
Graphics Pipeline & Rasterization II

1

MIT EECS 6.837

Computer Graphics

Wojciech Matusik

Image removed due to copyright restrictions.

2

Modern Graphics Pipeline
• Project vertices to 2D

(image)

• Rasterize triangle: find
which pixels should be lit

• Compute per-pixel color

• Test visibility (Z-buffer),
update frame buffer color

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

Modern Graphics Pipeline
• Project vertices to 2D

(image)

• Rasterize triangle: find
which pixels should be lit
– For each pixel,

test 3 edge equations
• if all pass, draw pixel

• Compute per-pixel color
• Test visibility (Z-buffer),

update frame buffer color
3

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

Modern Graphics Pipeline
• Perform projection of vertices
• Rasterize triangle: find which

pixels should be lit
• Compute per-pixel color
• Test visibility,

update frame buffer color
– Store minimum distance to camera

for each pixel in “Z-buffer”
• ~same as tmin in ray casting!

– if new_z < zbuffer[x,y]

 zbuffer[x,y]=new_z

 framebuffer[x,y]=new_color
Z buffer frame buffer

4

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

Modern Graphics Pipeline
For each triangle

 transform into eye space

 (perform projection)

 setup 3 edge equations

 for each pixel x,y

 if passes all edge equations

 compute z

 if z<zbuffer[x,y]

 zbuffer[x,y]=z

 framebuffer[x,y]=shade()

5

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

Modern Graphics Pipeline
For each triangle

 transform into eye space

 (perform projection)

 setup 3 edge equations

 for each pixel x,y

 if passes all edge equations

 compute z

 if z<zbuffer[x,y]

 zbuffer[x,y]=z

 framebuffer[x,y]=shade()

6

Questions?

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

• How do we get that Z value for each pixel?
– We only know z at the vertices...
– (Remember, screen-space z is actually z’/w’)
– Must interpolate from vertices into triangle interior

Interpolation in Screen Space

For each triangle

 for each pixel (x,y)

 if passes all edge equations

 compute z

 if z<zbuffer[x,y]

 zbuffer[x,y]=z

 framebuffer[x,y]=shade()

7

Interpolation in Screen Space

8

• Also need to interpolate color, normals, texture coordinates,
etc. between vertices
‒ We did this with barycentrics in ray casting

• Linear interpolation in object space

‒ Is this the same as linear interpolation on the screen?

Interpolation in Screen Space

Two regions of same

size in world space

9

Interpolation in Screen Space

The farther region

shrinks to a smaller

area of the screen

Two regions of same

size in world space

10

Nope, Not the Same

• Linear variation in world space does not yield linear
variation in screen space due to projection
– Think of looking at a checkerboard at a steep angle; all

squares are the same size on the plane, but not on screen

 linear screen-space
(“Gouraud”) interpolation

BAD

Perspective-correct
Interpolation

Head-on view

11

This image is in the public domain. Source: Wikipedia.

http://en.wikipedia.org/wiki/File:Perspective_correct_texture_mapping.jpg

Back to the basics: Barycentrics

• Barycentric coordinates for a triangle (a, b, c)

– Remember,

• Barycentrics are very general:

– Work for x, y, z, u, v, r, g, b
– Anything that varies linearly in object space
– including z

12

Basic strategy

• Given screen-space x’, y’
• Compute barycentric coordinates
• Interpolate anything specified at the three vertices

13

Basic strategy

• How to make it work
– start by computing x’, y’ given barycentrics
– invert

• Later: shortcut barycentrics, directly build interpolants

14

From barycentric to screen-space

• Barycentric coordinates for a triangle (a, b, c)

– Remember,

• Let’s project point P by projection matrix C

a’, b’, c’ are the
projected
homogeneous
vertices before
division by w

15

Projection

• Let’s use simple formulation of projection going
from 3D homogeneous coordinates to 2D
homogeneous coordinates

• No crazy near-far or storage of 1/z
• We use ’ for screen space coordinates

16

From barycentric to screen-space

• From previous slides:

• Seems to suggest it’s linear in screen space.
But it’s homogenous coordinates

a’, b’, c’ are the
projected
homogeneous
vertices

17

From barycentric to screen-space

• From previous slides:

• Seems to suggest it’s linear in screen space.
But it’s homogenous coordinates

• After division by w, the (x,y) screen coordinates are

a’, b’, c’ are the
projected
homogeneous
vertices

18

Recap: barycentric to screen-space

19

From screen-space to barycentric

• It’s a projective mapping from
the barycentrics onto screen coordinates!
– Represented by a 3x3 matrix

• We’ll take the inverse mapping to get from (x, y, 1)
to the barycentrics!

20

• Recipe

– Compute projected homogeneous coordinates a’, b’, c’
– Put them in the columns of a matrix, invert it
– Multiply screen coordinates (x, y, 1) by inverse matrix
– Then divide by the sum of the resulting coordinates

• This ensures the result is sums to one like barycentrics should

– Then interpolate value (e.g. Z) from vertices using them!

From Screen to Barycentrics
projective

equivalence

21

From Screen to Barycentrics

• Notes:
– matrix is inverted once per triangle
– can be used to interpolate z, color, texture coordinates, etc.

22

Pseudocode – Rasterization
 For every triangle

ComputeProjection

Compute interpolation matrix

Compute bbox, clip bbox to screen limits

For all pixels x,y in bbox

Test edge functions

If all Ei>0

 compute barycentrics

 interpolate z from vertices

 if z < zbuffer[x,y]

 interpolate UV coordinates from vertices

 look up texture color kd

 Framebuffer[x,y] = kd //or more complex shader

23

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Pseudocode – Rasterization
 For every triangle

ComputeProjection

Compute interpolation matrix

Compute bbox, clip bbox to screen limits

For all pixels x,y in bbox

Test edge functions

If all Ei>0

 compute barycentrics

 interpolate z from vertices

 if z < zbuffer[x,y]

 interpolate UV coordinates from vertices

 look up texture color kd

 Framebuffer[x,y] = kd //or more complex shader

24

Questions?
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

The infamous half pixel

• I refuse to teach it, but it’s an annoying issue you
should know about

• Do a line drawing of a rectangle
from [top, right] to [bottom,left]

• Do we actually draw the columns/rows of pixels?

25 Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.

The infamous half pixel

• Displace by half a pixel so that top, right, bottom, left
are in the middle of pixels

• Just change the viewport transform

26

Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.

Questions?

27

Supersampling

✔ ✘
28

• Trivial to do with rasterization as well
• Often rates of 2x to 8x
• Requires to compute per-pixel average at the end
• Most effective against edge jaggies
• Usually with jittered sampling

– pre-computed pattern for a big block of pixels

1 Sample / Pixel

29

4 Samples / Pixel

30

16 Samples / Pixel

31

100 Samples / Pixel
Even this
sampling rate
cannot get rid
of all aliasing
artifacts!

We are really

only pushing

the problem

farther.

32

• Problem
– Shading is very expensive today (complicated shaders)
– Full supersampling has linear cost in #samples (k*k)

• Goal: High-quality edge antialiasing at lower cost
• Solution

– Compute shading only once per pixel for each primitive,
but resolve visibility at “sub-pixel” level

• Store (k*width, k*height) frame and z buffers, but share shading
results between sub-pixels within a real pixel

– When visibility samples within a pixel hit different
primitives, we get an average of their colors

• Edges get antialiased without large shading cost

Related Idea: Multisampling

33

Multisampling, Visually
= sub-pixel visibility sample

One pixel

34

One pixel

Multisampling, Visually
= sub-pixel visibility sample

35

Multisampling, Visually
= sub-pixel visibility sample

The color is only
computed once

per pixel per

triangle and
reused for all the
visibility samples
that are covered
by the triangle.

One pixel

36

Supersampling, Visually
= sub-pixel visibility sample

When
supersampling,
we compute
colors
independently for
all the visibility
samples.

One pixel

37

Multisampling Pseudocode
For each triangle
 For each pixel
 if pixel overlaps triangle
 color=shade() // only once per pixel!
 for each sub-pixel sample
 compute edge equations & z
 if subsample passes edge equations
 && z < zbuffer[subsample]
 zbuffer[subsample]=z
 framebuffer[subsample]=color

38

For each triangle
 For each pixel
 if pixel overlaps triangle
 color=shade() // only once per pixel!
 for each sub-pixel sample
 compute edge equations & z
 if subsample passes edge equations
 && z < zbuffer[subsample]
 zbuffer[subsample]=z
 framebuffer[subsample]=color
At display time: //this is called “resolving”
 For each pixel
 color = average of subsamples

Multisampling Pseudocode

39

Multisampling vs. Supersampling

• Supersampling
– Compute an entire image at a higher resolution, then

downsample (blur + resample at lower res)
• Multisampling

– Supersample visibility, compute expensive shading only
once per pixel, reuse shading across visibility samples

• But Why?
– Visibility edges are where supersampling really works
– Shading can be prefiltered more easily than visibility

• This is how GPUs perform antialiasing these days

40

Questions?

41

Examples of Texture Aliasing

point sampling

Magnification

Minification

42

Texture Filtering

• Problem: Prefiltering is impossible when you can
only take point samples
– This is why visibility (edges) need supersampling

• Texture mapping is simpler
– Imagine again we are looking at an infinite textured plane

43

Texture Filtering

• We should pre-filter image function before sampling
– That means blurring the image function with a low-pass

filter (convolution of image function and filter)

Low-pass filter

44

Texture Filtering

• We can combine low-pass and sampling
– The value of a sample is the integral of the product of the

image f and the filter h centered at the sample location
• “A local average of the image f weighted by the filter h”

Low-pass filter

45

Texture Filtering

• Well, we can just as well change variables and
compute this integral on the textured plane instead

– In effect, we are projecting the pre-filter onto the plane

Low-pass filter

46

Texture Filtering

• Well, we can just as well change variables and
compute this integral on the textured plane instead

– In effect, we are projecting the pre-filter onto the plane
– It’s still a weighted average of the texture under filter

Low-pass filter

47

• Must still integrate product of projected filter and

texture – That doesn’t sound any easier...

Texture Pre-Filtering, Visually

image
plane

textured surface
(texture map)

image-space filter
image-space filter
projected onto plane

Im
ag

e
ad

ap
te

d
fro

m

M
cC

or
m

ac
k

et
 a

l.

48

Solution: Precomputation

• We’ll precompute and store a set of prefiltered results
from each texture with different sizes of prefilters

49

Solution: Precomputation

• We’ll precompute and store a set of prefiltered results
from each texture with different sizes of prefilters

50

Solution: Precomputation

• We’ll precompute and store a set of prefiltered results
from each texture with different sizes of prefilters
– Because it’s low-passed, we can also subsample

51

Solution: Precomputation

• We’ll precompute and store a set of prefiltered results
from each texture with different sizes of prefilters
– Because it’s low-passed, we can also subsample

52

This is Called “MIP-Mapping”
• Construct a pyramid

of images that are
pre-filtered and
re-sampled at
1/2, 1/4, 1/8, etc.,
of the original
image's sampling

• During rasterization
we compute the index of the decimated image that is sampled at
a rate closest to the density of our desired sampling rate

• MIP stands for multum in parvo which means
many in a small place

53

MIP-Mapping

• When a pixel wants an integral of the pre-filtered
texture, we must find the “closest” results from the
precomputed MIP-map pyramid
– Must compute the “size” of

the projected pre-filter in
the texture UV domain

Projected pre-filter

54

MIP-Mapping
• Simplest method: Pick the scale closest,

then do usual reconstruction on that level
(e.g. bilinear between 4 closest texture pixels)

Projected pre-filter

closest-available

filter in pyramid

Corresponding

pyramid level
55

MIP-Mapping
• Simplest method: Pick the scale closest,

then do usual reconstruction on that level
(e.g. bilinear between 4 closest texture pixels)

• Problem: discontinuity when switching scale
Projected pre-filter

closest-available

filter in pyramid

Corresponding

pyramid level
56

2 closest-available

filters in pyramid

Tri-Linear MIP-Mapping

• Use two closest scales,
compute reconstruction results from both,
and linearly interpolate between them

Projected pre-filter

Blurrier

pyramid level

Sharper

pyramid level

57

Projected pre-filter

Tri-Linear MIP-Mapping

• Use two closest scales,
compute reconstruction results from both,
and linearly interpolate between them

• Problem: our filter might not be circular, because of
foreshortening

58

Projected pre-filter

Anisotropic filtering

• Approximate Elliptical filter with multiple circular
ones (usually 5)

• Perform trilinear lookup at each one
• i.e. consider five times eight values

– fair amount of computation
– this is why graphics hardware

has dedicated units to compute
trilinear mipmap reconstruction

59

MIP Mapping Example

MIP Mapped (Tri-Linear) Nearest Neighbor

60

MIP Mapping Example

nearest neighbor/
point sampling

mipmaps & linear interpolation
(tri-linear)

61

Questions

62

Storing MIP Maps

• Can be stored compactly: Only 1/3 more space!

63

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Finding the MIP Level

• Often we think of the
pre-filter as a box
– What is the projection

of the square
pixel “window”
in texture space?

Projected pre-filter

64

Finding the MIP Level

• Often we think of the
pre-filter as a box
– What is the projection

of the square
pixel “window”
in texture space?

– Answer is in the partial
derivatives px and py
of (u,v) w.r.t. screen (x,y)

Projected pre-filter

Projection of pixel center

py = (du/dy, dv/dy)
px = (du/dx, dv/dx)

65

For isotropic trilinear mipmapping

• No right answer,
circular approximation

• Two most common
approaches are
– Pick level according to

the length (in texels) of
the longer partial

– Pick level according to

the length of their sum

Projected pre-filter

Projection of pixel center

py = (du/dy, dv/dy)
px = (du/dx, dv/dx)

w x h

66

Anisotropic filtering

• Pick levels according
to smallest partial
– well, actually max of the

smallest and the largest/5
• Distribute circular

“probes” along
longest one

• Weight them
by a Gaussian

Projected pre-filter

Projection of pixel center

py = (du/dy, dv/dy)
px = (du/dx, dv/dx)

67

How Are Partials Computed?

• You can derive closed form formulas based on the uv
and xyw coordinates of the vertices...
– This is what used to be done

• ..but shaders may compute texture coordinates
programmatically, not necessarily interpolated
– No way of getting analytic derivatives!

• In practice, use finite differences

– GPUs process pixels in blocks of (at least) 4 anyway
• These 2x2 blocks are called quads

68

Image Quality Comparison

anisotropic filtering trilinear mipmapping
(excessive blurring)

69

• Paul Heckbert published seminal work on texture
mapping and filtering in his master’s thesis (!)
– Including EWA
– Highly recommended reading!
– See http://www.cs.cmu.edu/~ph/texfund/texfund.pdf

• More reading
– Feline: Fast Elliptical Lines for

Anisotropic Texture Mapping,
McCormack, Perry, Farkas, Jouppi
SIGGRAPH 1999

– Texram: A Smart Memory for Texturing
Schilling, Knittel, Strasser,. IEEE CG&A, 16(3): 32-41

Further Reading

Arf!

70

© Marc Levoy. All rights reserved. This
content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://www.cs.cmu.edu/~ph/texfund/texfund.pdf
http://doi.acm.org/10.1145/311535.311562
http://doi.acm.org/10.1145/311535.311562
http://doi.acm.org/10.1145/311535.311562
http://doi.acm.org/10.1145/311535.311562
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491183&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491183&tag=1

Questions?

71

Image removed due to copyright restrictions.

Ray Casting
For each pixel

For each object

• Ray-centric
• Needs to store scene in

memory
• (Mostly) Random access

to scene

Rendering Pipeline
For each triangle

For each pixel

• Triangle centric
• Needs to store image

(and depth) into memory
• (Mostly) random access to

frame buffer

Ray Casting vs. Rendering Pipeline

Which is smaller? Scene or Frame?
 Frame
Which is easiest to access randomly?
 Frame because regular sampling

72

Ray Casting
For each pixel

For each object

- Whole scene must be in memory
- Needs spatial acceleration to be

efficient
+ Depth complexity: no computation

for hidden parts
+ Atomic computation
+ More general, more flexible

– Primitives, lighting effects,
adaptive antialiasing

Rendering Pipeline
For each triangle

 For each pixel

- Harder to get global illumination
- Needs smarter techniques to address

depth complexity (overdraw)
+ Primitives processed one at a time
+ Coherence: geometric transforms for

vertices only
+ Good bandwidth/computation ratio
+ Minimal state required, good memory

behavior

Ray Casting vs. Rendering Pipeline

73

http://xkcd.com/386/

74

Image removed due to copyright restrictions – please see the link above for further details.

http://xkcd.com/386/

Bad example

75

Image removed due to copyright restrictions -- please see
https://blogs.intel.com/intellabs/2007/10/10/real_time_raytracing_the_end_o/ for further details.

https://blogs.intel.com/intellabs/2007/10/10/real_time_raytracing_the_end_o/

Ray-triangle intersection

• Triangle ABC
• Ray O+t*D
• Barycentric coordinates α, β, γ
• Ray-triangle intersection

• or in matrix form

76

Ray-triangle

• Cramer’s rule (where | | is the determinant)

77

Determinant

• Cross product and dot product
• i.e., for a matrix with 3 columns vectors: M=UVW

78

Back to ray-triangle

79

Ray-triangle recap

• And

• Intersection if

80

Rasterization

• Viewpoint is known and fixed
• Let’s extract what varies per pixel

• Only D!

81

Rasterization

• Cache redundant computation independent of D:

• And for each pixel

82

Equivalent to the setup of edge equations and
interpolants in rasterization

Per-pixel calculation of
edge equations and z (=t)

Conclusions

• Rasterization and ray casting do the same thing
• Just swap the two loops
• And cache what is independent of pixel location

83

Ray casting (Python)

84

85

86

Main loops

87

Good References

• http://www.tomshardware.com/reviews/ray-tracing-
rasterization,2351.html

• http://c0de517e.blogspot.com/2011/09/raytracing-
myths.html

• http://people.csail.mit.edu/fredo/tmp/rendering.pdf

88

http://www.tomshardware.com/reviews/ray-tracing-rasterization,2351.html
http://www.tomshardware.com/reviews/ray-tracing-rasterization,2351.html
http://c0de517e.blogspot.com/2011/09/raytracing-myths.html
http://c0de517e.blogspot.com/2011/09/raytracing-myths.html
http://people.csail.mit.edu/fredo/tmp/rendering.pdf

Graphics Hardware

• High performance through
– Parallelism
– Specialization
– No data dependency
– Efficient pre-fetching

• More next week

G

R

T

F

D

G

R

T

F

D

G

R

T

F

D

G

R

T

F

D

task
parallelism

data parallelism

89

Questions?

90

Movies both rasterization and ray tracing

91

Images removed due to copyright restrictions.

Games rasterization

92

Images removed due to copyright restrictions.

Simulation rasterization

(painter for a long time)

93

Images removed due to copyright restrictions.

CAD-CAM & Design
rasterization for GUI,

anything for final image

94

Images removed due to copyright restrictions.

Architecture
ray-tracing, rasterization with

preprocessing for complex lighting

95

Images removed due to copyright restrictions.

Virtual Reality rasterization

96

Images removed due to copyright restrictions.

Visualization
mostly rasterization,

interactive ray-tracing is starting

97

Images removed due to copyright restrictions.

Medical Imaging same as

visualization

98

Images removed due to copyright restrictions.

Questions?

99

• Transparency
– Difficult, pretty much unsolved!

• Alternative
– Reyes (Pixar’s Renderman)
– deferred shading
– pre-Z pass
– tile-based rendering

• Shadows

– Next time
• Reflections, global illumination

More issues

100

Transparency

• Triangles and pixels can have transparency (alpha)
• But the result depends on the order in which triangles

are sent

• Big problem: visibility
– There is only one depth stored per pixel/sample
– transparent objects involve multiple depth
– full solutions store a (variable-length) list of visible objects

and depth at each pixel
• see e.g. the A-buffer by Carpenter

http://portal.acm.org/citation.cfm?id=808585

101

http://portal.acm.org/citation.cfm?id=808585

Deferred shading

• Avoid shading fragments that are eventually hidden
– shading becomes more and more costly

• First pass: rasterize triangles, store information such
as normals, BRDF per pixel

• Second pass: use stored information to compute
shading

• Advantage: no useless shading
• Disadvantage: storage, antialiasing is difficult

102

Pre z pass

• Again, avoid shading hidden fragment
• First pass: rasterize triangles, update only z buffer,

not color buffer
• Second pass: rasterize triangles again, but this time,

do full shading

• Advantage over deferred shading: less storage, less
code modification, more general shading is possible,
multisampling possible

• Disadvantage: needs to rasterize twice
103

Tile-based rendering

• Problem: framebuffer is a lot of memory, especially
with antialiasing

• Solution: render subsets of the screen at once
• For each tile of pixels

– For each triangle
• for each pixel

• Might need to handle a triangle in multiple tiles

– redundant computation for projection and setup
• Used in mobile graphics cards

104

Reyes - Pixar’s Renderman

• Cook et al. http://graphics.pixar.com/library/Reyes/
• Based on micropolygons

– each primitive gets diced into polygons as small as a pixel
• Enables antialiasing motion blur, depth of field
• Shading is computed at the micropolygon level,

not pixel
– related to multisampling: shaded value will be used for

multiple visibility sample

105

http://graphics.pixar.com/library/Reyes/

Dicing and rasterization

106
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Reyes - Pixar’s Renderman

• Tile-based to save memory and maximize texture
coherence

• Order-independent transparency
– stores list of fragments and depth per pixel

• Micropolygons get rasterized in space, lens and time
– frame buffer has multiple samples per pixel
– each sample has lens coordinates and time value

107

Reyes - ignoring transparency

• For each tile of pixels
– For each geometry

• Dice into micropolygons adaptively
• For each micropolygon

– compute shaded value
– For each sample in tile at coordinates x, y, u, v, t

» reproject micropolygon to its position at time t, and lens position uv
» determine if micropolygon overlaps samples
» if yes, test visibility (z-buffer)
» if z buffer passes, update framebuffer

108

REYES results

109
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Questions?

110

MIT OpenCourseWare
http://ocw.mit.edu

 6.837 Computer Graphics
 Fall 2012

 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	MIT6_837F12_Lec22.pdf
	Pages from CoordinationGamesp

