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BRDF in Matrix II & III 
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• All materials seen so far are the same everywhere 
– In other words, we are assuming the BRDF is independent 

of the surface point x 

– No real reason to make that assumption 
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Spatial Variation 
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• We will allow BRDF parameters to vary over space 
– This will give us much more complex surface appearance 
– e.g. diffuse color kd vary with x  
– Other parameters/info can vary too: ks, exponent, normal 
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Spatial Variation 
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• From data : texture mapping  
– read color and other information  

from 2D images 
 
 
 

• Procedural : shader 
– write little programs that compute 

color/info as a function of location 
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Two Approaches 
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Effect of Textures 

Courtesy of Jeremy Birn.



7 

Texture Mapping 

Image of a cartoon of a man applying wall paper has been removed due to copyright restrictions. 
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Texture Mapping 
3D model Texture mapped model 

Image: Praun et al. 
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Texture Mapping 
Texture 

mapped model 

Image: Praun et al. 

Texture map (2D image) 

We need a function 

that associates each 

surface point with a 

2D coordinate in the 

texture map 
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Texture Mapping 
Texture 

mapped model 

Image: Praun et al. 

Texture map (2D image) 

For each point 

rendered, look up 

color in texture map 
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• Each vertex P stores 2D (u, v) “texture coordinates” 
– UVs determine the 2D location in the texture for the vertex  
– We will see how to specify them later 

• Then we interpolate using barycentrics 
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UV Coordinates 

(u0, v0) 

(u1, v1) 
(u2, v2) u 

v 
(αu0+βu1+γu2, 
αv0+βv1+γv2) 



• Each vertex P stores 2D (u, v) “texture coordinates” 
– UVs determine the 2D location in the texture for the vertex  
– We will see how to specify them later 

• Then we interpolate using barycentrics 
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UV Coordinates 

(u0, v0) 

(u1, v1) 
(u2, v2) u 

v 

✔ 



• Ray cast pixel (x, y), get visible point and α, β, γ 
• Get texture coordinates (u, v) at that point 

– Interpolate from vertices using barycentrics 
• Look up texture color 

using UV coordinates 
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Pseudocode – Ray Casting 

Scene 

Texture map 

Leonard McMillan, Computer Science at the University of North Carolina in Chapel Hill.



• Per-vertex (u, v) “texture coordinates” are specified: 
– Manually, provided by user (tedious!) 
– Automatically using parameterization optimization 
– Mathematical mapping (independent of vertices) 
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UV Coordinates? 

(u0, v0) 

(u1, v1) 
(u2, v2) u 

v 

✔ 



• Goal : “flatten” 3D object onto 2D UV coordinates 
• For each vertex, find coordinates U,V such that 

distortion is minimized 
– distances in UV correspond to distances on mesh 
– angle of 3D triangle same as angle of triangle in UV plane 

• Cuts are usually required (discontinuities) 
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Texture UV Optimization 
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• For this course, assume UV given per vertex 
• Mesh Parameterization: Theory and Practice” 

– Kai Hormann, Bruno Lévy and Alla Sheffer ACM SIGGRAPH Course Notes, 2007 

• http://alice.loria.fr/index.php/publications.html?redir
ect=0&Paper=SigCourseParam@2007&Author=Lev
y 
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To Learn More 
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Slide from Epic Games 

3D Model UV Mapping 
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• Information we need: 
• Per vertex 

– 3D coordinates 
– Normal 
– 2D UV coordinates 

• Other information 
– BRDF (often same for the whole object, but could vary) 
– 2D Image for the texture map 
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3D Model 
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Questions? 
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• What of non-triangular geometry? 
– Spheres, etc. 

 
• No vertices, cannot specify UVs that way! 

 
• Solution: Parametric Texturing 

– Deduce (u, v) from (x, y, z) 
– Various mappings are possible.... 
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Mathematical Mapping 



• Planar 
– Vertex UVs and 

linear interpolation 
is a special case! 

• Cylindrical 
• Spherical  
• Perspective  

Projection 
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Common Texture Coordinate Mappings 
Planar 

Spherical 

Spherical 

Images removed due to copyright restrictions. 
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Projective Mappings 
• A slide projector 

– Analogous to a camera! 
– Usually perspective 

projection tells us where 
points project to in our 
image plane 

– This time we will use 
these coordinates as UVs 

• No need to specify  
texture coordinates  
explicitly 

Image removed due to copyright restrictions. 
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Projective Mappings 
• We are given the 

camera matrix H of the 
slide projector 

• For a given 3D point P 
• Project onto 2D space 

of slide projector: HP 
– results in 2D texture 

coordinates 

Image removed due to copyright restrictions. 



• Modeling from photographs 
• Using input photos as textures 
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Projective Texture Example 

Figure from Debevec, Taylor & Malik 
http://www.debevec.org/Research 
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Video removed due to copyright restrictions.  Please see  
http://www.youtube.com/watch?v=RPhGEiM_6lM for further details. 
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Questions? 



• Specify texture coordinates (u,v) at each vertex 
• Canonical texture coordinates (0,0) → (1,1) 

– Wrap around when coordinates are outside (0, 1) 

Texture Tiling 

seamless tiling (repeating) tiles with visible seams (0,0) (3,0) 

(0,3) 

(0,0) (3,0) 

(0,3) 

(0,0) 

(1,1) 

(0,0) 

(1,1) 

Note the range (0,1) unlike 

normalized screen coordinates! 
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Questions? 



• Texture mapping can be used to alter some or all 
of the constants in the illumination equation 
– Diffuse color kd, specular exponent q, specular color ks... 
– Any parameter in any BRDF model! 

 
 
 

– kd in particular is often read from a  texture map 
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Texture Mapping & Illumination 

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color 
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Gloss Mapping Example 

Spatially varying kd and ks 

R
on

 F
ra

zi
er
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Questions? 



• The normal vector is really important in conveying 
the small-scale surface detail 
– Remember cosine dependence 
– The human eye is really good at 

picking up shape cues from lighting! 
 

• We can exploit this and look up also the normal 
vector from a texture map 
– This is called “normal mapping” or “bump mapping” 
– A coarse mesh combined with detailed normal maps can 

convey the shape very well! 
32 

We Can Go Even Further... 



• For each shaded point, normal is given by a 2D 
image normalMap that stores the 3D normal 

 For a visible point 
interpolate UV using barycentric  

       // same as texture mapping 
Normal = normalMap[U,V] 
compute shading (BRDF) using this normal 

33 

Normal Mapping 
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Normal Map Example 

Original Mesh 
4M triangles 

Paolo Cignoni 

Image courtesy of Maksim on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Normal Map Example 

Simplified mesh, 
500 triangles 

Simplified mesh + 
normal mapping 

Paolo Cignoni 

Image courtesy of Maksim on Wikimedia Commons. License: CC-BY-SA. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Normal Map Example 

Diffuse texture kd 

Normal Map 

Final render 

Models and images: Trevor Taylor 
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Generating Normal Maps 

• Model a detailed mesh 
• Generate a UV parameterization for the mesh 

– A UV mapping such that each 3D point has unique 
image coordinates in the 2D texture map 

– This is a difficult problem, but tools are available 
• E.g., the DirectX SDK has functionality to do this 

• Simplify the mesh (again, see DirectX SDK) 
• Overlay simplified and original model 
• For each point P on the simplified mesh, find 

closest point P’ on original model (ray casting) 
• Store the normal at P’ in the normal map. Done! 

http://msdn.microsoft.com/en-us/directx/default.aspx


• You can store an object-space normal 
– Convenient if you have a 

unique parameterization 
• ....but if you want to use a tiling 
 normal map, this will not work 

– Must account for the curvature 
of the object! 

– Think of mapping this diffuse+normal 
map combination on a cylindrical tower 

• Solution: Tangent space normal map 
– Encode a “difference” from the 

geometric normal in a local coord. system 38 

Normal Map Details 
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Questions? 
Epic Games 

Image from Epic Games has been removed due to copyright restrictions. 



• Functions executed when light interacts with a 
surface 

• Constructor: 
– set shader parameters  

• Inputs: 
– Incident radiance 
– Incident and reflected light directions 
– Surface tangent basis (anisotropic shaders only) 

• Output: 
– Reflected radiance 
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Shaders (Material class) 



• Initially for production (slow) rendering 
– Renderman in particular 

• Now used for real-time (Games) 
– Evaluated by graphics hardware 
– More later in the course 

 
• Often makes heavy use of texture mapping 
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Shader 
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Questions? 
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Procedural Textures 

Image by Turner Whitted 

• Alternative to 
texture mapping 

• Little program that 
computes color as a 
function of x,y,z: 

f(x,y,z) color 

© Turner Whitted, Bell Laboratories. All rights reserved. This content is excluded from our
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• Advantages: 
– easy to implement in ray tracer  
– more compact than texture maps 

(especially for solid textures)  
– infinite resolution 

 
• Disadvantages 

– non-intuitive  
– difficult to match existing texture 
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Procedural Textures 
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Questions? 



• Critical component of  
procedural textures 

• Pseudo-random function 
– But continuous 
– band pass (single scale) 

• Useful to add lots of visual detail 
http://www.noisemachine.com/talk1/index.html 
http://mrl.nyu.edu/~perlin/doc/oscar.html 
http://mrl.nyu.edu/~perlin/noise/ 
http://en.wikipedia.org/wiki/Perlin_noise 
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm  
 (not really Perlin noise but very good) 
http://portal.acm.org/citation.cfm?id=325247  
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Perlin Noise 
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• Pseudo random 
• For arbitrary dimension 

– 4D is common for animation 
• Smooth 
• Band pass (single scale) 
• Little memory usage 

 
• How would you do it? 
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Requirements 



• Cubic lattice  
• Zero at vertices 

– To avoid low frequencies 
• Pseudo-random gradient  

at vertices 
– define local linear functions 

• Splines to interpolate the values  
to arbitrary 3D points 
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Perlin Noise 



• 0 at integer locations 
• Pseudo-random derivative (1D gradient)  

at integer locations 
– define local linear functions 

• Interpolate at location P 

1D Noise 
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noise 
value 

x P 
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1D Noise: Reconstruct at P 

noise 
value 

x 

dx 

G1 G2 
P 

• dx: fractional x coordinate 
• Gradients G1 and G2 at neighboring vertices 

– Scalars in 1D. They are 3D vectors in 3D 
• We know that noise is zero at vertices 
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1D Noise: Reconstruct at P 

noise 
value 

x 

dx 

G1 G2 

n2 

n1 
P 

• Compute the values from the two neighboring 
linear functions: n1 = dx*G1; n2=(dx-1)*G2 
– dot product in 3D. 
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1D Noise: Reconstruct at P 

noise 
value 

x 

dx 

G1 G2 

w1 w2 
n2 

n1 
P 

• Compute the values from the two neighboring 
linear functions: n1 = dx*G1; n2=(dx-1)*G2 
– dot product in 3D 

• Weight w1=3dx2–2dx3 and w2=3(1–dx)2–2(1–dx)3
 

– ie: noise=w1 G1 dx + w2 G2 (dx-1) 



• Given an input point P 
• For each of its neighboring grid points:  

– Get the "pseudo-random" gradient vector G 
– Compute linear function (dot product G·dP)  

• Take weighted sum,  
using separable cubic  
weights  

– [demo in 2D] 
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Algorithm in 3D 

http://www.noisemachine.com/talk1/java/noisegrid.html


• Precompute (1D) table of n gradients G[n] 
• Precompute (1D) permutation P[n]  
• For 3D grid point i, j, k :  

G(i,j,k) = G[ ( i + P[ (j + P[k]) mod n ] ) mod n ]  
 
 

• In practice only n gradients are stored! 
– But optimized so that they are well distributed 
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Computing Pseudo-random Gradients 



• A scale is also called an octave in noise parlance 
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Noise At One Scale 
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• A scale is also called an octave in noise parlance 
• But multiple octaves 

are usually used,  
where the scale  
between two octaves 
is multiplied by 2 
– hence the name 

octave 
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Noise At Multiple Scales 
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• That is, each octave f has weight 1/f 
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Sum 1/f noise 
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• Absolute value introduces C1 discontinuities 
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sum 1/f |noise| 

 
• a.k.a. turbulence 
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• Looks like marble! 
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sin (x + sum 1/f |noise|) 
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sum 1/f(noise) sum 1/f( |noise| ) 
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Comparison 
•noise                               sin(x + sum 1/f( |noise| ))  
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Questions? 



• Marble 
– recall sin (x[0] + sum 1/f |noise|)  
– BoringMarble = colormap (sin(x[0]) 
– Marble = colormap (sin(x[0]+turbulence)) 
– http://legakis.net/justin/MarbleApplet/  

• Wood 
– replace x (or parallel plane)  

by radius 
– Wood = colormap (sin(r+turbulence)) 
– http://www.connectedpixel.com/blog/texture/wood 
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Noise For Solid Textures 

© Ken Perlin. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://legakis.net/justin/MarbleApplet/
http://www.connectedpixel.com/blog/texture/wood


• The corona was made as follows:  
– Create a smooth gradient function the drops off 

radially from bright yellow to dark red.  
– Phase shift this function by adding a turbulence 

texture to its domain.  
– Place a black cutout disk over the image.  

• Animation 
– Scale up over time 
– Use higher dim noise (for time) 
– http://www.noisemachine.com/talk1/imgs/flame500.html  
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Corona 

Slides by Ken Perlin 

Image of corona removed due to copyright restrictions.  
Please see the link below for further details. 

http://www.noisemachine.com/talk1/imgs/flame500.html
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Other Cool Usage: Displacement, Fur 
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Questions? 

Image removed due to copyright restrictions.  Please the image of “blueglass.gif” from 
http://mrl.nyu.edu/~perlin/imgs/imgs.html. 

http://mrl.nyu.edu/~perlin/imgs/imgs.html


• Noise: one ingredient of shaders 
• Can also use textures 
• Shaders control diffuse color, but also specular 

components, maybe even roughness (exponent), 
transparency, etc. 

• Shaders can be layered (e.g. a layer of dust, 
peeling paint, mortar between bricks).  

• Notion of shade tree  
– Pretty much algebraic tree 

• Assignment 5:  
checkerboard shader based on two shaders 
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Shaders 



• Programmable shader provide great flexibility 
• Shaders can be extremely complex 

– 10,000 lines of code! 
• Writing shaders is a black art 
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Bottom Line 
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That’s All For Today! 

Justin Legakis 

Justin Legakis 

Courtesy of Justin Legakis.
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