” 
operators list, cons are included among the procedure constants. Also, as a further reflection 
of our explanation why mutable lists have been omitted from the Substitution Model, we restrict 
application of eq? to values that are �symbol�’s. 
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�let­form� ::= (�let­keyword� (�binding� ∗) �expression�) 
(Note: all variables bound by the �let­form� must be distinct.) 

�let­keyword� ::= letrec 

�binding� ::= (�variable� �init�) 
�init� ::= �expression� 

�if� ::= (if �test� �consequent� �alternative�) 
�test� ::= �expression� 

�consequent� ::= �expression� 
�alternative� ::= �expression� 

�combination� ::= (�operator� �operand� ∗) 
�operator� ::= �expression� 
�operand� ::= �expression� 

A.2 Functional (Immutable) Lists


�expression� 
�nil� 

�procedure� 
�pairing­operator� 

�procedure­constant� 

�lambda­expression� 

::= . . . �nil�|
::= (list) 

::= . . . �pairing­operator�|
::= cons | list 

::= . . . | car cdr map apply | null? pair?| | | |
(Note: cons and list are not considered to be procedure constants.) 

::= . . . (lambda �variable� �expression�)|

A.3 The Full Kernel 

�expression� 
�keyword� 

�begin� 
�assignment� 

::= . . . �begin� �assignment�| |
::= . . . | begin set!|
::= (begin �expression�+) 

::= (set! �variable� �expression�) 
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A.4 Derived Syntax 

�keyword� 
�body� 
�define� 

�internal­defines� 
�let­form� 

�let­keyword� 
�lambda­expression� 

�expression� 
�keyword� 

�cond� 
�clause� 
�and� 
�or� 

�s­expression� 

A.5 Continuations 

::= . . . | define 
+::= �internal­defines��expression�

::= . . . (define �variable� �expression�)|

(define ( �variable� �formals�) �body�)
|

::= �define�∗ (Note: all defined variables must be distinct.) 
::= . . . ( �let­keyword� ( �binding�∗) �body�)|
::= . . . | let let*|
::= . . . (lambda ( �formals�) �body�) (lambda �variable� �body�)| |

::= . . . �cond� �and� �or� �quoted�| | | |
::= . . . cond | else and or| | |

::= (cond �clause��clause�∗) 
::= ( �test� �expression�∗) (else �expression�+)|
::= (and �expression�∗) 
::= (or �expression�∗) 

::= �identifier� �self­evaluating� ( �s­expression�∗)| |

�procedure­constant� ::= . . . call/cc | abort|
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