Acceleration : P

Structures for Ray Casting .

‘

MIT EECS 6.837 Computer Graphics
Wojciech Matusik, MIT EECS l

Hagan et al. 2007 \

http://ocw.mit.edu/help/faq-fair-use/

Recap: Ray Tracing

trace ray
44 Intersect all objects
color = ambient term
For every light

cast shadow ray

If mirror
= *
color += color ..

If transparent
color += color, ., . *

e Does it ever end?

color += local shading term

trace reflected ray

trace transmitted ray

)

o .O i’

Stopping criteria:

| I

* Recursion depth

— Stop after a
number
of bounces

* Ray contribution

— Stop if reflected /
transmitted
contribution
becomes too small

Recursion For Reflection: None

Recursion For Reflection: 1

Recursion For Reflection: 2

Ray tree

 Visualizing the ray tree for single image pixel

reflected ray
shadow ray
transmitted (refracted) ray

Ray tree This gets pretty complicated
pretty fast!

 Visualizing the ra\i tlﬁ for sinile imaie iixel

reflected ray =
shadow ray
transmitted (refracted) ray

Questions?

Ray Tracing Algorithm Analysis

* Lots of primitives cost = height * width *
| num primitives * J
intersecftion cost

e Recursive

* Distributed Ray size of recursive ray tree *
Tracing num shadow rays *
, num supersamples *
— Means using many num glossy rays *
rays for non- num temporal samples *
ideal/non-pointlike num aperture samples *
phenomena T

e Soft shadows

o Can we reduce this?
Anti-aliasing

Glossy reflection
Motion blur
Depth of field

Today

* Motivation
— You need LOTS of rays to generate nice pictures

— Intersecting every ray with every primitive becomes the
bottleneck

* Bounding volumes
* Bounding Volume Hierarchies, Kd-trees

For every pixel
Construct a ray from the eye
For every object in the scene
Find intersection with the ray
Keep if closest
Shade

10

Accelerating Ray Casting

 Goal: Reduce the number
of ray/primitive
Intersections

A~

11

Conservative Bounding Volume

* First check for an
intersection with a
conservative
bounding volume

* Early reject: If ray
doesn’t hit volume,
it doesn’t hit the
triangles!

12

Conservative Bounding Volume

 What does
“conservative” mean?
— Volume must be big

enough to contain all
geometry within

13

Conservative Bounding Regions

bounding
sphere

* Desiderata
— Tight —
avoid false positives

— Fast to intersect

non-aligned
bounding box

axis-aligned
bounding box

arbitrary convex region
(bounding half-spaces)

14

Ray-Box Intersection

» Axis-aligned box
* Box: (Xla Yla Zl) — (X29 Y29 ZZ)
* Ray: P(t)=R,+tR,

15

Nalve Ray-Box Intersection

* 6 plane equations: Compute all intersections

 Return closest intersection inside the box

— Verify intersections are on the correct side
of each plane: Ax+By+Cz+D <0

16

Reducing Total Computation

 Pairs of planes have the same normal
* Normals have only one non-zero component
* Do computations one dimension at a time

17

Test if Parallel

 If R, =0 (ray is paralle]l) AND
R ,<X,orR_>X, — no intersection

(The same
for Y and Z,
of course)

18

Find Intersections Per Dimension

* Basic idea
— Determine an interval along the ray for each dimension
— The intersect these 1D intervals (remember CSG!)
— Done!

19

Find Intersections Per Dimension

 Basic idea
— Determine an interval along the ray for each dimension
— The intersect these 1D intervals (remember CSG!)

— Done!
Interval
between X4
Y=Y, and X>

20

Find Intersections Per Dimension

* Basic idea
— Determine an interval along the ray for each dimension
— The intersect these 1D intervals (remember CSG!)

— Done!

Interval
between Xi
and X2

Interval
between Y1
and Y2

21

Find Intersections Per Dimension

 Basic idea

— Determine an interval along the ray for each dimension
— The intersect these 1D intervals (remember CSG!)

— Done!
Interval

between X
and Xz

Interval
between Y1
and Y2

Intersection

22

Intersecting 1D Intervals

ﬁ
C O
—

23

Intersecting 1D Intervals

Start=
max of mins

e

24

Intersecting 1D Intervals

Start=
max of mins

:E

End=
min of maxs

25

Intersecting 1D Intervals

If Start > End, the intersection is empty!

Start=
max of mins

:E

End=
min of maxs

26

Find Intersections Per Dimension

» (Calculate intersection distance t, and t,

27

Find Intersections Per Dimension

» (Calculate intersection distance t, and t,
— = (X - Ro) /Ry,
— 5= (X3 Ry /Ry,
— [t1, t2] 1s the X interval

28

Then Intersect Intervals

* Init tstart & tend with X interval
« Update tstart & tend for each subsequent dimension

29

Then Intersect Intervals

* Compute t; and t2 for Y...

30

Then Intersect Intervals

» Update tstart & tend for each subsequent dimension
o Iftl > tstart’ tstart - tl
~Ift,<t t , =t

end? end

31

Then Intersect Intervals

» Update tstart & tend for each subsequent dimension
o Iftl > tstart’ tstart - tl
~Ift,<t t , =t

end? end

y=Y, - tend
tstart

-
[\
\

32

Then Intersect Intervals

» Update tstart & tend for each subsequent dimension

o Iftl > tstart’ tstart - tl

—If t2 < tend? tend - t2
y=Y,
tstart
[/ // . -
A -
y=Y z 7 -

33

Is there an Intersection?

o Ift, >t 4 — boxis missed

34

Is the Box Behind the Eyepoint?

o Ift_ <t . — boxisbehind

35

Return the Correct Intersection

e Ift, > t . — closestintersection att

min start

e Else — closest intersection at ¢t

— Eye 1s inside box

36

Ray-Box Intersection Summary

For each dimension,

— If R;, =0 (ray 1s parallel) AND
R <X,or R ,>X, — no intersection

* For each dimension, calculate intersection distances t; and t,
— 4= (X;-Ry) /Ry, t; = (X5-R) /Ry,
— Ift, >t,, swap

— Maintain an interval [t
dimension

—Ift, >t t =t Ift,<t g, t. 4 =t
o Ift, .>t,4 — boxis missed
o Ift, 4<t,, — boxisbehind
* Iftstart = tmi

e Else — closest intersection at t__ 4

sart> Lendl» 1NtETSECt With current

start> “start

— closest intersection at t

n start

37

Efficiency Issues

* /Ry, /Ry, and 1/R, can be pre-computed
and shared for many boxes

38

Bounding Box of a Triangle

. ('xmax’ y max’ Z max)

max(z,z,z,))

(xmin’ ymin’ Zmin) .

= (Min(x;x,,x,),

min(,y.5),
min(z,z,z,))

= (max(x,x,x,),
max(y,y),

39

Bounding Box of a Sphere

. (xmax’ y max’ Zmax)

= (x+tr, ytr, z+r)

= (x-1, y-r, z-r)

40

Bounding Box of a Plane

(xmax’ y max’ Zmax)

= (400, +00, +o0)*
®

o
(xmin’ ymin’ Zmin)

= (-00, -00, -00) *

*unless n is exactly perpendicular to an axis

41

Bounding Box of a Group

(xmax’ Y max’ Zma’()

— (max (xmax_a’xmax_b) ’
(xmaxib’ Y max b Zmaxib) max (,ymax_a’y max_b) ?
max (Z max_a Zm ax_b))

(xmax_a’ y max_a’ Zmax_a)

(xmin_b’ y min_b’ Zmin_b)

®
(xmin_a’ y min_a’ Zmin_a)

(xmin’ Ymin Zml'n) = (min(xmin_a,xmm_b),
min (ymin_a’y min_b) ’
mln(Zmin_a’Zmin_b))

42

Bounding Box of a Transform

! 4

Bounding box of transformed object IS NOT (X'naw ¥'mar Z'max)
the transformation of the bounding box! = (Max(x,,X ;,X,X3,X,X5X5X5),

m axo/o,y],y2,y3;y4) x51x6)x7) ’

X, 00 , Z
(max Ymax max) max(zo,21,22,23,24,)65,)65,?67))

®
® ®

(535.23) =
M (xmax’ymax’zmin)

(x57,7,) = (102) =T

M (xmin’ymax’zmin) M (xmax’y min Zmin)

® C .(XO’yO’ZO) =
(xmin’ ymin’ Zmz'n) ()C min’ Y mim z min) M (xmin’ymin’zmin)

= (MIN(x),X ;,X5,X3,X ,X5,X5X7),

min(_yo,y],y2;y3,y4;x5’x6’x7)’
min(Zo,Z],ZZyijZ4’x51x6’x7))

Bounding Box of a Transform

!

Bounding box of transformed object IS NOT (X'naw ¥'mar Z'max)

the transformation of the bounding box! = (Max(x,,X ;,X,X3,X,X5X5X5),

m axo/o,y],y2,y3;y4) x51x6)'x7) ’

X, 00 , Z
(max Ymax max) max(zo,21,22,23,24,)65,)66,?67))

® ®
(5.3.23) =
M (xmax’ymax’zmin)

(x51525) = (x,y12,) B

M (xmin;ymax’zmin) M (xmax:ymin Zmil’l)

.(x()’yO’ZO) =

z ()C ,min’ y,min’ Z,min) M (xmin’ymin’zmin)

(X min)

min’ ymin’
= (m|n(xo,x],x2,x3,x4,x5,)€6,x7),

min(_yo,y],y2;y3yy4;x5’x6’x7)’
min(Zo,Z],ZZyijZ4’x51x6"x7))

Questions?

Are Bounding Volumes Enough??

e If ray hits bounding volume,
must we test all primitives inside 1t?

— Lots of work, think of a 1 M-triangle mesh

bounding
sphere

45

Bounding Volume Hierarchies

 If ray hits bounding volume,
must we test all primitives inside 1t?

— Lots of work, think of a 1 M-triangle mesh

* You guessed 1t already, we’ll split the primitives in
groups and build recursive bounding volumes

— Like collision detection, bounding

remember? sphere
hierarchy

46

Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs

A

* Recurse, build a binary tree

-

p

Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

49

Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

50

Bounding Volume Hierarchy (BVH)

* Find bounding box of objects/primitives
* Split objects/primitives into two, compute child BVs
* Recurse, build a binary tree

51

Where to Split Objects?

* At midpoint of current volume OR
 Sort, and put half of the objects on each side
« Use modeling hierarchy

OR

52

Where to Split Objects?

* At midpoint of current volume OR
 Sort, and put half of the objects on each side
« Use modeling hierarchy

Questions?:

OR

53

Ray-BVH Intersection

Ray-BVH Intersection

Ray-BVH Intersection

Intersection with BVH

Intersection with BVH

Intersection with BVH

BVH Discussion

* Advantages
— easy to construct
— casy to traverse
— binary tree (=simple structure)

* Disadvantages
— may be difficult to choose a good split for a node
— poor split may result in minimal spatial pruning

60

BVH Discussion

* Advantages
— easy to construct
— casy to traverse
— binary tree (=simple structure)

* Disadvantages
— may be difficult to choose a good split for a node
— poor split may result in minimal spatial pruning

o Still one of the best methods
— Recommended for your first hierarchy!

61

BVH Discussion Questions?

* Advantages
— easy to construct
— casy to traverse
— binary tree (=simple structure)

* Disadvantages
— may be difficult to choose a good split for a node
— poor split may result in minimal spatial pruning

o Still one of the best methods
— Recommended for your first hierarchy!

62

Kd-trees

* Probably most popular acceleration structure
* Binary tree, axis-aligned splits
— Each node splits space 1n half along an axis-aligned plane

* A space partition: The nodes do not overlap!
— This 1s 1n contrast to BVHs

63

Data Structure

KdTreeNode:
KdTreeNode* backNode, frontNode //children
int dimSplit // either x, y or z
float splitDistance
// from origin along split axis
boolean isLeaf

List of triangles //only for leaves

backNode frontNode here dimSplit = 0 (x axis)

X=splitDistance

64

Kd-tree Construction

 Start with scene axis-aligned bounding box
* Decide which dimension to split (e.g. longest)
* Decide at which distance to split (not so easy)

65

Kd-tree Construction - Split

 Distribute primitives to each side

 If a primitive overlaps split plane, assign to both
sides

66

Kd-tree Construction - Recurse

* Stop when minimum number of primitives reached

* Other stopping criteria possible

67

Questions?

* Further reading on efficient Kd-tree construction
— Hunt, Mark & Stoll, IRT 2006
— Zhou et al., SIGGRAPH Asia 2008 Zhou et al.

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

68

http://ocw.mit.edu/help/faq-fair-use/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.550&rep=rep1&type=pdf
http://www.kunzhou.net/2008/kdtree.pdf

Kd-tree Traversal - High Level

 Ifleaf, intersect with list of primitives

 Ifintersects back child, recurse

o Ifintersects front child, recurse

S A

Lt

69

Kd-tree Traversal, Naive Version

* Could use bounding box test for each child

* But redundant calculation: bbox similar to that of
parent node, plus axis aligned, one single split

Lt

S A

70

Kd-tree Traversal, Smarter Version

* (Get main bbox intersection from parent

— tnear, tfar

 Intersect with splitting plane

— easy because axis aligned

thear /

tfar

S

71

Kd-tree Traversal - Three Cases

* Intersects only back, only front, or both
* Can be tested by exgmaning t, tstart and tend

72

Kd-tree traversal - three cases

Note: “Back” and

. “Front” depend on
o If t<tsart => intersect only back ray direction!

e If t>tend => Intersect only front

73

Kd-tree Traversal Pseudocode

travers (orig, dir, t start, t end):
#adapted from Ingo Wald’s thesis
#assumes that dir[self.dimSplit] >0
if self.isleaf:
return intersect(self.listOfTriangles, orig, dir, t start, t end)

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];

if t <= t start:

case one, t <= t start <= t end -> cull front side

return self.backSideNode.traverse (orig, dir,t start,t end) e

elif t >= t end:

case two, t start <= t end <= t -> cull back side

return self.frontSideNode.traverse (orig, dir,t start,t end)

else:

case three: traverse both sides 1in turn

t hit = self.frontSideNode.traverse(orig, dir, t start, t)
if t hit <= t: return t hit; # early ray termination

return self.backSideNode.traverse(orig, dir, t, t end)

74

Important!

travers (orig, dir, t start, t end):
#adapted from Ingo Wald’s thesis
#assumes that dir[self.dimSplit] >0
if self.isleaf:
return intersect(self.listOfTriangles, orig, dir, t start, t end)

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];

if t <= t start:

case one, t <= t start <= t end -> cull front side

return self.backSideNode.traverse (orig, dir,t start,t end) e

elif t >= t end:

case two, t start <= t end <= t -> cull back side

return self.frontSideNode.traverse (orig, dir,t start,t end)

else:

case three: traverse both sides 1in turn

t hit = self.frontSideNode.traverse (orig, dir, t_start,iit

if t hit <= t: return t hit; # early ray termination

return self.backSideNode.traverse (orig, dir, t end)

75

Early termination is powerful!

travers (orig, dir, t start, t end):
#adapted from Ingo Wald’s thesis
#assumes that dir[self.dimSplit] >0
if self.isleaf:
return intersect(self.listOfTriangles, orig, dir, t start, t end)

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];

if t <= t start:

case one, t <= t start <= t end -> cull front side

return self.backSideNode.traverse (orig, dir,t start,t end) e

elif t >= t end:

case two, t start <= t end <= t -> cull back side

return self.frontSideNode.traverse (orig, dir,t start,t end)

else:

case three: traverse both sides 1in turn

t hit = self.frontSideNode.traverse(orig, dir, t start, t)

early ray termination

.traverse (orig, dir, t,

76

Early termination is powerful

« [fthere 1s an intersection in the first node, don’t visit
the second one

» Allows ray casting to be reasonably independent of
scene depth complexity

I |

77

Recap: Two main gains

* Only intersect with triangles “near’ the line
» Stop at the first intersection

78

Two main

gains

travers (orig, dir, t start, t end):

#adapted from Ingo Wald’s thesis
#assumes that dir[self.dimSplit] >0

if self.isleaf:

return intersect(self.listOfTriangles, orig, dir, t start, t end)

t = (self. splltDlst - orlg[self dlmSpllt]x / d%r[self.dimSplit];

.lf t <=t start-

case one,

elif t >= t end:

case two,

return self.

case three:

t hlt = self

return self.backSideNode.traverse (orig, dir,t start,t end)

frontSideNode.traverse (orig, dir,t_start,t_end)"

Only near line

t <= t start <= t end -> cull front side

t start <= t end <= t -> cull back side

traverse bo

Y f §l€ intersection,

79

Important Detalls

* For leaves, do NOT report
intersection 1f t 1S not 1 [toear, tfar].

— Important for primitives that overlap multiple nodes!

* Need to take direction of ray into account

— Reverse back and front 1f the direction has negative
coordinate along the split dimension

* Degeneracies when ray direction
1s parallel to one axis

80

Important Details Questions?

* For leaves, do NOT report
intersection 1f t 1S not 1 [toear, tfar].

— Important for primitives that overlap multiple nodes!

* Need to take direction of ray into account

— Reverse back and front 1f the direction has negative
coordinate along the split dimension

* Degeneracies when ray direction
1s parallel to one axis

81

Where to split for construction?

» Example for baseline
* Note how this ray traverses easily: one leaf only

82

Split in the Middle

* Does not conform to empty vs. dense areas

* Inefficient traversal — Not so good!

83

Split in the Median

* Tries to balance tree, but does not conform to empty
vs. dense areas

* Inefficient travergal — Not good

84

Optimizing Splitting Planes

* Most people use the Surface Area Heuristic (SAH)

— MacDonald and Booth 1990, “Heuristic for ray tracing
using space subdivision”, Visual Computer

 Idea: simple probabilistic prediction of traversal cost
based on split distance

* Then try different possible splits and keep the one
with lowest cost

» Further reading on efficient Kd-tree construction
— Hunt, Mark & Stoll, IRT 2006
— Zhou et al., SIGGRAPH Asia 2008

85

http://www.springerlink.com/content/j775r302k8148157/
http://www.springerlink.com/content/j775r302k8148157/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.550&rep=rep1&type=pdf
http://www.kunzhou.net/2008/kdtree.pdf

Surface Area Heuristic

* Probability that we need to intersect a child

— Area of the bbox of that child
(exact for uniformly distributed rays)

* Cost of the traversal of that child
— number of primitives (simplistic heuristic)

» This heuristic likes to put big densities of primitives
in small-area nodes

)\ |

86

Is it Important to Optimize Splits”?

* (G1ven the same traversal code, the quality of Kd-tree
construction can have a big impact on performance,
e.g. a factor of 2 compared to naive middle split

— But then, you should consider carefully if you need that
extra performance

— Could you optimize something else for bigger gain?

87

Efficient Implementation

Not so easy, need ability to sort primitives along the
three axes very efficiently and split them into two
groups

Plus primitives have an extent (bbox)

Extra tricks include smarter tests to check if a
triangle 1s inside a box

bbox of triangle

Node

88

Hard-core efficiency considerations

* See e.g. Ingo Wald’s PhD thesis
— http://www.sci.utah.edu/~wald/PhD/

e (Calculation

— Optimized barycentric ray-triangle intersection

* Memory
— Make kd-tree node as small as possible
(dirty bit packing, make it 8 bytes)
» Parallelism

— SIMD extensions, trace 4 rays at a time, mask results
where they disagree

89

http://www.sci.utah.edu/~wald/PhD/

Pros and Cons of Kd trees

* Pros
— Simple code
— Efficient traversal

— Can conform to data

e Cons

— costly construction, not great if you work with moving
objects

90

Questions?

* For extensions to moving scenes, see Real-Time KD-

Tree Construction on Graphics Hardware, Zhou et
al., SIGGRAPH 2008

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
91

http://www.kunzhou.net/2008/kdtree.pdf
http://www.kunzhou.net/2008/kdtree.pdf
http://www.kunzhou.net/2008/kdtree.pdf
http://ocw.mit.edu/help/faq-fair-use/

’

© Next Limit S.L. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://www.maxwellrender.com/

MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	MIT6_837F12_Lec14.pdf
	Pages from CoordinationGamesp

