
1

MIT EECS 6.837 Computer Graphics

Ray Casting II

H
en

rik
 W

an
n

Je
ns

en

MIT EECS 6.837 – Matusik

Courtesy of Henrik Wann Jensen. Used with permission.

http://graphics.ucsd.edu/~henrik
asin33
Line

• 3 ways to pass arguments to a function
– by value, e.g. float f(float x)
– by reference, e.g. float f(float &x)

• f can modify the value of x

– by pointer, e.g. float f(float *x)
• x here is a just a memory address
• motivations:

less memory than a full data structure if x has a complex type
dirty hacks (pointer arithmetic),but just do not do it

• clean languages do not use pointers
• kind of redundant with reference
• arrays are pointers

2

C++

• Can get it from a variable using &
– often a BAD idea. see next slide

• Can be dereferenced with *
– float *px=new float; // px is a memory address to a float
– *px=5.0; //modify the value at the address px

• Should be instantiated with new. See next slide

3

Pointers

• Two ways to create objects
– The BAD way, on the stack

• myObject *f() {
– myObject x;
– ...
– return &x

• will crash because x is defined only locally and the memory gets
de-allocated when you leave function f

– The GOOD way, on the heap
• myObject *f() {

– myObject *x=new myObject;
– ...
– return x

• but then you will probably eventually need to delete it
4

Pointers, Heap, Stack

• When you read or, worse, write at an invalid address
• Easiest segmentation fault:

– float *px; // px is a memory address to a float
– *px=5.0; //modify the value at the address px
– Not 100% guaranteed, but you haven’t instantiated px, it

could have any random memory address.
• 2nd easiest seg fault

– Vector<float> vx(3);
– vx[9]=0;

5

Segmentation Fault

• TERRIBLE thing about segfault: the program does
not necessarily crash where you caused the problem

• You might write at an address that is inappropriate
but that exists

• You corrupt data or code at that location
• Next time you get there, crash

• When a segmentation fault occurs, always look for

pointer or array operations before the crash, but not
necessarily at the crash

6

Segmentation Fault

• Display as much information as you can
– image maps (e.g. per-pixel depth, normal)
– OpenGL 3D display (e.g. vectors, etc.)
– cerr<< or cout<< (with intermediate values, a message

when you hit a given if statement, etc.)
• Doubt everything

– Yes, you are sure this part of the code works, but test it
nonetheless

• Use simple cases
– e.g. plane z=0, ray with direction (1, 0, 0)
– and display all intermediate computation

7

Debugging

8

Questions?

• Intro to rendering
– Producing a picture based on scene description
– Main variants: Ray casting/tracing vs. rasterization
– Ray casting vs. ray tracing (secondary rays)

• Ray Casting basics
– Camera definitions

• Orthographic, perspective

– Ray representation
• P(t) = origin + t * direction

– Ray generation
– Ray/plane intersection
– Ray-sphere intersection 9

Thursday Recap

This image is in the
public domain. Source:
openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar

10

Questions?

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Use ray-plane intersection followed by in-triangle test
• Or try to be smarter

– Use barycentric coordinates

11

Ray-Triangle Intersection

Ro Rd

c

a b

P

12

Barycentric Definition of a Plane

[Möbius, 1827]

c

a b

P

Why? How?

Ro Rd

• A (non-degenerate) triangle (a,b,c) defines a plane
• Any point P on this plane can be written as
 P(,,) = a + b + c,
 with ++ = 1

• Since ++ =1, we can write  = 1––
 P(,,) = a + b + c

 P(,) = (1––)a + b + c
 = a + (b-a) + (c-a)

13

Barycentric Coordinates

c

a b

P
Non-orthogonal

coordinate

system

on the plane!

rewrite

Vectors that lie on

the triangle plane

{ {

• P(,,) = a + b + c
with ++ =1

• Is it explicit or implicit?

14

Barycentric Definition of a Plane
[Möbius, 1827]

c

a b

P

Fun to know:

P is the barycenter,
the single point upon which
the triangle would balance if
weights of size , , &  are
placed on points a, b & c.

• P(,,) = a + b + c
with ++ =1 parameterizes the entire plane

15

Barycentric Definition of a Triangle

c

a b

P

• P(,,) = a + b + c
with ++ =1 parameterizes the entire plane

• If we require in addition that
, ,  >= 0, we get just the triangle!
– Note that with ++ =1 this implies

0    1 & 0    1 & 0    1
– Verify:

•  =0 => P lies on line b-c
• ,  =0 => P = c
• etc.

16

Barycentric Definition of a Triangle

c

a b

P

• P(,,) = a + b + c
• Condition to be barycentric coordinates:

++ =1
• Condition to be inside the triangle:

, ,   0

17

Barycentric Definition of a Triangle

c

a b

P

• Ratio of opposite sub-triangle area to total area
–  = Aa/A  = Ab/A  = Ac/A

• Use signed areas for points outside the triangle

18

How Do We Compute , ,  ?

c

a b

P

Aa
A

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

19

How Do We Compute , ,  ?

c

a b

P

This should be zero

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

20

How Do We Compute , ,  ?

c

a b

P

This should be zero

Something’s wrong... This
is a linear system of 3
equations and 2
unknowns!

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

21

How Do We Compute , ,  ?

c

a b

P

These should be zero

Ha! We’ll take inner products of
this equation with e1 & e2

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

22

How Do We Compute , ,  ?

c

a b

P
where

and <a,b> is the dot product.

• Or write it as a 22 linear system
• P(, ) = a + e1 + e2

e1 = (b-a), e2 = (c-a)

23

How Do We Compute , ,  ?

c

a b

P
where

and <a,b> is the dot product.

Questions?

• Again, set ray equation equal to barycentric equation
 P(t) = P(, )
 Ro + t * Rd = a + (b-a) + (c-a)
• Intersection if  +   1 &   0 &   0

 (and t > tmin …)

24

Intersection with Barycentric Triangle

Ro Rd

c

a b

P

• Ro + t * Rd = a + (b-a) + (c-a)

 Rox + tRdx = ax + (bx-ax) + (cx-ax)
 Roy + tRdy = ay + (by-ay) + (cy-ay)
 Roz + tRdz = az + (bz-az) + (cz-az)

• Regroup & write in matrix form Ax=b

25

Intersection with Barycentric Triangle

3 equations,
3 unknowns

• Used to solve for one variable at a time in system of equations

26

Cramer’s Rule

A

R R a b a

R R a b a

R R a b a

dz oz z z z

dy oy y y y

dx ox x x x

- -
- -

-

= 

A

R a c a b a

R a c a b a

R a c a b a

t
oz z z z z z

oy y y y y y

ox x x x x x

- - -
- - -
- - -

=

A

R c a R a

R c a R a

R c a R a

dz z z oz z

dy y y oy y

dx x x ox x -

= 

| | denotes the
determinant

Can be copied
mechanically

into code

-
-
-

-

-

-

27

Barycentric Intersection Pros

Ro Rd

c

a b

P

• Efficient
• Stores no plane equation
• Get the barycentric coordinates for free

– Useful for interpolation, texture mapping

• Values v1, v2, v3 defined at a, b, c

– Colors, normal, texture coordinates, etc.
• P(,,) = a + b + c is the point...
• v(,,) = v1 + v2 + v3 is the

barycentric interpolation of
v1,v2,v3 at point P

– Sanity check: v(1,0,0) = v1, etc.
• I.e, once you know ,,

you can interpolate values
using the same weights.
– Convenient!

28

Barycentric Interpolation

v1

v2

v3

P

29

Questions?
• Image computed using

the RADIANCE
system by Greg Ward

© Martin Moeck. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

For every pixel

 Construct a ray from the eye

 For every object in the scene

 Find intersection with the ray

 Keep if closest

30

Ray Casting: Object Oriented Design

• We want to be able to add primitives easily
– Inheritance and virtual methods

• Even the scene is derived from Object3D!

• Also cameras are abstracted (perspective/ortho)
– Methods for generating rays for given image coordinates

31

Object-Oriented Design

Object3D
bool intersect(Ray, Hit, tmin)

Plane
bool intersect(Ray, Hit,

tmin)

Sphere
bool intersect(Ray, Hit,

tmin)

Triangle Mesh
bool intersect(Ray, Hit,

 tmin)

Group
bool intersect(Ray, Hit,

tmin)

• Write a basic ray caster
– Orthographic and

perspective cameras
– Spheres and triangles
– 2 Display modes: color and distance

• We provide classes for
– Ray: origin, direction
– Hit: t, Material, (normal)
– Scene Parsing

• You write ray generation,
hit testing, simple shading

32

Assignment 4 & 5: Ray Casting/Tracing

• Peter Shirley et al.:
Fundamentals of

Computer Graphics
AK Peters

• Ray Tracing
– Jensen
– Shirley
– Glassner

33

Books

Remember the ones at

books24x7 mentioned

in the beginning!

Images of three book covers have been removed due to copyright restrictions. Please see the
following books for more details:
-Shirley P., M. Ashikhmin and S. Marschner, Fundamentals of Computer Graphics

-Shirley P. and R.K. Morley, Realistic Ray Tracing

-Jensen H.W., Realistic Image Synthesis Using Photon Mapping

http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690/ref=sr_1_1?ie=UTF8&s=books&qid=1256772799&sr=1-1
http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690/ref=sr_1_1?ie=UTF8&s=books&qid=1256772799&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568811470
http://www.amazon.com/Realistic-Ray-Tracing-Peter-Shirley/dp/1568814615/ref=sr_1_1?ie=UTF8&s=books&qid=1256775343&sr=1-1
http://www.amazon.com/Principles-Synthesis-Kaufmann-Computer-Graphics/dp/1558602763/ref=sr_1_1?ie=UTF8&s=books&qid=1256775366&sr=1-1

• A neat way to build complex objects from simple
parts using Boolean operations
– Very easy when ray tracing

• Remedy used this in the Max Payne games for
modeling the environments
– Not so easy when not ray tracing :)

34

Constructive Solid Geometry (CSG)

© Rockstar Games. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

35
MIT EECS 6.837 – Durand

CSG Examples

© David Kurlander. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

36

Constructive Solid Geometry (CSG)

Should only

“count” overlap

region once!

Given overlapping shapes A and B:

 Union Intersection Subtraction

How Can We Implement CSG?

 Union Intersection Subtraction

Points on A,

Outside of B

Points on B,

Outside of A

Points on B,

Inside of A

Points on A,

Inside of B

4 cases

37

Collect Intersections

 Union Intersection Subtraction

Each ray

processed

separately!

38

Implementing CSG
1. Test "inside" intersections:

• Find intersections with A,
test if they are inside/outside B

• Find intersections with B,
test if they are inside/outside A

This would

certainly work, but

would need to

determine if points

are inside solids...

:-(

39

40

Implementing CSG
1. Test "inside" intersections:

• Find intersections with A,
test if they are inside/outside B

• Find intersections with B,
test if they are inside/outside A

2. Overlapping intervals:

• Find the intervals of "inside"
along the ray for A and B

• How? Just keep an “entry” / “exit” bit
for each intersection

• Easy to determine from intersection
normal and ray direction

• Compute
union/intersection/subtraction of the
intervals

41

Implementing CSG
1. Test "inside" intersections:

• Find intersections with A,
test if they are inside/outside B

• Find intersections with B,
test if they are inside/outside A

2. Overlapping intervals:

• Find the intervals of "inside"
along the ray for A and B

• How? Just keep an “entry” / “exit” bit
for each intersection

• Easy to determine from intersection
normal and ray direction

• Compute
union/intersection/subtraction of the
intervals

Problem reduces to 1D for each ray

• ...but very hard if you actually try to compute an
explicit representation of the resulting surface as a
triangle mesh

• In principle very simple,
but floating point numbers are not exact
– E.g., points do not lie exactly on planes...
– Computing the intersection A vs B is not necessarily the

same as B vs A...
– The line that results from intersecting two planes does not

necessarily lie on either plane...
– etc., etc.

42

CSG is Easy with Ray Casting...

What is a Visual Hull?

43

Why Use a Visual Hull?

• Can be computed robustly
• Can be computed efficiently

44

- =

background

+

foreground

background foreground

Rendering Visual Hulls

45

Reference 1 Reference 2
Desired

CSG then Ray Casting

46

Reference 1 Reference 2
Desired

CSG then Ray Casting

47

Reference 1 Reference 2
Desired

CSG then Ray Casting

48

Reference 1 Reference 2
Desired

CSG then Ray Casting

49

Reference 1 Reference 2
Desired

CSG then Ray Casting

50

Reference 1 Reference 2
Desired

Ray Casting then Intersection

51

Reference 1 Reference 2
Desired

Ray Casting then Intersection

52

Reference 1 Reference 2
Desired

Ray Casting then Intersection

53

Reference 1 Reference 2
Desired

Ray Casting then Intersection

54

Reference 1 Reference 2
Desired

Ray Casting then Intersection

55

Reference 1 Reference 2
Desired

Ray Casting then Intersection

56

Reference 1 Reference 2
Desired

Ray Casting then Intersection

57

Reference 1 Reference 2
Desired

Ray Casting then Intersection

58

Reference 1 Reference 2
Desired

Reference 1

Reference 2
Desired

Image Based (2D) Intersection

59

60

Image Based Visual Hulls

61

Questions?

• What happens when
– Ray Origin lies on an object?
– Grazing rays?

• Problem with floating-point approximation

62

Precision

63

The Evil 

reflection

refraction

shadow

• In ray tracing, do NOT report intersection for rays
starting on surfaces
– Secondary rays start on surfaces
– Requires epsilons
– Best to nudge the starting

point off the surface
e.g., along normal

• Edges in triangle meshes
– Must report intersection (otherwise not watertight)
– Hard to get right

64

The Evil 

65

Questions?

Image by Henrik Wann Jensen

Courtesy of Henrik Wann Jensen. Used with permission.

• We have seen that transformations such as affine
transforms are useful for modeling & animation

• How do we incorporate them into ray casting?

66

Transformations and Ray Casting

1. Make each primitive handle any applied
transformations and produce a camera space
description of its geometry

2. ...Or Transform the Rays

67

Incorporating Transforms

Transform {

 Translate { 1 0.5 0 }

 Scale { 2 2 2 }

 Sphere {

 center 0 0 0

 radius 1

 }

}

• Complicated for many primitives

68

Primitives Handle Transforms

r
major

r
minor

(x,y)

Sphere {

 center 3 2 0

 z_rotation 30

 r_major 2

 r_minor 1

}

69
MIT EECS 6.837 – Durand

(0,0)

Transform Ray
• Move the ray from World Space to Object Space

Object Space World Space

r = 1

r
major

r
minor

(x,y)

pWS = M pOS

pOS = M-1 pWS

• New origin:

• New direction:

70

originOS = M-1 originWS

directionOS = M-1 (originWS + 1 * directionWS) - M-1 originWS

originOS

originWS

directionOS

directionWS

Object Space World Space

 qWS = originWS + tWS * directionWS

 qOS = originOS + tOS * directionOS

directionOS = M-1 directionWS

Transform Ray
Note that the w

component of

direction is 0

• If M includes scaling, directionOS ends up
NOT be normalized after transformation

• Two solutions
– Normalize the direction
– Do not normalize the direction

71

What About t ?

• tOS ≠ tWS

and must be rescaled after intersection
==> One more possible failure case...

72

1. Normalize Direction

Object Space World Space

tWS tOS

• tOS = tWS  convenient!
• But you should not rely on tOS being true distance in

intersection routines (e.g. a≠1 in ray-sphere test)

73

2. Do Not Normalize Direction

Object Space World Space

tWS tOS

• Transform point

• Transform direction

74

Transforming Points & Directions

Homogeneous Coordinates:
(x,y,z,w)

w = 0 is a point at infinity (direction)

• If you do not store w you need different routines to apply M to a
point and to a direction ==> Store everything in 4D!

75

Recap: How to Transform Normals?

Object Space World Space

n
OS

n
WS

76

Transformation for Shear and Scale

Incorrect
Normal

Transformation

Correct
Normal

Transformation

• Think about transforming the tangent plane
to the normal, not the normal vector

77

So How Do We Do It Right?

Original Incorrect Correct

n
OS

Pick any vector vOS in the tangent plane,
how is it transformed by matrix M?

v
OS

v
WS

n
WS

vWS = M vOS

78

Transform Tangent Vector v

v is perpendicular to normal n:
nOS

T vOS = 0
 nOS

T (M-1 M) vOS = 0

 nWS
T = nOS

T (M-1)

 (nOS
T M-1) (M vOS) = 0
 (nOS

T M-1) vWS = 0

 nWS
T vWS = 0

vWS is perpendicular to normal nWS:

 nWS = (M-1)T nOS

n
OS

v
WS

n
WS

v
OS

Dot product

• Position
– transformed by the full homogeneous matrix M

• Direction
– transformed by M except the translation component

• Normal
– transformed by M-T, no translation component

79

Position, Direction, Normal

80

That’s All for Today!

Yu et al. 2009

• Further reading
– Realistic Ray Tracing, 2nd ed.

(Shirley, Morley)

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://library.books24x7.com.libproxy.mit.edu/toc.asp?bookid=15581

MIT OpenCourseWare
http://ocw.mit.edu

 6.837 Computer Graphics
 Fall 2012

 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

