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Today 

• Lots of randomness! 

Dunbar & Humphreys 2 
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Today 

• Global Illumination 
– Rendering Equation 
– Path tracing 

• Monte Carlo integration 
• Better sampling 

– importance 
– stratification 
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Global Illumination 
• So far, we've seen only direct lighting (red here) 
• We also want indirect lighting 

– Full integral of all directions (multiplied by BRDF) 
– In practice, send tons of random rays 
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Direct Illumination 

5 Courtesy of Henrik Wann Jensen. Used with permission.



Global Illumination (with Indirect) 

6 Courtesy of Henrik Wann Jensen. Used with permission.



Global Illumination 

• So far, we only used the BRDF for point lights 
– We just summed over all the point light sources 

• BRDF also describes how indirect illumination 
reflects off surfaces 
– Turns summation into integral over hemisphere 
– As if every direction had a light source 
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Reflectance Equation, Visually 

outgoing light to 
direction v 

incident light 
from direction 
omega 

the BRDF cosine term 

v 

Sum (integrate) 
over every 

direction on the 
hemisphere, 

modulate incident 
illumination by 

BRDF 

Lin 

Lin 

Lin 

Lin 

8 



The Reflectance Equation 

 
 
 

• Where does Lin come from? 

x 
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The Reflectance Equation 

 
 
 

• Where does Lin come from? 
– It is the light reflected towards x from the surface point in 

direction l ==> must compute similar integral there! 
• Recursive! 

 

x 
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• Where does Lin come from? 
– It is the light reflected towards x from the surface point in 

direction l ==> must compute similar integral there! 
• Recursive! 

– AND if x happens 
to be a light source, 
we add its contribution 
directly 
 

The Rendering Equation 

x 
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• The rendering equation describes the appearance of 
the scene, including direct and indirect illumination 
– An “integral equation”, the unknown solution function L 

is both on the LHS and on the RHS inside the integral 
• Must either discretize or use Monte Carlo integration 

– Originally described by Kajiya and Immel et al. in 1986 
– More on 6.839 

• Also, see book references towards the end 

The Rendering Equation 
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The Rendering Equation 

• Analytic solution is usually impossible 
• Lots of ways to solve it approximately 
• Monte Carlo techniques use random samples for 

evaluating the integrals 
– We’ll look at some simple method in a bit... 

• Finite element methods discretize the solution using 
basis functions (again!) 
– Radiosity, wavelets, precomputed radiance transfer, etc. 
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Questions? 
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How To Render Global 
Illumination? 

Lehtinen et al. 2008 
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Ray Casting 

• Cast a ray from the eye through each pixel  
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Ray Tracing 

• Cast a ray from the eye through each pixel  
• Trace secondary rays (shadow, reflection, refraction) 
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“Monte-Carlo Ray Tracing” 
• Cast a ray from the eye through each pixel 
• Cast random rays from the hit point to evaluate 

hemispherical integral using random sampling 
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“Monte-Carlo Ray Tracing” 
• Cast a ray from the eye through each pixel 
• Cast random rays from the visible point  
• Recurse 
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“Monte-Carlo Ray Tracing” 
• Cast a ray from the eye through each pixel 
• Cast random rays from the visible point  
• Recurse 
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“Monte-Carlo Ray Tracing” 

• Systematically sample light sources at each hit 
– Don’t just wait the rays will hit it by chance 
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Results 
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Monte Carlo Path Tracing 
• Trace only one secondary ray per recursion 

– Otherwise number of rays explodes! 
• But send many primary rays per pixel (antialiasing) 
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Monte Carlo Path Tracing 
• Trace only one secondary ray per recursion 

– Otherwise number of rays explodes! 
• But send many primary rays per pixel (antialiasing) 

Again, trace 
shadow rays 
from each 
intersection 
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Monte Carlo Path Tracing 
• We shoot one path from the eye at a time 

– Connect every surface point on the way to the light by a 
shadow ray 

– We are randomly sampling the space of all possible light 
paths between the source and the camera 
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• 10 paths/pixel 

Path Tracing Results 
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Note: More noise. This is not a coincidence; the integrand 
has higher variance (the BRDFs are “spikier”). 

• 10 paths/pixel 

Path Tracing Results: Glossy Scene 
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• 100 paths/pixel 

Path Tracing Results: Glossy Scene 
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Importance of Sampling the Light 
Without explicit  
light sampling 

With explicit  
light sampling 

1 path 
per pixel 

4 paths 
per pixel 

✔ 

✔ 
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Why Use Random Numbers? 

• Fixed random sequence 
• We see the structure in the error 
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Demo  

• http://madebyevan.com/webgl-path-tracing/ 
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For more demo/experimentation 

• http://www.mitsuba-renderer.org/ 
• http://www.pbrt.org/ 
• http://www.luxrender.net/en_GB/index 
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Questions? 

• Vintage path tracing by Kajiya 
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Path Tracing is costly 
• Needs tons of rays per pixel! 
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Global Illumination (with Indirect) 
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Indirect Lighting is Mostly Smooth 
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Irradiance Caching 

• Indirect illumination is smooth 
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Irradiance Caching 

• Indirect illumination is smooth 
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Irradiance Caching 

• Indirect illumination is smooth 
==> Sample sparsely, interpolate nearby values 
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Irradiance Caching 
• Store the indirect illumination 
• Interpolate existing cached values 
• But do full calculation for direct lighting 
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Irradiance Caching 

• Yellow dots:  
indirect diffuse sample points 

The irradiance cache tries to 
adapt sampling density to 
expected frequency content of 
the indirect illumination (denser 
sampling near geometry) 
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Radiance by Greg Ward 

• The inventor of irradiance caching 
• http://radsite.lbl.gov/radiance/ 

42 

Image removed due to copyright restrictions.  Please see above link for further details. 

http://radsite.lbl.gov/radiance/


Questions? 

Image: Pure 
43 
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Photon Mapping 

• Preprocess: cast rays from light sources, let them 
bounce around randomly in the scene 

• Store “photons” 
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Photon Mapping 

• Preprocess: cast rays from light sources 
• Store photons (position + light power + incoming direction) 
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The Photon Map 

• Efficiently store photons for fast access 
• Use hierarchical spatial structure (kd-tree) 
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Photon Mapping - Rendering 
• Cast primary rays 
• For secondary rays 

– reconstruct irradiance using adjacent stored photon 
– Take the k closest photons 

• Combine with irradiance caching and a number of other techniques 

Shooting one bounce of 
secondary rays and 
using the density 
approximation at those 
hit points is called final 

gathering. 
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Photon Map Results 
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• Many materials exhibit subsurface scattering 
– Light doesn’t just reflect off the surface 
– Light enters, scatters around, and exits at another point 
– Examples: Skin, marble, milk 

More Global Illumination Coolness 
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More Subsurface Scattering 

Photograph Rendering 
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That Was Just the Beginning 

• Tons and tons of other Monte Carlo techniques 
– Bidirectional Path Tracing 

• Shoot random paths not just from camera but also light, connect 
the path vertices by shadow rays 

– Metropolis Light Transport 
• And Finite Element Methods 

– Use basis functions instead of random sampling 
– Radiosity (with hierarchies & wavelets) 
– Precomputed Radiance Transfer 

 
• This would warrant a class of its own! 
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What Else Can We Integrate? 
• Pixel: antialiasing 
• Light sources: Soft shadows 
• Lens: Depth of field 
• Time: Motion blur 
• BRDF: glossy reflection 
• (Hemisphere: indirect lighting) 
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Domains of Integration 

• Pixel, lens (Euclidean 2D domain) 
– Antialiasing filters, depth of field 

• Time (1D) 
– Motion blur 

• Hemisphere 
– Indirect lighting 

• Light source 
– Soft shadows 

Famous motion blur image 
from Cook et al. 1984 
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• Rendering glossy reflections 
• Random reflection rays around mirror direction 

– 1 sample per pixel 

Motivational Eye Candy 
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• Rendering glossy reflections 
• Random reflection rays around mirror direction 

– 256 samples per pixel 

Motivational Eye Candy 
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Error/noise Results in Variance 
• We use random rays 

– Run the algorithm again  get different image 

• What is the noise/variance/standard deviation? 
– And what’s really going on anyway? 
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Integration 
• Compute integral of arbitrary function 

– e.g. integral over area light source, over hemisphere, etc. 

• Continuous problem  we need to discretize 
– Analytic integration never works because of visibility and other 

nasty details 
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Integration 

• You know trapezoid, Simpson’s rule, etc. 
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Monte Carlo Integration 

• Monte Carlo integration: use random samples and 
compute average 
– We don’t keep track of spacing between samples 
– But we kind of hope it will be 1/N on average 
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Monte Carlo Integration 

• S is the integration domain 
– Vol(S) is the volume (measure) of S 

• {xi} are independent uniform random points in S 
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Monte Carlo Integration 

• S is the integration domain 
– Vol(S) is the volume (measure) of S 

• {xi} are independent uniform random points in S 
• The integral is the average of f times the volume of S 
• Variance is proportional to 1/N 

– Avg. error is proportional 1/sqrt(N) 
– To halve error, need 4x samples 
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Monte Carlo Computation of  

• Take a square 
• Take a random point (x,y) in the square 
• Test if it is inside the ¼ disc (x2+y2 < 1) 
• The probability is  /4  

x 

y Integral of the function that 
is one inside the circle, zero 
outside 
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Monte Carlo Computation of  

• The probability is  /4  
• Count the inside ratio n = # inside / total # trials 
•    n * 4 
• The error depends on the number or trials 

Demo 
def piMC(n):     
   success = 0     
   for i in range(n):                       x=random.random()        
 y=random.random()         
 if x*x+y*y<1: success = success+1         return 
4.0*float(success)/float(n) 
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Why Not Use Simpson Integration? 

• You’re right, Monte Carlo is not very efficient for 
computing  

• When is it useful? 
– High dimensions: Convergence is independent of 

dimension! 
– For d dimensions, Simpson requires Nd domains (!!!) 
– Similar explosion for other quadratures (Gaussian, etc.) 
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Advantages of MC Integration 

• Few restrictions on the integrand 
– Doesn’t need to be continuous, smooth, ... 
– Only need to be able to evaluate at a point 

• Extends to high-dimensional problems 
– Same convergence  

• Conceptually straightforward 
• Efficient for solving at just a few points 
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Disadvantages of MC 

• Noisy 
• Slow convergence 
• Good implementation is hard 

– Debugging code 
– Debugging math 
– Choosing appropriate techniques 
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Questions? 

• Images by Veach and Guibas, SIGGRAPH 95 

Naïve sampling strategy Optimal sampling strategy 
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Hmmh... 

• Are uniform samples the best we can do? 
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Smarter Sampling 

Sample a non-uniform probability 
Called “importance sampling” 
Intuitive justification: Sample more in places where there are 

likely to be larger contributions to the integral 
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Example: Glossy Reflection 

• Integral over hemisphere 
• BRDF times cosine times incoming light 

Slide courtesy of Jason Lawrence 
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Sampling a BRDF Slide courtesy of Jason Lawrence 
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Sampling a BRDF Slide courtesy of Jason Lawrence 
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Sampling a BRDF Slide courtesy of Jason Lawrence 
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Importance Sampling Math 

 
 
 
 

• Like before, but now {xi} are not uniform but drawn 
according to a probability distribution p 

– Uniform case reduces to this with p(x) = const. 
• The problem is designing ps that are easy to sample 

from and mimic the behavior of f 
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Monte Carlo Path Tracing 

http://www.youtube.com/watch?v=mYMkAnm-PWw 75 
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Questions? 

Traditional importance function Better importance by Lawrence et al.  

1200 Samples/Pixel 
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Stratified Sampling 

• With uniform sampling, we can get unlucky 
– E.g. all samples clump in a corner 
– If we don’t know anything of the integrand, 

we want a relatively uniform sampling 
• Not regular, though, because of aliasing! 

 

• To prevent clumping, subdivide domain   
into non-overlapping regions i 
– Each region is called a stratum 

• Take one random sample per i 
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Stratified Sampling Example 

• When supersampling, instead of taking KxK regular 
sub-pixel samples, do random jittering within each 
KxK sub-pixel 
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Stratified Sampling Analysis 

• Cheap and effective 
• But mostly for low-dimensional domains 

– Again, subdivision of N-D needs Nd domains like 
trapezoid, Simpson’s, etc.! 
 

• With very high dimensions, Monte Carlo is pretty 
much the only choice 
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Questions? 
• Image from the ARNOLD Renderer by Marcos Fajardo 
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• 6.839! 
• Eric Veach’s PhD dissertation 

http://graphics.stanford.edu/papers/veach_thesis/ 
 
 
 
 

• Physically Based Rendering  
by Matt Pharr, Greg Humphreys 

For Further Information... 
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That’s All for today 

Image: Fournier and 
Reeves, SIGGRAPH 86 83 
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