
Substitution into Arithmetic Expressions 
We describe an alternative notion of proof, called a substitution proof, for arithmetic 
equations.  

Figure 1 in Notes 1: Proving Arithmetic Equations, in the Readings section, listed a 
formal proof consisting of a sequence of equations and ending with the equation  

(f + g) + -g = f.  

Another style of proof for this equation is the sequence of equalities  

(f + g) + -g = f + (g + -g) = f + 0 = 0 + f = f.  
Here the first equality follows from (associativity), the second from (inverse for +), and 
the third and fourth by (symmetry) and (identity for +), respectively. Proofs in this format 
are attractive and easy to follow because each equality follows solely from the 
immediately previous equality by substituting equals for equals -- in contrast to the 
sequence-of-equations proofs of the Notes, where justification of an equation may require 
appeal to more than one antecedent.  

Here is a precise definition of such substitution proofs:  

Definition. An arithmetic substitution proof is a sequence of ae's, ei, separated by 
equality symbols:  

e  = e  = e  = ...= e1 2 3 n  
such that for 1 ≤ i < n, the expression ei+1 is obtained from ei by substituting equals for 
equals. Namely there is an ae, hi, with exactly one occurrence of some variable, x, and 
there is an axiom instance, (f  = g )i i , such that the expressions ei and ei+1 are the same as 
the expressions h [x:=f ]i i  and h [x:=g ]i i  (in either order). The equation proved by the proof 
is (e  = e )1 n .  

1. Define a Scheme procedure  

tree-proof-->subst-proof  

that transforms a tree proof corresponding to the recursive definition of Arithmetic 
Equational Theorems (aet's) given in the Notes into a substitution proof of the 
same equation. For input to the procedure, the tree proof will be represented in the 
usual way as a Scheme list structure (see below).  

In designing the Scheme procedure tree-proof-->subst-proof, we assume for 
simplicity that an equational proof as defined in the Notes will be represented as a 
tree showing the antecedents and rule used to arrive at each equation in the proof. 
For example, the proof in Fig.1 of the Notes, would be represented in tree form 
as:  



               reflexivity            inverse-for+ 
                  (f=f)              ((g + (- g)) = 0) 
                    \                      / 
                      \ congruence-for+  / 
                        \              / 
                         \            /                 
commutativity-for+ 
                    ((f + (g + (- g))) = (f + 0))       ((f + 0) 
= (0 + f)) 
                                   \                            / 
                                       \       transitivity    / 
                                           \                 / 
          associativity                      \              / 
(((f + g) + (- g)) = (f + (g + (- g))))    (((f + (g + (- g))) = 
(0 + f)) 
          \                                           / 
           \                                        / 
            \                                     / 
             \        transitivity              / 
              \                               / 
               \                            / 
                \                         /                 
identity-for+ 
            (((f + g) + (- g)) = (0 + f))                   ((0 + 
f) = f) 
                            \                                    
/ 
                               \                               / 
                                  \      transitivity        / 
                                    \                      / 
                                     \                    / 
                                     (((f + g) + (- g)) = f) 

This tree would then be represented as a Scheme list structure. Namely, the proof 
is represented as a list of the equation proved, a token indicating the inference rule 
by which it was deduced, and, if the inference rule was not an axiom, the lists 
representing the proofs of the antecedents of the inference rule. So the 
representation of the proof tree above would be:  

(define Fig1-tree-proof 
  '((((f + g) + (- g)) = f) 
      transitivity 
      ((((f + g) + (- g)) = (0 + f)) 
         transitivity 
         ((((f + g) + (- g)) = (f + (g + (- g)))) associativity-
of+) 
         (((f + (g + (- g))) = (0 + f)) 
            transitivity 
            (((f + (g + (- g))) = (f + 0)) 
                congruence-for+ 
                ((f = f) reflexivity) 
                (((g + (- g)) = 0) inverse-for+)) 
            (((f + 0) = (0 + f)) commutativity-for+))) 
      (((0 + f) = f) identity-for+))) 



Now applying the procedure to this input might produce the following printout:  

(tree-proof-->subst-proof Fig1-tree-proof) 
;Value: (((f + g) + (- g)) = (f + (g + (- g))) = (f + 0) = (0 + 
f) = f) 

This proof-transforming procedure shows that the class of equations provable by 
substitution proofs is at least as large as the equations provable using the tree 
proofs for aet's. Since we've already argued that the sequence-of-equations proof 
system is complete and that the tree-proofs are interconvertible with sequence-of-
equations proofs, we can conclude that the substitution proof system indeed also 
proves all the valid equations. But since substitution proofs are sound (see below), 
it follows that they prove exactly the valid equations. That is, substitution proofs 
are another complete proof system for arithmetic equations.  

2. The Substitution Lemma below relates the value of an expression obtained by 
substituting f for x in e to the values of f and e. Namely, suppose F:A → B, that is, 
F is a total function with domain A and codomain B. For any a in A and b in B, we 
define  

F[a ← b]  

to be the function G:A → B such that 

G(a) = b, and G(x) = F(x) for x ≠ a.  

Substitution Lemma: For all valuations, V,  

val(e[x:=f], V) = val(e, V[x ← val(f, V)]).  

Prove it!  

3. Consider the following variations of the substitution rules for equality, adapted for 
inequalities:  

1. (f ≤ g) => => (e[x:=f] ≤ e[x:=g])  
2. (f ≤ g) => => (f[x:=e] ≤ g[x:=e])  

Only one of these rules preserves validity. Give a simple example of arithmetic 
expressions e,f,g where one of these rules fails to preserve validity. Prove that the 
other rule does preserve it. 


