
1

Graphics Pipeline & Rasterization

MIT EECS 6.837 – Matusik

Image removed due to copyright restrictions.

• Use graphics hardware, via OpenGL or DirectX
– OpenGL is multi-platform, DirectX is MS only

2

How Do We Render Interactively?

OpenGL rendering Our ray tracer

© Khronos Group. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://www.opengl.org/
http://msdn.microsoft.com/en-us/directx/default.aspx

• Use graphics hardware, via OpenGL or DirectX
– OpenGL is multi-platform, DirectX is MS only

• Most global effects available in ray tracing will be

sacrificed for speed, but some can be approximated
3

How Do We Render Interactively?

OpenGL rendering Our ray tracer

© Khronos Group. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://www.opengl.org/
http://msdn.microsoft.com/en-us/directx/default.aspx

Ray Casting vs. GPUs for Triangles
Ray Casting
For each pixel (ray)

 For each triangle

 Does ray hit triangle?

Scene
primitives

Pixel raster

Keep closest hit

4

5

Ray Casting vs. GPUs for Triangles
Ray Casting
For each pixel (ray)

 For each triangle

 Does ray hit triangle?

GPU
For each triangle

 For each pixel

 Does triangle cover pixel?

Scene
primitives

Scene
primitives

Pixel raster

Pixel raster

Keep closest hit Keep closest hit

6

Ray Casting vs. GPUs for Triangles
Ray Casting
For each pixel (ray)

 For each triangle

 Does ray hit triangle?

GPU
For each triangle

 For each pixel

 Does triangle cover pixel?

Scene
primitives

Scene
primitives

Pixel raster

Pixel raster

Keep closest hit Keep closest hit

It’s just a different order of the loops!

7

GPUs do Rasterization

• The process of taking a
triangle and figuring out
which pixels it covers is
called rasterization

Scene
primitives

Pixel raster

Keep closest hit

GPU
For each triangle

 For each pixel

 Does triangle cover pixel?

8

GPUs do Rasterization

• The process of taking a
triangle and figuring out
which pixels it covers is
called rasterization

• We’ve seen acceleration
structures for ray
tracing; rasterization is
not stupid either
– We’re not actually going

to test all pixels for each
triangle

Scene
primitives

Pixel raster

Keep closest hit

GPU
For each triangle

 For each pixel

 Does triangle cover pixel?

9

Rasterization (“Scan Conversion”)
glBegin(GL_TRIANGLES)

glNormal3f(...)

glVertex3f(...)

glVertex3f(...)

glVertex3f(...)

glEnd();

• Given a triangle’s vertices &
extra info for shading, figure
out which pixels to "turn on"
to render the primitive

• Compute illumination values to
"fill in" the pixels within the
primitive

• At each pixel, keep track of
the closest primitive (z-buffer)
– Only overwrite if triangle being

drawn is closer than the previous
triangle in that pixel

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• What needs to be stored in memory in each case?

10

What are the Main Differences?
Ray Casting
For each pixel (ray)

 For each triangle

 Does ray hit triangle?

GPU
For each triangle

 For each pixel

 Does triangle cover pixel?

Keep closest hit Keep closest hit

Ray-centric Triangle-centric

• In this basic form, ray tracing needs the entire scene
description in memory at once
– Then, can sample the image completely freely

• The rasterizer only needs one triangle at a time, plus
the entire image and associated depth information for
all pixels 11

What are the Main Differences?
Ray Casting
For each pixel (ray)

 For each triangle

 Does ray hit triangle?

GPU
For each triangle

 For each pixel

 Does triangle cover pixel?

Keep closest hit Keep closest hit

Ray-centric Triangle-centric

• Modern scenes are more complicated than images
– A 1920x1080 frame at 64-bit color and 32-bit depth per

pixel is 24MB (not that much)
• Of course, if we have more than one sample per pixel this gets

larger, but e.g. 4x supersampling is still a relatively comfortable
~100MB

– Our scenes are routinely larger than this
• This wasn’t always true

12

Rasterization Advantages

13

Rasterization Advantages Weiler, Atherton 1977

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://doi.acm.org/10.1145/563858.563896

• Modern scenes are more complicated than images
– A 1920x1080 frame (1080p) at 64-bit color and 32-bit

depth per pixel is 24MB (not that much)
• Of course, if we have more than one sample per pixel (later) this

gets larger, but e.g. 4x supersampling is still a relatively
comfortable ~100MB

– Our scenes are routinely larger than this
• This wasn’t always true

• A rasterization-based renderer can stream over the
triangles, no need to keep entire dataset around
– Allows parallelism and optimization of memory systems

14

Rasterization Advantages

• Restricted to scan-convertible primitives
– Pretty much: triangles

• Faceting, shading artifacts
– This is largely going away

with programmable per-pixel
shading, though

• No unified handling of
shadows, reflection,
transparency

• Potential problem of
overdraw (high depth
complexity)
– Each pixel touched

many times
15

Rasterization Limitations

scan conversion
gouraud shading

ray tracing

scan conversion
flat shading

© Khronos Group. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Advantages
– Generality: can render anything

that can be intersected with a ray
– Easily allows recursion (shadows, reflections, etc.)

• Disadvantages

– Hard to implement in hardware (lacks computation
coherence, must fit entire scene in memory, bad memory
behavior)

• Not such a big point any more given general purpose GPUs
– Has traditionally been too slow for interactive applications
– Both of the above are changing rather rapidly right now!

16

Ray Casting / Tracing

17

Questions?

Call of Duty: Modern Warfare 2 by Infinity Ward

Image removed due to copyright restrictions.

• Input
– Geometric model

• Triangle vertices, vertex normals, texture coordinates

– Lighting/material model (shader)
• Light source positions, colors, intensities, etc.
• Texture maps, specular/diffuse coefficients, etc.

– Viewpoint + projection plane

• Output
– Color (+depth) per pixel

Modern Graphics Pipeline

C
ol

be
rt

&
 K

riv
an

ek

18

Image of Real-Time Rendering of the Stanford Bunny
with 40 Samples per Pixel removed due to copyright

restrictions -- please see Fig. 20-1 from http://http.

developer.nvidia.com/GPUGems3/gpugems3_ch20.html
for further details.

© Oscar Meruvia-Pastor, Daniel Rypl.
All rights reserved. This content is
excluded from our Creative Commons
license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://developer.nvidia.com/GPUGems3/gpugems3_ch20.html
http://developer.nvidia.com/GPUGems3/gpugems3_ch20.html

19

Modern Graphics Pipeline
• Project vertices to 2D

(image)

• Rasterize triangle: find
which pixels should be lit

• Test visibility (Z-buffer),
update frame buffer color

• Compute per-pixel color

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

20

Modern Graphics Pipeline
• Project vertices to 2D

(image)

• Rasterize triangle: find
which pixels should be lit
– For each pixel,

test 3 edge equations
• if all pass, draw pixel

• Compute per-pixel color
• Test visibility (Z-buffer),

update frame buffer color
© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

• Perform projection of vertices
• Rasterize triangle: find which

pixels should be lit
• Compute per-pixel color
• Test visibility,

update frame buffer color
– Store minimum distance to camera

for each pixel in “Z-buffer”
• ~same as tmin in ray casting!

– if newz < zbuffer[x,y]
 zbuffer[x,y]=new_z
 framebuffer[x,y]=new_color

21

Modern Graphics Pipeline

Z buffer frame buffer

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

For each triangle
 transform into eye space
 (perform projection)
 setup 3 edge equations
 for each pixel x,y
 if passes all edge equations
 compute z
 if z<zbuffer[x,y]
 zbuffer[x,y]=z
 framebuffer[x,y]=shade()

22

Modern Graphics Pipeline

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

For each triangle
 transform into eye space
 (perform projection)
 setup 3 edge equations
 for each pixel x,y
 if passes all edge equations
 compute z
 if z<zbuffer[x,y]
 zbuffer[x,y]=z
 framebuffer[x,y]=shade()

23

Modern Graphics Pipeline

Questions?

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

24

Modern Graphics Pipeline
• Project vertices to 2D

(image)

• Rasterize triangle: find
which pixels should be lit

• Compute per-pixel color

• Test visibility (Z-buffer),
update frame buffer

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

25

Projection
• Project vertices to 2D

(image)

• Rasterize triangle: find
which pixels should be lit

• Compute per-pixel color

• Test visibility (Z-buffer),
update frame buffer

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

• Orthographic

• Perspective

26

Orthographic vs. Perspective

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

27

Perspective in 2D

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar

28

Perspective in 2D
The projected point in

homogeneous
coordinates

(we just added w=1):

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar

29

Perspective in 2D

Projectively

equivalent

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar

30

Perspective in 2D
We’ll just copy z to w, and

get the projected point

after homogenization!

This image is in the public domain. Source: openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar

• Trivial: Just ass another dimension y and treat it like x
• Different fields of view and non-square image aspect

ratios can be accomplished by simple scaling of the x
and y axes.

31

Extension to 3D

• These projections matrices work perfectly in the
sense that you get the proper 2D projections of 3D
points.

• However, since we are flattening the scene onto the
z=1 plane, we’ve lost all information about the
distance to camera.
– We need the distance for Z buffering, i.e., figuring out

what is in front of what!

32

Caveat

33

Basic Idea: store 1/z

• z’ = 1 before homogenization
• z’=1/z after homogenization

34

Basic Idea: store 1/z

• We can transform the frustum by a modified
projection in a way that makes it a square (cube in
3D) after division by w’.

35

Full Idea: Remap the View Frustum

x
z

x’/w’

z’/w’

viewpoint

view frustum
(visible part of the scene)

The final image is obtained by merely

dropping the z coordinate after

projection (orthogonal projection)

• We can transform the frustum by a modified
projection in a way that makes it a square (cube in
3D) after division by w’.

36

The View Frustum in 2D

x
z

x’/w’

z’/w’

• (In 3D this is a truncated pyramid.)

37

The View Frustum in 2D

image xmin image xmax

• Far and near are kind of arbitrary
• They bound the depth storage precision

38

The View Frustum in 2D

image xmin image xmax

• Point of the exercise: This gives screen coordinates

and depth values for Z-buffering with unified math
– Caveat: OpenGL and DirectX define Z differently [0,1] vs.[-1,1]

39

The Canonical View Volume

x = -1 x = 1

z = -1

z = 1

40

OpenGL Form of the Projection

Input point in view

coordinates

Homogeneous coordinates

within canonical view volume

• z’=(az+b)/z =a+b/z
– where a & b depend on near & far

• Similar enough to our basic idea:
– z’=1/z

41

OpenGL Form of the Projection

• Details/more intuition in handout
– “Understanding Projections and Homogenous

Coordinates”
42

OpenGL Form of the Projection

• Perform rotation/translation/other transforms to put
viewpoint at origin and view direction along z axis
– This is the OpenGL “modelview” matrix

• Combine with projection matrix (perspective or

orthographic)
– Homogenization achieves foreshortening
– This is the OpenGL “projection” matrix

• Corollary: The entire transform from object space to

canonical view volume [-1,1]3 is a single matrix
43

Recap: Projection

• Perform rotation/translation/other transforms to put
viewpoint at origin and view direction along z axis
– This is the OpenGL “modelview” matrix

• Combine with projection matrix (perspective or

orthographic)
– Homogenization achieves foreshortening
– This is the OpenGL “projection” matrix

• Corollary: The entire transform from object space to

canonical view volume [-1,1]3 is a single matrix
44

Recap: Projection Questions?

45

Modern Graphics Pipeline
• Project vertices to 2D

(image)
– We now have screen

coordinates
• Rasterize triangle: find

which pixels should be lit

• Compute per-pixel color

• Test visibility (Z-buffer),
update frame buffer

© Khronos Group. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

• Primitives are “continuous” geometric objects;
screen is discrete (pixels)

46

2D Scan Conversion

• Primitives are “continuous” geometric objects;
screen is discrete (pixels)

• Rasterization computes a discrete approximation in
terms of pixels (how?)

47

2D Scan Conversion

• The triangle’s 3D edges project to line segments in
the image (thanks to planar perspective)
– Lines map to lines, not curves

48

Edge Functions

Edge Functions

49

• The triangle’s 3D edges project to line segments in
the image (thanks to planar perspective)

• The interior of the triangle is the set of points that is
inside all three halfspaces defined by these lines

50

Edge Functions

• The triangle’s 3D edges project to line segments in
the image (thanks to planar perspective)

• The interior of the triangle is the set of points that is
inside all three halfspaces defined by these lines

• Compute E1, E2 , E3 coefficients from projected
vertices
– Called “triangle setup”, yields ai, bi, ci for i=1,2,3

51

Brute Force Rasterizer

52

Brute Force Rasterizer

Problem?

• Compute E1, E2 , E3 coefficients from projected
vertices

• For each pixel (x, y)
– Evaluate edge functions at pixel center
– If all non-negative, pixel is in!

• Compute E1, E2 , E3 coefficients from projected
vertices

• For each pixel (x, y)
– Evaluate edge functions at pixel center
– If all non-negative, pixel is in!

53

Brute Force Rasterizer

If the triangle is
small, lots of useless
computation if we
really test all pixels

• Improvement: Scan over only the pixels that overlap
the screen bounding box of the triangle

• How do we get such a bounding box?
– Xmin, Xmax, Ymin, Ymax of the projected triangle vertices

54

Easy Optimization

For every triangle

Compute projection for vertices, compute the Ei

Compute bbox, clip bbox to screen limits

For all pixels in bbox

Evaluate edge functions Ei

If all > 0

 Framebuffer[x,y] = triangleColor

55

Rasterization Pseudocode

Bounding box clipping is easy,

just clamp the coordinates to

the screen rectangle

Note: No

visibility

For every triangle

Compute projection for vertices, compute the Ei

Compute bbox, clip bbox to screen limits

For all pixels in bbox

Evaluate edge functions Ei

If all > 0

 Framebuffer[x,y] = triangleColor

56

Rasterization Pseudocode

Bounding box clipping is easy,

just clamp the coordinates to

the screen rectangle

Note: No

visibility

Questions?

For every triangle

Compute projection for vertices, compute the Ei

Compute bbox, clip bbox to screen limits

For all pixels in bbox

Evaluate edge functions aix + biy + ci

If all > 0

 Framebuffer[x,y] = triangleColor

57

Can We Do Better?

For every triangle

Compute projection for vertices, compute the Ei

Compute bbox, clip bbox to screen limits

For all pixels in bbox

Evaluate edge functions aix + biy + ci

If all > 0

 Framebuffer[x,y] = triangleColor

58

Can We Do Better?

These are linear functions of

the pixel coordinates (x,y), i.e.,

they only change by a constant

amount when we step from x to

x+1 (resp. y to y+1)

For every triangle

ComputeProjection

Compute bbox, clip bbox to screen limits

For all scanlines y in bbox

Evaluate all Ei’s at (x0,y): Ei = aix0 + biy + ci

For all pixels x in bbox
 If all Ei>0

 Framebuffer[x,y] = triangleColor

 Increment line equations: Ei += ai

• We save ~two multiplications and

two additions per pixel when the
triangle is large

59

Incremental Edge Functions

For every triangle

ComputeProjection

Compute bbox, clip bbox to screen limits

For all scanlines y in bbox

Evaluate all Ei’s at (x0,y): Ei = aix0 + biy + ci

For all pixels x in bbox
 If all Ei>0

 Framebuffer[x,y] = triangleColor

 Increment line equations: Ei += ai

• We save ~two multiplications and

two additions per pixel when the
triangle is large

60

Incremental Edge Functions

Can also zig-zag to avoid

reinitialization per scanline,

just initialize once at x0, y0

• For a really HC piece of rasterizer engineering, see
the hierarchical Hilbert curve rasterizer by McCool,
Wales and Moule.
– (Hierarchical? We’ll look at that next..)

61

Questions?

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.5738&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.5738&rep=rep1&type=pdf

• We compute the line equation for many useless
pixels

• What could we do?

62

Can We Do Even Better?

63

Indeed, We Can Be Smarter

?

• Hierarchical rasterization!
– Conservatively test blocks of pixels before

going to per-pixel level (can skip large blocks at once)
– Usually two levels

64

Indeed, We Can Be Smarter

Conservative tests of
axis-aligned blocks vs.
edge functions are not
very hard, thanks to
linearity. See Akenine-
Möller and Aila, Journal
of Graphics Tools 10(3),
2005.

http://akpeters.metapress.com/content/2646132467230513/
http://akpeters.metapress.com/content/2646132467230513/
http://akpeters.metapress.com/content/2646132467230513/
http://akpeters.metapress.com/content/2646132467230513/

• Hierarchical rasterization!
– Conservatively test blocks of pixels before

going to per-pixel level (can skip large blocks at once)
– Usually two levels

65

Indeed, We Can Be Smarter

Can also test if an entire
block is inside the
triangle; then, can skip
edge functions tests for
all pixels for even further
speedups.(Must still test
Z, because they might
still be occluded.)

• Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John
Austin, Frederick Brooks, Jr., John Eyles and John Poulton, “Fast
Spheres, Shadows, Textures, Transparencies, and Image
Enhancements in Pixel-Planes”, Proceedings of SIGGRAPH ‘85
(San Francisco, CA, July 22–26, 1985). In Computer Graphics,
v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985.

• Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”,
Proceedings of SIGGRAPH ‘88 (Atlanta, GA, August 1–5, 1988).
In Computer Graphics, v22n4 (August 1988), ACM SIGGRAPH,
New York, NY, 1988. Figure 7: Image from the spinning teapot
performance test.

• Marc Olano Trey Greer, “Triangle Scan Conversion using 2D
Homogeneous Coordinates”, Graphics Hardware 97
http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

66

Further References

http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

• Compute the boundary pixels using line rasterization

67

Oldschool Rasterization

• Compute the boundary pixels using line rasterization
• Fill the spans

68

Oldschool Rasterization

• Compute the boundary pixels using line rasterization
• Fill the spans

69

Oldschool Rasterization

More annoying to

implement than edge

functions

Not faster unless

triangles are huge

• Compute the boundary pixels using line rasterization
• Fill the spans

70

Oldschool Rasterization

More annoying to

implement than edge

functions

Not faster unless

triangles are huge

Questions?

71

What if the pz is > eyez?

(eye
x
, eye

y
, eye

z
)

image plane

z axis → +

72

What if the pz is < eyez?

(eye
x
, eye

y
, eye

z
)

image plane

z axis → +

73

What if the pz = eyez?

(eye
x
, eye

y
, eye

z
)

image plane

???

z axis → +

When w’ = 0, point projects to infinity
(homogenization is division by w’)

74

A Solution: Clipping

(eye
x
, eye

y
, eye

z
)

image plane

"clip" geometry to

view frustum, discard

outside parts

z axis → +

z=near
z=far

75

Clipping

bottom

top

right

left

near

far

• Eliminate portions of objects
outside the viewing frustum

• View Frustum
– boundaries of the image

plane projected in 3D
– a near & far

clipping plane
• User may define

additional clipping
planes

Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.

• Avoid degeneracies
– Don’t draw stuff

behind the eye
– Avoid division

by 0 and overflow

76

Why Clip?

z=near

z=far

• “View Frustum Culling”
– Use bounding volumes/hierarchies to test whether any

part of an object is within the view frustum
• Need “frustum vs. bounding volume” intersection test
• Crucial to do hierarchically when scene has lots of objects!
• Early rejection (different from clipping)

77

Related Idea

See e.g. Optimized view
frustum culling
algorithms for bounding
boxes, Ulf Assarsson
and Tomas Möller,
journal of graphics
tools, 2000.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf

• “View Frustum Culling”
– Use bounding volumes/hierarchies to test whether any

part of an object is within the view frustum
• Need “frustum vs. bounding volume” intersection test
• Crucial to do hierarchically when scene has lots of objects!
• Early rejection (different from clipping)

78

Related Idea

See e.g. Optimized view
frustum culling
algorithms for bounding
boxes, Ulf Assarsson
and Tomas Möller,
journal of graphics
tools, 2000.

Questions?

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.1491&rep=rep1&type=pdf

• Idea: avoid projection (and division by zero) by
performing rasterization in 3D
– Or equivalently, use 2D homogenous coordinates

(w’=z after the projection matrix, remember)

• Motivation: clipping is annoying

• Marc Olano, Trey Greer: Triangle scan conversion
using 2D homogeneous coordinates, Proc. ACM
SIGGRAPH/Eurographics Workshop on Graphics
Hardware 1997

79

Homogeneous Rasterization

http://cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf
http://cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf
http://cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf
http://cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

Homogeneous Rasterization

2D rasterization

80

81

Homogeneous Rasterization

2D rasterization 3D (homogenous)
rasterization

• Replace 2D edge equation by 3D plane equation
– Plane going through 3D edge and viewpoint
– Still a halfspace, just 3D

• Replace 2D edge equation by 3D plane equation
– Treat pixels as 3D points (x, y, 1) on image plane, test for

containment in 3 halfspaces just like edge functions

82

Homogeneous Rasterization

2D rasterization 3D (homogenous)
rasterization

Given 3D triangle
 setup plane equations
 (plane through viewpoint & triangle edge)
 For each pixel x,y
 compute plane equations for (x,y,1)
 if all pass, draw pixel

83

Homogeneous Rasterization

3D triangle 2D pixel
(x, y, 1)

plane equation

plane equation

• Works for triangles behind eye
• Still linear, can evaluate incrementally/hierarchically

like 2D

84

Homogeneous Rasterization

3D triangle

2D pixel
(x’, y’, 1)

• Rasterizes with plane tests instead of edge tests
• Removes the need for clipping!

85

Homogeneous Rasterization Recap

3D triangle

2D pixel
(x’, y’, 1)

• Rasterizes with plane tests instead of edge tests
• Removes the need for clipping!

86

Homogeneous Rasterization Recap

3D triangle

2D pixel
(x’, y’, 1)

Questions?

87

Modern Graphics Pipeline
• Perform projection of

vertices

• Rasterize triangle: find
which pixels should be lit

• Compute per-pixel color

• Test visibility, update frame
buffer

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

• Modern graphics hardware enables the execution of
rather complex programs to compute the color of every
single pixel
• More later

88

Pixel Shaders

 iridescence

Procedural texture,
Anisotropic brdf

Translucence
Backlighting

© NVIDIA. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

89

Modern Graphics Pipeline
• Perform projection of

vertices

• Rasterize triangle: find
which pixels should be lit

• Compute per-pixel color

• Test visibility, update frame
buffer

© Khronos Group. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

• How do we know which parts are visible/in front?

90

Visibility

• Maintain intersection with closest object

91

Ray Casting

• In ray casting, use intersection with closest t
• Now we have swapped the loops (pixel, object)
• What do we do?

92

Visibility

• In addition to frame buffer (R, G, B)
• Store distance to camera (z-buffer)
• Pixel is updated only if newz is closer

than z-buffer value

93

Z buffer

For every triangle

Compute Projection, color at vertices

Setup line equations

Compute bbox, clip bbox to screen limits

For all pixels in bbox

Increment line equations

Compute curentZ

Compute currentColor

If all line equations>0 //pixel [x,y] in triangle

If currentZ<zBuffer[x,y] //pixel is visible

 Framebuffer[x,y]=currentColor

zBuffer[x,y]=currentZ

94

Z-buffer pseudo code

95

Works for hard cases!

• How do we get Z?
• Texture Mapping?

96

More questions for next time

• Next time:
Screen-space interpolation, visibility, shading

97

That’s All For Today!

U
nc

ha
rte

d
2

by
 N

au
gh

ty
 D

og
 /

S
on

y

Screenshot from the video game Uncharted 2 has been removed due to copyright restrictions.

MIT OpenCourseWare
http://ocw.mit.edu

 6.837 Computer Graphics
 Fall 2012

 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	MIT6_837F12_Lec21.pdf
	Pages from CoordinationGamesp

