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Notes on Proving Arithmetic Equations 

1 Expressions and Values 

In these notes we describe a formal system for proving arithmetic equations. Our objective is to 
explain what it means to have a completely formal, automatically verifiable proof system, and to 
clarify the basic properties of such proof systems. Our objective is not to clarify the basic properties 
of numbers—we need to know these beforehand in order to understand and justify the proof 
system. For example, it will take some effort in our system to prove that e × 0 = 0; the formal 
proof certainly does not make this equation any more or less obvious. 

Definition 1.1. Arithmetic expressions (ae’s) are defined inductively as follows: 

• The numerals 0 and 1 are ae’s. 

• Any variable, x, is an ae.  

• If  e is an ae, then so is (-e). 

• If  e, f are ae’s, then so are (e + f) and (e * f). 

• That’s all. 

We use the symbol Z for the set of all integers {0, 1,−1, 2,−2, . . . }. 

Definition 1.2. A valuation, V, is a mapping from the set, Var, of variable symbols which may 
appear in ae’s, into Z. The value, val (e, V ) , of an ae, e, at a valuation, V , is defined by structural 
induction on ae’s as follows: 

• val (0, V ) ::= 0 and val (1, V ) ::= 1. 

• val (x, V ) ::= V (x) for any variable, x. 

• val ((-e), V ) ::= − val (e, V ). 

• val ((e + f), V ) ::= val (e, V ) +  val (f, V ), and 

• val ((e * f), V ) ::= val (e, V ) × val (f, V ). 

The meaning, [[e]], of an ae,  e, is the function from valuations to Z defined by: 

[[e]](V ) ::= val (e, V ) . 

It is conventional to omit parentheses around the arguments of meaning functions, writing “[[e]]V ” 
instead of “[[e]](V ).” 
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Definition 1.3. An arithmetic equation (aeq) is an expression of the form (e = f) where e, f are 
ae’s. The aeq is true at valuation V , written 

V |= (e = f), 

iff [[e]]V = [[f ]]V . The equation is valid, written 

|= (e = f) 

iff it is true at all valuations, that is, iff [[e]] = [[f ]]. 

Example 1.4. Let e0, f0 be the ae’s 

e0 ::= ((1 + (1 + 1)) * (x + y)), 

f0 ::= ((y * (x * y)) + (-((1 + 1) + 1))).


Let V1 be a valuation such that V1(x) = 2, and V1(y) = 3. Then val (e0, V1) = 15 and val (f0, V1) = 

15, so  V1 |= (e0 = f0). Let V2 be the valuation such that V2(v) = 0  for all variables v. Then

val (e0, V2) = 0 = −3 = val (f0, V2), so  V2 �|= (e0 = f0). Thus, (e0 = f0) is not valid. 

As another example, note that equations of the following form are valid: 

Lemma 1.5. 

|= ( (e * (f + g)) = ((e * f) + (e * g)) ) 

for all ae’s e, f, g. 

Proof. Let V be any valuation and l,m, n be the values of e, f, g at V . Then 

[[(e * (f + g))]]V = l(m + n) 

by definition of the meaning of ae’s. Likewise, 

[[((e * f) + (e * g))]]V = lm + ln. 

But l(m + n) = lm + ln by the distributive law of arithmetic, so 

[[(e * (f + g))]]V = [[((e * f) + (e * g))]]V. 

But V was arbitrary, so this equation must hold for all V , i.e., the equation is valid. 

2 Equational Proofs 

We’ve been careful so far to use a special “teletype” font for the actual symbols “), *,” . . .  occurring 
in ae’s, to distinguish them from the italic font mathematical symbols “), x, e, f” used to describe 
ae’s. To keep our notation uncluttered, from now on we stop being so careful when there is no 
danger of ambiguity. In particular, we often will omit parentheses and just use mathematical font 
throughout expressions. For example, the valid equations of Lemma 1.5 above will now be written 
as 

e ∗ (f + g) = (e ∗ f) + (e ∗ g). 
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Definition 2.1. An aeq, C, is said to follow by the transitivity rule from the pair of aeq’s A1 and A2 

iff A1 is of the form e = f , A2 is of the form f = g, and C is of the form e = g. 

We use the notation 

e = f, f = g =⇒ e = g 

as a shorthand description of this rule. The aeq’s to the left of =⇒ are called the antecedents of the 
rule, and the aeq to the right is called its consequent. 

Along with transitivity, the reflexivity, symmetry, and congruence rules together are called the stan-
dard equational inference rules. They are described in Table 1. Note that the reflexive rule has no 
antecedents. Such rules without antecedents are usually called axioms and are just written as 
equations, omitting the symbol =⇒ . 

Table 1: Standard Equational Inference Rules. 

e = f = −f (−-congruence)⇒ −e = 

=⇒ e = e (reflexivity) 
e = f =⇒ f = e (symmetry) 

e = f, f = g =⇒ e = g (transitivity) 
e1 = e2, f1 = f2 =⇒ e1 + f1 = e2 + f2 (+-congruence) 
e1 = e2, f1 = f2 =⇒ e1 ∗ f1 = e2 ∗ f2 (∗-congruence) 

To capture the properties of arithmetic, we will need some additional axioms. These equational 
axioms for arithmetic are all the aeq’s of the forms given in Table 2. 

Table 2: Equational Axioms for Arithmetic 

e ∗ (f + g) = (e ∗ f) + (e ∗ g) (distributivity) 

(e + f) + g = e + (f + g) 
(e ∗ f) ∗ g = e ∗ (f ∗ g) 

e + f = f + e 
e ∗ f = f ∗ e 
0 + e = e 
1 ∗ e = e


e + (−e) = 0 


(associativity of +) 
(associativity of ∗) 
(commutativity of +) 
(commutativity of ∗) 
(identity for +) 
(identity for ∗) 
(inverse for +) 

Definition 2.2. An arithmetic equational proof is a finite sequence of aeq’s such that every aeq in the 
sequence follows from aeq’s earlier in the sequence by one of the standard equational inference 
rules or axioms of arithmetic. An aeq, e = f , is  equationally provable, written 

� e = f, 

iff it is the last equation of some proof. 
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A crucial property of formal proofs is that they can be checked automatically, i.e., by a program, 
without any need for “understanding” of the subject matter by the checker. Adding comments to 
an equational proof can make proof checking easier, but it is not strictly necessary, since it is not 
hard to program a checker for uncommented proofs. 

Figure 1 contains a formal proof of the equation (f + g) + −g = f . For the reader’s convenience, 
the names of the rules from which each equation follows have been included as a comment after 
the equation. 

Figure 1: An arithmetic equational proof. 

(f + g) + −g = f (transitivity) 

g + −g = 0  (inverse for +) 
f = f (reflexivity) 

f + (g + −g) = f + 0  (congruence) 
(f + g) + −g = f + (g + −g) (associativity of +) 
(f + g) + −g = f + 0  (transitivity) 

f + 0  = 0 + f (symmetry) 
(f + g) + −g = 0 + f (transitivity) 

0 + f = f (identity for +) 

Using this formal proof, we can show: 

Lemma 2.3. For all ae’s e, 

� 0 = 0 ∗ e. 

Proof. Figure 2 exhibits a formal proof with rule names as comments. 

The axioms of Table 2 are so fundamental that they have a special mathematical name: the commu-
tative ring axioms. Any set of elements with +, ∗, − operations satisfying these axioms is called a 
commutative ring. In addition to Z, other examples of commutative rings are the real numbers, R, 
the complex numbers, C, and the integers modulo n (for n >  1). 

Problem 1. (a) Show that � −e = −1 ∗ e. 

(b) Show that � 1 = −1 ∗ −1. 

Problem 2. Define the set of Arithmetic Equational Theorems (aet’s) inductively as follows: 

•	 every equational axiom of arithmetic is an aet. 

•	 if all the antecedents of a standard equational inference rule are aet’s, then so is the conse-
quent. 
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Figure 2: A proof of 0 =  e ∗ 0. 
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Prove that the set of equationally provable aeq’s equals the set of aet’s. 

Problem 3. For arithmetic expressions e, f and variable x, the substitution, e[x := f ], of  f for x in 
e is defined by induction on e: 

x[x := f ] ::= f, 

c[x := f ] ::= c for any constant or variable, c, distinct from x, 

(−e0)[x := f ] ::= −(e0[x := f ]), 
(e0 op e1)[x := f ] ::= e0[x := f ] op e1[x := f ], where op ∈ {+, ∗} . 

(a) Prove that 

� f = g implies � e[x := f ] =  e[x := g]. 

(b) Prove that 

� e = g implies � e[x := f ] =  g[x := f ]. 

Problem 4. Repeat 1, using the results of the previous two problems to simplify the argument.
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The validity of the distributivity axiom—Lemma 1.5—followed directly from the distributivity of 
the integers and definition of the value of an ae. It is equally easy to see that all the other equational 
axioms of arithmetic of Table 2 are valid as well. 

A rule of inference is validity-preserving if the consequent of the rule is valid whenever all its an-
tecedents are valid. For example, it follows directly from the symmetry of mathematical equality, 
that the (symmetry) inference rule of our formal equational proof system is validity-preserving. 
Clearly all the standard equational inference rules of Table 1 are also validity-preserving. As a 
consequence, we have: 

Theorem 2.4. (Soundness) 

� e = f implies |= e = f. 

Proof. Immediate by induction on the definition of arithmetic equational theorems given in Prob-
lem 2, using the fact that the inference rules are validity-preserving. 

3 Canonical Forms 

The only numerals defined to occur in aeq’s are 0 and 1—not 2, 3, . . .  . We don’t need these other 
numerals since there are expressions for them, e.g., (1 + 1)  is an expression whose meaning is 
the integer two. It is useful to have a standard expression, or canonical form, for every integer: 

n and −nDefinition 3.1. For integers n ≥ 0 define ae’s ˆ � inductively: 

ˆ• 0 ::= 0, 

̂ ˆ• n + 1 ::= (1 + n), 

̂ 
� )• −(n + 1) ::= ((-1) + −n 

For example, 

3̂ is (1 + (1 + (1 + 0))), 

−2 is ((-1) + ((-1) + 0)). 

ˆProblem 5. Prove that [[n]]V = n for all n ∈ Z and valuations V . 

ˆ ̂Problem 6. (a) Show that � (1 + n) = n + 1  for all n ∈ Z. 

ˆ ̂(b) Show that � ((-1) + n) = n − 1 for all n ∈ Z. 

(c) Show that � (ˆ ˆ ̂n + m) = n + m for all m,n ∈ Z. (hint: Induction on magnitude of n.) 
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(d) Show that � (ˆ ˆ ̂n	 * m) = n × m for all m,n ∈ Z. 

n) = −n for all n. ∈ Z.(e) Show that � (-ˆ � 

(f) Let e be an arbitrary ae in which there are no occurrences of variables. Conclude that for all 
valuations V , 

� e = [[e]]V .  

(hint: Structural induction on e.) 

Lemma 3.2. (Completeness for Constant Expressions) Let e, f be ae’s in which there are no occurrences of 
variables. Then 

|= e = f implies � e = f. 

Proof. Choose some fixed valuation V . From  |= e = f , we have [[e]]V = [[f ]]V = n for some n ∈ Z. 
n and � f = ˆBy f, part (f), � e = ˆ  n, so  � e = f by symmetry and transitivity. 

The usual canonical form for a polynomial in x is 

cnx n + cn−1x n−1 + . . . + c0 

where the leading coefficient cn is nonzero. We use instead the “sparse” canonical form 

n1 n2 nkcn1 x + cn2 x + . . . + cnk x 

where n1 > n2 >  . . .  and all coefficients are nonzero. We generalize to more than one variable 
by treating, for example, a polynomial in variables y and x as a polynomial in y with coefficients 
which are polynomials in x. Here is the precise definition: 

Definition 3.3. For any ae e and integer n ≥ 1, let e1 ::= e and en+1 ::= (e * en). 

Let L be a sequence of distinct variables. An L-canonical arithmetic expression of degree d ∈ N is 
defined by induction on the length of L: 

• If  L is empty, then the L-canonical ae’s of degree 0 are precisely the ae’s of the form n̂ for 
n ∈ Z. In this case, there are no L-canonical ae’s of positive degree. 

•	 If L begins with the variable x, and L′ is the rest of L, then the L-canonical ae’s of degree d 
are defined by induction on d: 

–	 the L-canonical ae’s of degree 0 are the L′-canonical ae’s (of any degree), 

–	 the L-canonical ae’s of degree d >  0 are those ae’s of the form 

((a * xd) +  c), 

or 

(a * xd), 

where a is a nonzero L′-canonical form, and c is a nonzero L-canonical form of degree 
< d. 
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Problem 7. Describe an x, y, z-canonical form with the same meaning as ((x + (  �−3 ∗ y2)) + z3)2 . 

Theorem 3.4. Let e be an arithmetic expression and L a sequence of distinct variables including all the 
variables occurring in e. Then there is an L-canonical form c such that � e = c. 

Proof. (Sketch) First prove by induction on d that the sum of an L-canonical form of degree d and 
any L-canonical form is provably equal to an L-canonical form. Use this to prove that a product 
of two L-canonical forms, as well as the negative of an L-canonical form, is provably equal to an 
L-canonical form. Then proceed by structural induction on e. 

Lemma 3.5. If c and d are syntactically distinct L-canonical forms for some L, then [[c]] = [[d]]. 

Proof. (Sketch) By induction on the length of L. The induction step uses the fact that if p, q are 
polynomials in the same variable, x, with real number coefficients, then if the degree of p is greater 
than that of q, or they have the same degree and the absolute value of the leading coefficient of p 
is greater than that of q, then the absolute value of p is greater that the absolute value of q for all 
large enough values of x. 

Theorem 3.6. (Completeness) For all ae’s e, f , 

|= e = f implies � e = f. 

Proof. Let L be a sequence of distinct variables including all the variables occurring in either of e 
or f . By Theorem 3.4, � e = c and � f = d for some L-canonical forms c, d. By Soundness, we 
have [[e]] = [[c]] and [[f ]] = [[d]]. Now if |= e = f , then [[e]] = [[f ]], so  [[c]] = [[d]]. Then by Lemma 3.5, c 
and d must be syntactically identical, so we really have � e = c and � f = c, from which � e = f 
follows by symmetry and transitivity. 

Problem 8. Let e be an ae and L a sequence of distinct variables including all the variables in e. 
Show that there is a unique L-canonical form c such that � e = c. 

The development above extends easily to arithmetic expressions over the real numbers simply by 
allowing valuations in which the values of variables may be real numbers. (For uniformity, we 
keep the syntax unaltered, so the only numbers definable by variable-free ae’s are still the inte-
gers.) We say an aeq e = f is valid over the reals, 

|= R e = f, 

iff it holds for all real-valued valuations. Since we are now considering two notions of validity— 
over the reals and over the integers—we’ll use the notation |= Z for |= when it is helpful to empha-
size our original notion of validity. 

Problem 9. Prove that 

|= R e = f iff |= Z e = f. 
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4 Arithmetic Inequalities 

We can extend our formal proof system to include arithmetic inequalities. 

Definition 4.1. An arithmetic inequality (aineq) is an expression of the form (e <= f) where e, f 
are ae’s. The aineq is true at valuation V , written 

V |= (e <= f) 

iff [[ e]] V ≤ [[ e]] V . The equation is valid, written 

|= (e <= f) 

iff it is true at all valuations, that is, iff [[ e]] ≤ [[ f ]] . 

As we did with equations, we will stop using teletype font for formal symbols like <= which 
appear in aineq’s, writing them instead as ordinary mathematical symbols, e.g., “≤.” Some addi-
tional formal inference rules for proving inequalities are given in Table 3. 

Table 3: Inference Rules for Inequalities. 

e = f =⇒ e ≤ f (≤-reflexivity) 
e ≤ f, f ≤ e =⇒ f = e (≤-antisymmetry) 
e ≤ f, f ≤ g =⇒ e ≤ g (≤-transitivity) 

e ≤ f =⇒ e + g ≤ f + g (+ -≤-congruence) 
e ≤ f, 0 ≤ g =⇒ e ∗ g ≤ f ∗ g (∗-≤-congruence) 

e ≤ f =⇒ −f ≤ −e (−-≤-congruence) 
0 ≤ 1 (01 -axiom) 

We now have two proof systems, the original one for equality with the rules in Tables 1 and 2, and 
the extension of this system by the rules for inequalities in Table 3. We’ll use the notations �= and 
�≤ when it’s useful to emphasize the relevant proof system. 

Problem 10. Completeness for constant inequalities. 

(a) Show that n ≤ m iff �≤ (ˆ ˆn <= m). 

(b) Conclude that if e, f are ae’s with no occurrences of variables, then 

|= e ≤ f implies �≤ e ≤ f. 

By Problem 10, we know that �≤ is complete for inequalities between aeq’s without variables. 
Given our success in finding a complete proof system for arithmetic equalities over the integers 
even if variables do occur, we might hope to achieve the same thing for inequalities. 
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However, there are some notable contrasts between equations and inequations. For example, 
Problem 9 reveals that the same equations are valid whether we consider meanings over the in-
tegers, Z, or the real numbers, R. In fact, exactly the same equations are valid over the complex 
numbers, C. Not so for inequations. For example, let R+ denote the positive real numbers. The 
complex numbers can be partially ordered by the relation, �, where c � d iff d − c ∈ R+ ∪ {0}. If  
we interpret the symbol ≤ to mean the relation �, then we have: 

|= Z 0 ≤ e ∗ e, 

|= R 0 ≤ e ∗ e, but 
|�= C 0 ≤ e ∗ e. 

This remark implies a limitation of the proof rules for �≤, namely: 

Lemma 4.2. (Incompleteness for �≤) There is an arithmetic inequality which is valid over the integers but 
not �≤-provable, namely, 

|= Z 0 ≤ x ∗ x, 

�≤ 0 ≤ x ∗ x. 

Proof. All the rules of �≤ are validity-preserving over the complex numbers with ≤ interpreted as 
�, so an inequality which is not valid over the complexes cannot be provable. 

This particular discrepancy between validity and provability can be regarded an oversight in the 
design of our proof system. We could repair it simply by adding the “missing” inequality as an 
axiom. That is, if we define �2 to have the rules of �≤ along with the axiom 0 ≤ e ∗ e, then 
the resulting proof system remains sound over the integers (though not any more over the com-
plexes partially ordered by �). Now, of course, the formerly missing inequality is immediately 
�2-provable. 

But �2 is also incomplete over the integers. 

Lemma 4.3. (Incompleteness for �2) There is an arithmetic inequality which is valid over the integers but 
not �2 provable, namely, 

|= Z e ≤ e ∗ e, 

�2 x ≤ x ∗ x. 

Proof. All the rules of �2 are validity-preserving over the real numbers, so the inequality x ≤ x ∗x, 
which is not valid over the reals, cannot be provable. 

Now we might similarly define �3 to have the rules of �2 along with the further rule e ≤ e ∗ e. 
At this point, it is no longer so easy to show incompleteness for �3. On the other hand, neither is 
there an apparent reason to expect �3 to be complete for integer inequalities. 

Nevertheless, we can be sure that �3 is not complete. One of the great mathematical results of 
the Twentieth Century implies that there is no sound, complete proof system for arithmetic in-
equalities over the integers. In fact, given a proof checking program for any sound proof system 
for integer inequalities, it is possible to construct, from the text of the checking program, a valid 
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inequality which has no proof recognizable by the checker! This is one of the consequences of 
G ̈odel’s Incompleteness Theorem and Matiyasevich’s negative solution to Hilbert’s Tenth Prob-
lem1, topics which we take up later. 

Problem 11. For discussion: We have explained that, given any proof checking program for a 
sound proof system for arithmetic inequalities over the integers, we can construct a valid inequal-
ity which has no proof in the system. But if the inequality has no proof, how can we possibly 
know it is valid? 

1cf. Hilbert’s Tenth Problem, Yuri V. Matiyasevich, MIT Press, c. 1993, 264 pp. 


