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Modern Graphics Pipeline 
• Project vertices to 2D 

(image) 
 

• Rasterize triangle: find 
which pixels should be lit 
 

• Compute per-pixel color 
 

• Test visibility (Z-buffer), 
update frame buffer color 
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Modern Graphics Pipeline 
• Project vertices to 2D 

(image) 
 

• Rasterize triangle: find 
which pixels should be lit 
– For each pixel, 

test 3 edge equations 
• if all pass, draw pixel 

 

• Compute per-pixel color 
• Test visibility (Z-buffer), 

update frame buffer color 
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Modern Graphics Pipeline 
• Perform projection of vertices 
• Rasterize triangle: find which 

pixels should be lit 
• Compute per-pixel color 
• Test visibility, 

update frame buffer color 
– Store minimum distance to camera 

for each pixel in “Z-buffer” 
• ~same as tmin in ray casting! 

– if new_z < zbuffer[x,y] 

    zbuffer[x,y]=new_z 

    framebuffer[x,y]=new_color 
Z buffer frame buffer 

4 

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/


Modern Graphics Pipeline 
For each triangle 

   transform into eye space 

   (perform projection) 

   setup 3 edge equations 

   for each pixel x,y 

      if passes all edge equations 

         compute z 

         if z<zbuffer[x,y] 

            zbuffer[x,y]=z 

            framebuffer[x,y]=shade() 
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Modern Graphics Pipeline 
For each triangle 

   transform into eye space 

   (perform projection) 

   setup 3 edge equations 

   for each pixel x,y 

      if passes all edge equations 

         compute z 

         if z<zbuffer[x,y] 

            zbuffer[x,y]=z 

            framebuffer[x,y]=shade() 
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Questions? 
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• How do we get that Z value for each pixel? 
– We only know z at the vertices... 
– (Remember, screen-space z is actually z’/w’) 
– Must interpolate from vertices into triangle interior 

Interpolation in Screen Space 

For each triangle 

   for each pixel (x,y) 

      if passes all edge equations 

         compute z 

         if z<zbuffer[x,y] 

            zbuffer[x,y]=z 

            framebuffer[x,y]=shade() 
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Interpolation in Screen Space 

8 

• Also need to interpolate color, normals, texture coordinates, 
etc. between vertices 
‒ We did this with barycentrics in ray casting 

• Linear interpolation in object space 

‒ Is this the same as linear interpolation on the screen? 



Interpolation in Screen Space 

Two regions of same 

size in world space  
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Interpolation in Screen Space 

The farther region 

shrinks to a smaller 

area of the screen 

Two regions of same 

size in world space  
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Nope, Not the Same 

• Linear variation in world space does not yield linear 
variation in screen space due to projection 
– Think of looking at a checkerboard at a steep angle; all 

squares are the same size on the plane, but not on screen 

 linear screen-space 
(“Gouraud”) interpolation 

BAD 

Perspective-correct 
Interpolation 

Head-on view 
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Back to the basics: Barycentrics 

• Barycentric coordinates for a triangle (a, b, c) 
 

 
– Remember,  

 
• Barycentrics are very general: 

– Work for x, y, z, u, v, r, g, b 
– Anything that varies linearly in object space 
– including z 
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Basic strategy 

• Given screen-space x’, y’ 
• Compute barycentric coordinates 
• Interpolate anything specified at the three vertices 
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Basic strategy 

• How to make it work 
– start by computing x’, y’ given barycentrics 
– invert 

• Later: shortcut barycentrics, directly build interpolants 
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From barycentric to screen-space 

• Barycentric coordinates for a triangle (a, b, c) 
 

 
– Remember,  

 
• Let’s project point P by projection matrix C 

a’, b’, c’ are the 
projected 
homogeneous 
vertices before 
division by w 
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Projection 

• Let’s use simple formulation of projection going 
from 3D homogeneous coordinates to 2D 
homogeneous coordinates 
 
 
 
 

• No crazy near-far or storage of 1/z 
• We use ’ for screen space coordinates 
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From barycentric to screen-space 

• From previous slides: 
 
 

• Seems to suggest it’s linear in screen space.  
But it’s homogenous coordinates 

a’, b’, c’ are the 
projected 
homogeneous 
vertices 
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From barycentric to screen-space 

• From previous slides: 
 
 

• Seems to suggest it’s linear in screen space.  
But it’s homogenous coordinates 

• After division by w, the (x,y) screen coordinates are 

a’, b’, c’ are the 
projected 
homogeneous 
vertices 
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Recap: barycentric to screen-space 

19 



From screen-space to barycentric 

 
 
 
 

• It’s a projective mapping from 
the barycentrics onto screen coordinates! 
– Represented by a 3x3 matrix 

• We’ll take the inverse mapping to get from (x, y, 1) 
to the barycentrics! 

20 



 
 
 

 
• Recipe 

– Compute projected homogeneous coordinates a’, b’, c’ 
– Put them in the columns of a matrix, invert it 
– Multiply screen coordinates (x, y, 1) by inverse matrix 
– Then divide by the sum of the resulting coordinates 

• This ensures the result is sums to one like barycentrics should 

– Then interpolate value (e.g. Z) from vertices using them! 

From Screen to Barycentrics 
projective 

equivalence 

21 



From Screen to Barycentrics 

 
 
 
 

• Notes:  
– matrix is inverted once per triangle 
– can be used to interpolate z, color, texture coordinates, etc.  

22 



Pseudocode – Rasterization 
   For every triangle 

ComputeProjection 

Compute interpolation matrix 

Compute bbox, clip bbox to screen limits 

For all pixels x,y in bbox 

Test edge functions 

If all Ei>0 

   compute barycentrics 

   interpolate z from vertices 

   if z < zbuffer[x,y ] 

      interpolate UV coordinates from vertices 

      look up texture color kd 

      Framebuffer[x,y ] = kd //or more complex shader 
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Pseudocode – Rasterization 
   For every triangle 

ComputeProjection 

Compute interpolation matrix 

Compute bbox, clip bbox to screen limits 

For all pixels x,y in bbox 

Test edge functions 

If all Ei>0 

   compute barycentrics 

   interpolate z from vertices 

   if z < zbuffer[x,y ] 

      interpolate UV coordinates from vertices 

      look up texture color kd 

      Framebuffer[x,y ] = kd //or more complex shader 
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The infamous half pixel 

• I refuse to teach it, but it’s an annoying issue you 
should know about 

• Do a line drawing of a rectangle  
from [top, right] to [bottom,left] 

• Do we actually draw the columns/rows of pixels? 

25 Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.



The infamous half pixel 

• Displace by half a pixel so that top, right, bottom, left 
are in the middle of pixels 

• Just change the viewport transform 

26 
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Questions? 
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Supersampling 

✔ ✘ 
28 

• Trivial to do with rasterization as well 
• Often rates of 2x to 8x 
• Requires to compute per-pixel average at the end 
• Most effective against edge jaggies 
• Usually with jittered sampling 

– pre-computed pattern for a big block of pixels 



1 Sample / Pixel 
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4 Samples / Pixel 
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16 Samples / Pixel 

31 



100 Samples / Pixel 
Even this 
sampling rate 
cannot get rid 
of all aliasing 
artifacts! 
 

We are really 

only pushing 

the problem 

farther. 

32 



• Problem  
– Shading is very expensive today (complicated shaders) 
– Full supersampling has linear cost in #samples (k*k) 

• Goal: High-quality edge antialiasing at lower cost 
• Solution 

– Compute shading only once per pixel for each primitive, 
but resolve visibility at “sub-pixel” level 

• Store (k*width, k*height) frame and z buffers, but share shading 
results between sub-pixels within a real pixel 

– When visibility samples within a pixel hit different 
primitives, we get an average of their colors 

• Edges get antialiased without large shading cost  

Related Idea: Multisampling 

33 



Multisampling, Visually 
= sub-pixel visibility sample 

One pixel 
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One pixel 

Multisampling, Visually 
= sub-pixel visibility sample 

35 



Multisampling, Visually 
= sub-pixel visibility sample 

The color is only 
computed once 

per pixel per 

triangle and 
reused for all the 
visibility samples 
that are covered 
by the triangle. 

One pixel 
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Supersampling, Visually 
= sub-pixel visibility sample 

When 
supersampling, 
we compute 
colors 
independently for 
all the visibility 
samples. 

One pixel 
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Multisampling Pseudocode 
For each triangle 
  For each pixel  
    if pixel overlaps triangle 
      color=shade() // only once per pixel! 
      for each sub-pixel sample 
        compute edge equations & z 
        if subsample passes edge equations  
           && z < zbuffer[subsample] 
          zbuffer[subsample]=z 
          framebuffer[subsample]=color 
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For each triangle 
  For each pixel  
    if pixel overlaps triangle 
      color=shade() // only once per pixel! 
      for each sub-pixel sample 
        compute edge equations & z 
        if subsample passes edge equations  
           && z < zbuffer[subsample] 
          zbuffer[subsample]=z 
          framebuffer[subsample]=color 
At display time: //this is called “resolving” 
  For each pixel 
    color = average of subsamples 

Multisampling Pseudocode 
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Multisampling vs. Supersampling 

• Supersampling 
– Compute an entire image at a higher resolution, then 

downsample (blur + resample at lower res) 
• Multisampling 

– Supersample visibility, compute expensive shading only 
once per pixel, reuse shading across visibility samples 

• But Why? 
– Visibility edges are where supersampling really works 
– Shading can be prefiltered more easily than visibility 

• This is how GPUs perform antialiasing these days 
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Questions? 
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Examples of Texture Aliasing 

point sampling 

Magnification 

Minification 
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Texture Filtering 

• Problem: Prefiltering is impossible when you can 
only take point samples 
– This is why visibility (edges) need supersampling 

• Texture mapping is simpler 
– Imagine again we are looking at an infinite textured plane 
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Texture Filtering 

• We should pre-filter image function before sampling 
– That means blurring the image function with a low-pass 

filter (convolution of image function and filter) 

Low-pass filter 

44 



Texture Filtering 

• We can combine low-pass and sampling 
– The value of a sample is the integral of the product of the 

image f and the filter h centered at the sample location 
• “A local average of the image f weighted by the filter h” 

Low-pass filter 
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Texture Filtering 

• Well, we can just as well change variables and 
compute this integral on the textured plane instead 

– In effect, we are projecting the pre-filter onto the plane 

Low-pass filter 
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Texture Filtering 

• Well, we can just as well change variables and 
compute this integral on the textured plane instead 

– In effect, we are projecting the pre-filter onto the plane 
– It’s still a weighted average of the texture under filter 

Low-pass filter 
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• Must still integrate product of projected filter and 

texture – That doesn’t sound any easier... 

Texture Pre-Filtering, Visually 

image 
plane 

textured surface 
(texture map) 

image-space filter 
image-space filter 
projected onto plane 

Im
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Solution: Precomputation 

• We’ll precompute and store a set of prefiltered results 
from each texture with different sizes of prefilters 

49 



Solution: Precomputation 

• We’ll precompute and store a set of prefiltered results 
from each texture with different sizes of prefilters 
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Solution: Precomputation 

• We’ll precompute and store a set of prefiltered results 
from each texture with different sizes of prefilters 
– Because it’s low-passed, we can also subsample 
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Solution: Precomputation 

• We’ll precompute and store a set of prefiltered results 
from each texture with different sizes of prefilters 
– Because it’s low-passed, we can also subsample 
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This is Called “MIP-Mapping” 
• Construct a pyramid  

of images that are  
pre-filtered and  
re-sampled at  
1/2, 1/4, 1/8, etc.,  
of the original  
image's sampling 

• During rasterization  
we compute the index of the decimated image that is sampled at 
a rate closest to the density of our desired sampling rate 

• MIP stands for multum in parvo which means  
many in a small place 
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MIP-Mapping 

• When a pixel wants an integral of the pre-filtered 
texture, we must find the “closest” results from the 
precomputed MIP-map pyramid 
– Must compute the “size” of 

the projected pre-filter in 
the texture UV domain 

Projected pre-filter 
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MIP-Mapping 
• Simplest method: Pick the scale closest, 

then do usual reconstruction on that level 
(e.g. bilinear between 4 closest texture pixels) 

Projected pre-filter 

closest-available  

filter in pyramid 

Corresponding  

pyramid level 
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MIP-Mapping 
• Simplest method: Pick the scale closest, 

then do usual reconstruction on that level 
(e.g. bilinear between 4 closest texture pixels) 

• Problem: discontinuity when switching scale 
Projected pre-filter 

closest-available  

filter in pyramid 

Corresponding  

pyramid level 
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2 closest-available  

filters in pyramid 

Tri-Linear MIP-Mapping 

• Use two closest scales,  
compute reconstruction results from both,  
and linearly interpolate between them 

Projected pre-filter 

Blurrier  

pyramid level 

Sharper  

pyramid level 
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Projected pre-filter 

Tri-Linear MIP-Mapping 

• Use two closest scales,  
compute reconstruction results from both,  
and linearly interpolate between them 

• Problem: our filter might not be circular, because of 
foreshortening 

58 



Projected pre-filter 

Anisotropic filtering 

• Approximate Elliptical filter with multiple circular 
ones (usually 5) 

• Perform trilinear lookup at each one 
• i.e. consider five times eight values 

– fair amount of computation 
– this is why graphics hardware  

has dedicated units to compute  
trilinear mipmap reconstruction 
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MIP Mapping Example 

MIP Mapped (Tri-Linear) Nearest Neighbor 
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MIP Mapping Example 

nearest neighbor/ 
point sampling 

mipmaps & linear interpolation 
(tri-linear) 
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Questions 
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Storing MIP Maps 

• Can be stored compactly: Only 1/3 more space! 

63 
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Finding the MIP Level 

• Often we think of the 
pre-filter as a box 
– What is the projection 

of the square 
pixel “window” 
in texture space? 

Projected pre-filter 
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Finding the MIP Level 

• Often we think of the 
pre-filter as a box 
– What is the projection 

of the square 
pixel “window” 
in texture space? 

– Answer is in the partial 
derivatives px and py 
of (u,v) w.r.t. screen (x,y) 

Projected pre-filter 

Projection of pixel center 

py = (du/dy, dv/dy) 
px = (du/dx, dv/dx) 
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For isotropic trilinear mipmapping 

• No right answer,  
circular approximation 

• Two most common 
approaches are 
– Pick level according to 

the length (in texels) of 
the longer partial 

 
– Pick level according to 

the length of their sum 

Projected pre-filter 

Projection of pixel center 

py = (du/dy, dv/dy) 
px = (du/dx, dv/dx) 

w x h 
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Anisotropic filtering 

• Pick levels according  
to smallest partial 
– well, actually max of the  

smallest and the largest/5 
• Distribute circular  

“probes” along  
longest one 

• Weight them  
by a Gaussian 

Projected pre-filter 

Projection of pixel center 

py = (du/dy, dv/dy) 
px = (du/dx, dv/dx) 
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How Are Partials Computed? 

• You can derive closed form formulas based on the uv 
and xyw coordinates of the vertices... 
– This is what used to be done 

• ..but shaders may compute texture coordinates 
programmatically, not necessarily interpolated 
– No way of getting analytic derivatives! 

 
• In practice, use finite differences 

– GPUs process pixels in blocks of (at least) 4 anyway 
• These 2x2 blocks are called quads 
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Image Quality Comparison 

anisotropic filtering trilinear mipmapping 
(excessive blurring) 
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• Paul Heckbert published seminal work on texture 
mapping and filtering in his master’s thesis (!) 
– Including EWA 
– Highly recommended reading! 
– See http://www.cs.cmu.edu/~ph/texfund/texfund.pdf 

• More reading 
– Feline: Fast Elliptical Lines for 

Anisotropic Texture Mapping, 
McCormack, Perry, Farkas, Jouppi 
SIGGRAPH 1999 

– Texram: A Smart Memory for Texturing 
Schilling, Knittel, Strasser,. IEEE CG&A, 16(3): 32-41 

Further Reading 

Arf! 
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Questions? 
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Ray Casting 
For each pixel 

For each object 

• Ray-centric 
• Needs to store scene in 

memory 
• (Mostly) Random access 

to scene 

Rendering Pipeline 
For each triangle 

For each pixel 

• Triangle centric 
• Needs to store image   

(and depth) into memory 
• (Mostly) random access to 

frame buffer 

Ray Casting vs. Rendering Pipeline 

Which is smaller? Scene or Frame? 
    Frame 
Which is easiest to access randomly? 
    Frame because regular sampling 
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Ray Casting 
For each pixel 

For each object 

- Whole scene must be in memory 
- Needs spatial acceleration to be 

efficient 
+ Depth complexity: no computation 

for hidden parts 
+ Atomic computation 
+ More general, more flexible 

– Primitives, lighting effects, 
adaptive antialiasing 

Rendering Pipeline 
For each triangle 

   For each pixel 

- Harder to get global illumination 
- Needs smarter techniques to address 

depth complexity (overdraw) 
+ Primitives processed one at a time 
+ Coherence: geometric transforms for 

vertices only 
+ Good bandwidth/computation ratio 
+ Minimal state required, good memory 

behavior 

Ray Casting vs. Rendering Pipeline 
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http://xkcd.com/386/ 
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Bad example 
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Ray-triangle intersection 

• Triangle ABC 
• Ray O+t*D 
• Barycentric coordinates α, β, γ 
• Ray-triangle intersection 

 
 

• or in matrix form 
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Ray-triangle 

 
 
 
 

• Cramer’s rule (where | | is the determinant) 
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Determinant 

• Cross product and dot product 
• i.e., for a matrix with 3 columns vectors: M=UVW 
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Back to ray-triangle 
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Ray-triangle recap 

 
 
 
 
 

• And 
 
 

• Intersection if 
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Rasterization 

• Viewpoint is known and fixed 
• Let’s extract what varies per pixel 

 
 
 
 

• Only D! 
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Rasterization 

 
 
 

• Cache redundant computation independent of D: 
 
 
 

• And for each pixel 

82 

Equivalent to the setup of edge equations and 
interpolants in rasterization 

Per-pixel calculation of 
edge equations and z (=t) 



Conclusions 

• Rasterization and ray casting do the same thing 
• Just swap the two loops 
• And cache what is independent of pixel location 
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Ray casting (Python) 
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Main loops 
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Good References 

• http://www.tomshardware.com/reviews/ray-tracing-
rasterization,2351.html 

• http://c0de517e.blogspot.com/2011/09/raytracing-
myths.html 

• http://people.csail.mit.edu/fredo/tmp/rendering.pdf 
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Graphics Hardware 

• High performance through  
– Parallelism  
– Specialization 
– No data dependency 
– Efficient pre-fetching 
 

• More next week 

G 
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D 

task  
parallelism 

data parallelism 
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Questions? 
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Movies both rasterization and ray tracing 
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Games rasterization 
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Simulation rasterization  

(painter for a long time) 
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CAD-CAM & Design 
rasterization  for GUI, 

anything  for final image 
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Architecture 
ray-tracing, rasterization with   

preprocessing  for complex lighting 
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Virtual Reality rasterization 
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Visualization 
mostly rasterization, 

interactive ray-tracing is starting 
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Medical Imaging same as  

visualization 
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Questions? 
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• Transparency 
– Difficult, pretty much unsolved! 

• Alternative  
– Reyes (Pixar’s Renderman) 
– deferred shading  
– pre-Z pass 
– tile-based rendering 

 
• Shadows 

– Next time 
• Reflections, global illumination 

More issues 
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Transparency  

• Triangles and pixels can have transparency (alpha) 
• But the result depends on the order in which triangles 

are sent 
 

• Big problem: visibility 
– There is only one depth stored per pixel/sample 
– transparent objects involve multiple depth 
– full solutions store a (variable-length) list of visible objects 

and depth at each pixel 
• see e.g. the A-buffer by Carpenter  

http://portal.acm.org/citation.cfm?id=808585 
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Deferred shading 

• Avoid shading fragments that are eventually hidden 
– shading becomes more and more costly  

• First pass: rasterize triangles, store information such 
as normals, BRDF per pixel 

• Second pass: use stored information to compute 
shading 
 

• Advantage: no useless shading 
• Disadvantage: storage, antialiasing is difficult 
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Pre z pass 

• Again, avoid shading hidden fragment 
• First pass: rasterize triangles, update only z buffer, 

not color buffer 
• Second pass: rasterize triangles again, but this time, 

do full shading 
 

• Advantage over deferred shading: less storage, less 
code modification, more general shading is possible, 
multisampling possible 

• Disadvantage: needs to rasterize twice 
103 



Tile-based rendering 

• Problem: framebuffer is a lot of memory, especially 
with antialiasing 

• Solution: render subsets of the screen at once 
• For each tile of pixels 

– For each triangle 
• for each pixel 

 
• Might need to handle a triangle in multiple tiles 

– redundant computation for projection and setup 
• Used in mobile graphics cards 
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Reyes - Pixar’s Renderman 

• Cook et al. http://graphics.pixar.com/library/Reyes/ 
• Based on micropolygons 

– each primitive gets diced into polygons as small as a pixel 
• Enables antialiasing motion blur, depth of field 
• Shading is computed at the micropolygon level,  

not pixel 
– related to multisampling: shaded value will be used for 

multiple visibility sample 
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Dicing and rasterization 
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Reyes - Pixar’s Renderman 

• Tile-based to save memory and maximize texture 
coherence 

• Order-independent transparency 
– stores list of fragments and depth per pixel 

• Micropolygons get rasterized in space, lens and time 
– frame buffer has multiple samples per pixel 
– each sample has lens coordinates and time value 
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Reyes - ignoring transparency 

• For each tile of pixels 
– For each geometry 

• Dice into micropolygons adaptively 
• For each micropolygon 

– compute shaded value 
– For each sample in tile at coordinates x, y, u, v, t 

» reproject micropolygon to its position at time t, and lens position uv 
» determine if micropolygon overlaps samples 
» if yes, test visibility (z-buffer) 
» if z buffer passes, update framebuffer 
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REYES results 
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Questions? 
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