
MIT EECS 6.837 Computer Graphics

Wojciech Matusik, MIT EECS

Acceleration
Structures for Ray Casting

Hašan et al. 2007 1

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

Stopping criteria:
• Recursion depth

– Stop after a
number
of bounces

• Ray contribution
– Stop if reflected /

transmitted
contribution
becomes too small

trace ray

 Intersect all objects

 color = ambient term

 For every light

 cast shadow ray

 color += local shading term

 If mirror

 color += colorrefl *

 trace reflected ray

 If transparent

 color += colortrans *

 trace transmitted ray

• Does it ever end?

Recap: Ray Tracing

2

3

Recursion For Reflection: None

0 recursion

Recursion For Reflection: 1

0 recursion

4

Recursion For Reflection: 2

0 recursion

5

Ray tree

• Visualizing the ray tree for single image pixel

incoming
reflected ray
shadow ray
transmitted (refracted) ray

6

Ray tree

• Visualizing the ray tree for single image pixel

incoming
reflected ray
shadow ray
transmitted (refracted) ray

This gets pretty complicated
pretty fast!

7

Questions?

8

Ray Tracing Algorithm Analysis
• Lots of primitives
• Recursive
• Distributed Ray

Tracing
– Means using many

rays for non-
ideal/non-pointlike
phenomena

• Soft shadows
• Anti-aliasing
• Glossy reflection
• Motion blur
• Depth of field

cost ≈ height * width *
 num primitives *
 intersection cost *
 size of recursive ray tree *
 num shadow rays *
 num supersamples *
 num glossy rays *
 num temporal samples *
 num aperture samples *
 . . .

Can we reduce this?

9

• Motivation
– You need LOTS of rays to generate nice pictures
– Intersecting every ray with every primitive becomes the

bottleneck
• Bounding volumes
• Bounding Volume Hierarchies, Kd-trees

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

 Shade

Today

10

Accelerating Ray Casting
• Goal: Reduce the number

of ray/primitive
intersections

11

Conservative Bounding Volume

12

• First check for an
intersection with a
conservative
bounding volume

• Early reject: If ray
doesn’t hit volume,
it doesn’t hit the
triangles!

Conservative Bounding Volume
• What does

“conservative” mean?
– Volume must be big

enough to contain all
geometry within

13

Conservative Bounding Regions

14

• Desiderata
– Tight →

avoid false positives
– Fast to intersect

Ray-Box Intersection

• Axis-aligned box
• Box: (X1, Y1, Z1) → (X2, Y2, Z2)
• Ray: P(t) = Ro + tRd

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd

15

Naïve Ray-Box Intersection

• 6 plane equations: Compute all intersections
• Return closest intersection inside the box

– Verify intersections are on the correct side
of each plane: Ax+By+Cz+D < 0

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd

16

Reducing Total Computation

• Pairs of planes have the same normal
• Normals have only one non-zero component
• Do computations one dimension at a time

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd

17

Test if Parallel

• If Rdx = 0 (ray is parallel) AND
 Rox < X1 or Rox > X2 → no intersection

y=Y2

y=Y1

x=X1 x=X2

Ro

Rd (The same

for Y and Z,

of course)

18

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

Ro

y=Y2

y=Y1

x=X1 x=X2

19

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

Ro

y=Y2

y=Y1

x=X1 x=X2

Interval

between X1

and X2

20

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

Ro

y=Y2

y=Y1

x=X1 x=X2

Interval

between X1

and X2

Interval

between Y1

and Y2

21

Find Intersections Per Dimension
• Basic idea

– Determine an interval along the ray for each dimension
– The intersect these 1D intervals (remember CSG!)
– Done!

Ro

y=Y2

y=Y1

x=X1 x=X2

Interval

between X1

and X2

Interval

between Y1

and Y2

Intersection

22

Intersecting 1D Intervals

23

Intersecting 1D Intervals

Start=
max of mins

24

Intersecting 1D Intervals

Start=
max of mins

End=
min of maxs

25

Intersecting 1D Intervals

Start=
max of mins

End=
min of maxs

If Start > End, the intersection is empty!

26

Find Intersections Per Dimension
• Calculate intersection distance t1 and t2

t1

t2

Ro

Rd

y=Y2

y=Y1

x=X1 x=X2

27

Find Intersections Per Dimension
• Calculate intersection distance t1 and t2

– t1 = (X1 - Rox) / Rdx

– t2 = (X2 - Rox) / Rdx

– [t1, t2] is the X interval

t1

t2

Ro

Rd

y=Y2

y=Y1

x=X1 x=X2

28

Then Intersect Intervals
• Init tstart & tend with X interval
• Update tstart & tend for each subsequent dimension

y=Y2

y=Y1

x=X1 x=X2

tend
tstart

29

Then Intersect Intervals
• Compute t1 and t2 for Y...

t1

t2

y=Y2

y=Y1

x=X1 x=X2

30

Then Intersect Intervals
• Update tstart & tend for each subsequent dimension

– If t1 > tstart, tstart = t1

– If t2 < tend, tend = t2

y=Y2

y=Y1

x=X1 x=X2

t1

t2 tend
tstart

31

Then Intersect Intervals
• Update tstart & tend for each subsequent dimension

– If t1 > tstart, tstart = t1

– If t2 < tend, tend = t2

tend y=Y2

y=Y1

x=X1 x=X2

tstart

t1

t2

32

Then Intersect Intervals
• Update tstart & tend for each subsequent dimension

– If t1 > tstart, tstart = t1

– If t2 < tend, tend = t2

y=Y2

y=Y1

x=X1 x=X2

tend
tstart

:-)

33

Is there an Intersection?
• If tstart > tend → box is missed

y=Y2

y=Y1

x=X1 x=X2

tend

tstart

34

Is the Box Behind the Eyepoint?
• If tend < tmin → box is behind

y=Y2

y=Y1

x=X1 x=X2

tend

tstart

35

Return the Correct Intersection
• If tstart > tmin → closest intersection at tstart

• Else → closest intersection at tend

– Eye is inside box

y=Y2

y=Y1

x=X1 x=X2

tend

tstart

36

Ray-Box Intersection Summary
• For each dimension,

– If Rdx = 0 (ray is parallel) AND
 Rox < X1 or Rox > X2 → no intersection

• For each dimension, calculate intersection distances t1 and t2
– t1 = (X1 - Rox) / Rdx t2 = (X2 - Rox) / Rdx
– If t1 > t2, swap
– Maintain an interval [tstart, tend], intersect with current

dimension
– If t1 > tstart, tstart = t1 If t2 < tend, tend = t2

• If tstart > tend → box is missed

• If tend < tmin → box is behind

• If tstart > tmin → closest intersection at tstart

• Else → closest intersection at tend

37

Efficiency Issues

• 1/Rdx, 1/Rdy and 1/Rdz can be pre-computed
and shared for many boxes

38

Bounding Box of a Triangle

(xmin, ymin, zmin)

(xmax, ymax, zmax)
(x

0
, y

0
, z

0
)

(x
1
, y

1
, z

1
)

(x
2
, y

2
, z

2
)

= (min(x0,x1,x2),
 min(y0,y1,y2),
 min(z0,z1,z2))

= (max(x0,x1,x2),
 max(y0,y1,y2),
 max(z0,z1,z2))

39

Bounding Box of a Sphere

r

(xmin, ymin, zmin)

(xmax, ymax, zmax)

(x, y, z)

= (x-r, y-r, z-r)

= (x+r, y+r, z+r)

40

Bounding Box of a Plane

(xmin, ymin, zmin)

(xmax, ymax, zmax)

= (-∞, -∞, -∞)*

= (+∞, +∞, +∞)*

n = (a, b, c)

ax + by + cz = d

* unless n is exactly perpendicular to an axis

41

Bounding Box of a Group

(x
min_b

, y
min_b

, z
min_b

)

(xmin, ymin, zmin)

(xmax, ymax, zmax)

= (min(xmin_a,xmin_b),

 min(ymin_a,ymin_b),

 min(zmin_a,zmin_b))

= (max(xmax_a,xmax_b),

 max(ymax_a,ymax_b),

 max(zmax_a,zmax_b))

(x
min_a

, y
min_a

, z
min_a

)

(x
max_b

, y
max_b

, z
max_b

)

(x
max_a

, y
max_a

, z
max_a

)

42

Bounding Box of a Transform

(x'min, y'min, z'min)

(x'max, y'max, z'max)

= (min(x0,x1,x2,x3,x4,x5,x6,x7),
 min(y0,y1,y2,y3,y4,x5,x6,x7),
 min(z0,z1,z2,z3,z4,x5,x6,x7))

M

(xmin, ymin, zmin)
(x0,y0,z0) =
M (xmin,ymin,zmin)

= (max(x0,x1,x2,x3,x4,x5,x6,x7),
 max(y0,y1,y2,y3,y4,x5,x6,x7),
 max(z0,z1,z2,z3,z4,x5,x6,x7))

(x1,y1,z1) =
M (xmax,ymin,zmin)

(x2,y2,z2) =
M (xmin,ymax,zmin)

(x3,y3,z3) =
M (xmax,ymax,zmin)

(xmax, ymax, zmax)

Bounding box of transformed object IS NOT

the transformation of the bounding box!

43

Bounding Box of a Transform

(x'min, y'min, z'min)

(x'max, y'max, z'max)

= (min(x0,x1,x2,x3,x4,x5,x6,x7),
 min(y0,y1,y2,y3,y4,x5,x6,x7),
 min(z0,z1,z2,z3,z4,x5,x6,x7))

M

(xmin, ymin, zmin)
(x0,y0,z0) =
M (xmin,ymin,zmin)

= (max(x0,x1,x2,x3,x4,x5,x6,x7),
 max(y0,y1,y2,y3,y4,x5,x6,x7),
 max(z0,z1,z2,z3,z4,x5,x6,x7))

(x1,y1,z1) =
M (xmax,ymin,zmin)

(x2,y2,z2) =
M (xmin,ymax,zmin)

(x3,y3,z3) =
M (xmax,ymax,zmin)

(xmax, ymax, zmax)

Bounding box of transformed object IS NOT

the transformation of the bounding box!

44
Questions?

Are Bounding Volumes Enough?

• If ray hits bounding volume,
must we test all primitives inside it?
– Lots of work, think of a 1M-triangle mesh

bounding

sphere

45

Bounding Volume Hierarchies

• If ray hits bounding volume,
must we test all primitives inside it?
– Lots of work, think of a 1M-triangle mesh

• You guessed it already, we’ll split the primitives in
groups and build recursive bounding volumes
– Like collision detection,

remember?
bounding

sphere

hierarchy

46

Bounding Volume Hierarchy (BVH)
• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

47

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

48

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

49

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

50

• Find bounding box of objects/primitives
• Split objects/primitives into two, compute child BVs
• Recurse, build a binary tree

Bounding Volume Hierarchy (BVH)

51

Where to Split Objects?
• At midpoint of current volume OR

• Sort, and put half of the objects on each side OR

• Use modeling hierarchy

52

Where to Split Objects?
• At midpoint of current volume OR

• Sort, and put half of the objects on each side OR

• Use modeling hierarchy

53 Questions?

Ray-BVH Intersection

54

Ray-BVH Intersection

55

Ray-BVH Intersection

56

Intersection with BVH

57

Intersection with BVH

58

Intersection with BVH

59

BVH Discussion

• Advantages
– easy to construct
– easy to traverse
– binary tree (=simple structure)

• Disadvantages

– may be difficult to choose a good split for a node
– poor split may result in minimal spatial pruning

60

BVH Discussion

• Advantages
– easy to construct
– easy to traverse
– binary tree (=simple structure)

• Disadvantages

– may be difficult to choose a good split for a node
– poor split may result in minimal spatial pruning

• Still one of the best methods

– Recommended for your first hierarchy!
61

BVH Discussion

• Advantages
– easy to construct
– easy to traverse
– binary tree (=simple structure)

• Disadvantages

– may be difficult to choose a good split for a node
– poor split may result in minimal spatial pruning

• Still one of the best methods

– Recommended for your first hierarchy!
62

Questions?

Kd-trees

• Probably most popular acceleration structure
• Binary tree, axis-aligned splits

– Each node splits space in half along an axis-aligned plane
• A space partition: The nodes do not overlap!

– This is in contrast to BVHs

63

Data Structure
KdTreeNode:

KdTreeNode* backNode, frontNode //children

int dimSplit // either x, y or z

float splitDistance

// from origin along split axis

boolean isLeaf

List of triangles //only for leaves

here dimSplit = 0 (x axis) backNode frontNode

X=splitDistance

64

Kd-tree Construction

• Start with scene axis-aligned bounding box
• Decide which dimension to split (e.g. longest)
• Decide at which distance to split (not so easy)

65

Kd-tree Construction - Split

• Distribute primitives to each side
• If a primitive overlaps split plane, assign to both

sides

66

Kd-tree Construction - Recurse

• Stop when minimum number of primitives reached
• Other stopping criteria possible

67

Questions?

• Further reading on efficient Kd-tree construction
– Hunt, Mark & Stoll, IRT 2006
– Zhou et al., SIGGRAPH Asia 2008 Zhou et al.

68

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.550&rep=rep1&type=pdf
http://www.kunzhou.net/2008/kdtree.pdf

Kd-tree Traversal - High Level

• If leaf, intersect with list of primitives
• If intersects back child, recurse
• If intersects front child, recurse

69

Kd-tree Traversal, Naïve Version

• Could use bounding box test for each child
• But redundant calculation: bbox similar to that of

parent node, plus axis aligned, one single split

70

Kd-tree Traversal, Smarter Version

• Get main bbox intersection from parent
– tnear, tfar

• Intersect with splitting plane
– easy because axis aligned

tnear

tfar

t

71

Kd-tree Traversal - Three Cases

• Intersects only back, only front, or both
• Can be tested by examining t, tstart and tend

72

Kd-tree traversal - three cases

• If t>tend => intersect only front
• If t<tstart => intersect only back

Note: “Back” and

“Front” depend on

ray direction!

73

Kd-tree Traversal Pseudocode
travers(orig, dir, t_start, t_end):

#adapted from Ingo Wald’s thesis

#assumes that dir[self.dimSplit] >0

if self.isLeaf:

return intersect(self.listOfTriangles, orig, dir, t_start, t_end)

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];

if t <= t_start:

case one, t <= t_start <= t_end -> cull front side

return self.backSideNode.traverse(orig, dir,t_start,t_end)

elif t >= t_end:

case two, t_start <= t_end <= t -> cull back side

return self.frontSideNode.traverse(orig, dir,t_start,t_end)

else:

case three: traverse both sides in turn

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)

if t_hit <= t: return t_hit; # early ray termination

return self.backSideNode.traverse(orig, dir, t, t_end)

74

Important!
travers(orig, dir, t_start, t_end):

#adapted from Ingo Wald’s thesis

#assumes that dir[self.dimSplit] >0

if self.isLeaf:

return intersect(self.listOfTriangles, orig, dir, t_start, t_end)

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];

if t <= t_start:

case one, t <= t_start <= t_end -> cull front side

return self.backSideNode.traverse(orig, dir,t_start,t_end)

elif t >= t_end:

case two, t_start <= t_end <= t -> cull back side

return self.frontSideNode.traverse(orig, dir,t_start,t_end)

else:

case three: traverse both sides in turn

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)

if t_hit <= t: return t_hit; # early ray termination

return self.backSideNode.traverse(orig, dir, t, t_end)

75

Early termination is powerful!
travers(orig, dir, t_start, t_end):

#adapted from Ingo Wald’s thesis

#assumes that dir[self.dimSplit] >0

if self.isLeaf:

return intersect(self.listOfTriangles, orig, dir, t_start, t_end)

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];

if t <= t_start:

case one, t <= t_start <= t_end -> cull front side

return self.backSideNode.traverse(orig, dir,t_start,t_end)

elif t >= t_end:

case two, t_start <= t_end <= t -> cull back side

return self.frontSideNode.traverse(orig, dir,t_start,t_end)

else:

case three: traverse both sides in turn

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)

if t_hit <= t: return t_hit; # early ray termination

return self.backSideNode.traverse(orig, dir, t, t_end)

76

Early termination is powerful

• If there is an intersection in the first node, don’t visit
the second one

• Allows ray casting to be reasonably independent of
scene depth complexity

77

Recap: Two main gains

• Only intersect with triangles “near” the line
• Stop at the first intersection

78

Two main gains
travers(orig, dir, t_start, t_end):

#adapted from Ingo Wald’s thesis

#assumes that dir[self.dimSplit] >0

if self.isLeaf:

return intersect(self.listOfTriangles, orig, dir, t_start, t_end)

t = (self.splitDist - orig[self.dimSplit]) / dir[self.dimSplit];

if t <= t_start:

case one, t <= t_start <= t_end -> cull front side

return self.backSideNode.traverse(orig, dir,t_start,t_end)

elif t >= t_end:

case two, t_start <= t_end <= t -> cull back side

return self.frontSideNode.traverse(orig, dir,t_start,t_end)

else:

case three: traverse both sides in turn

t_hit = self.frontSideNode.traverse(orig, dir, t_start, t)

if t_hit <= t: return t_hit; # early ray termination

return self.backSideNode.traverse(orig, dir, t, t_end)

Only near line

stop at first intersection

79

Important Details

• For leaves, do NOT report
intersection if t is not in [tnear, tfar].
– Important for primitives that overlap multiple nodes!

• Need to take direction of ray into account

– Reverse back and front if the direction has negative
coordinate along the split dimension

• Degeneracies when ray direction
is parallel to one axis

80

Important Details

• For leaves, do NOT report
intersection if t is not in [tnear, tfar].
– Important for primitives that overlap multiple nodes!

• Need to take direction of ray into account

– Reverse back and front if the direction has negative
coordinate along the split dimension

• Degeneracies when ray direction
is parallel to one axis

81

Questions?

Where to split for construction?
• Example for baseline
• Note how this ray traverses easily: one leaf only

82

Split in the Middle

83

• Does not conform to empty vs. dense areas
• Inefficient traversal – Not so good!

Split in the Median

84

• Tries to balance tree, but does not conform to empty
vs. dense areas

• Inefficient traversal – Not good

Optimizing Splitting Planes

• Most people use the Surface Area Heuristic (SAH)
– MacDonald and Booth 1990, “Heuristic for ray tracing

using space subdivision”, Visual Computer
• Idea: simple probabilistic prediction of traversal cost

based on split distance
• Then try different possible splits and keep the one

with lowest cost
• Further reading on efficient Kd-tree construction

– Hunt, Mark & Stoll, IRT 2006
– Zhou et al., SIGGRAPH Asia 2008

85

http://www.springerlink.com/content/j775r302k8148157/
http://www.springerlink.com/content/j775r302k8148157/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.550&rep=rep1&type=pdf
http://www.kunzhou.net/2008/kdtree.pdf

Surface Area Heuristic

• Probability that we need to intersect a child
– Area of the bbox of that child

(exact for uniformly distributed rays)
• Cost of the traversal of that child

– number of primitives (simplistic heuristic)
• This heuristic likes to put big densities of primitives

in small-area nodes

86

Is it Important to Optimize Splits?

• Given the same traversal code, the quality of Kd-tree
construction can have a big impact on performance,
e.g. a factor of 2 compared to naive middle split
– But then, you should consider carefully if you need that

extra performance
– Could you optimize something else for bigger gain?

87

Efficient Implementation

• Not so easy, need ability to sort primitives along the
three axes very efficiently and split them into two
groups

• Plus primitives have an extent (bbox)
• Extra tricks include smarter tests to check if a

triangle is inside a box

Node

bbox of triangle

88

Hard-core efficiency considerations

• See e.g. Ingo Wald’s PhD thesis
–

• Calculation
– Optimized barycentric ray-triangle intersection

• Memory
– Make kd-tree node as small as possible

(dirty bit packing, make it 8 bytes)
• Parallelism

– SIMD extensions, trace 4 rays at a time, mask results
where they disagree

89

http://www.sci.utah.edu/~wald/PhD/

http://www.sci.utah.edu/~wald/PhD/

Pros and Cons of Kd trees

• Pros
– Simple code
– Efficient traversal
– Can conform to data

• Cons

– costly construction, not great if you work with moving
objects

90

Questions?

• For extensions to moving scenes, see Real-Time KD-
Tree Construction on Graphics Hardware, Zhou et
al., SIGGRAPH 2008

91

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://www.kunzhou.net/2008/kdtree.pdf
http://www.kunzhou.net/2008/kdtree.pdf
http://www.kunzhou.net/2008/kdtree.pdf
http://ocw.mit.edu/help/faq-fair-use/

Stack Studios, Rendered using Maxwell

Questions?

92

© Next Limit S.L. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://www.maxwellrender.com/

MIT OpenCourseWare
http://ocw.mit.edu

 6.837 Computer Graphics
 Fall 2012

 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	MIT6_837F12_Lec14.pdf
	Pages from CoordinationGamesp

