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• 3 ways to pass arguments to a function 
– by value, e.g. float f(float x) 
– by reference, e.g. float f(float &x) 

• f can modify the value of x 

– by pointer, e.g. float f(float *x) 
• x here is a just a memory address 
• motivations:  

less memory than a full data structure if x has a complex type 
dirty hacks (pointer arithmetic),but just do not do it 

• clean languages do not use pointers 
• kind of redundant with reference 
• arrays are pointers 
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C++  



• Can get it from a variable using & 
– often a BAD idea. see next slide 

• Can be dereferenced with * 
– float *px=new float; // px is a memory address to a float 
– *px=5.0; //modify the value at the address px 

• Should be instantiated with new. See next slide 

3 

Pointers 



• Two ways to create objects 
– The BAD way, on the stack 

• myObject *f() { 
– myObject x; 
– ... 
– return &x 

• will crash because x is defined only locally and the memory gets 
de-allocated when you leave function f 

– The GOOD way, on the heap 
• myObject *f() { 

– myObject *x=new myObject; 
– ... 
– return x 

• but then you will probably eventually need to delete it  
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Pointers, Heap, Stack 



• When you read or, worse, write at an invalid address 
• Easiest segmentation fault: 

– float *px; // px is a memory address to a float 
– *px=5.0; //modify the value at the address px 
– Not 100% guaranteed, but you haven’t instantiated px, it 

could have any random memory address. 
• 2nd easiest seg fault 

– Vector<float> vx(3); 
– vx[9]=0; 
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Segmentation Fault 



• TERRIBLE thing about segfault: the program does 
not necessarily crash where you caused the problem 

• You might write at an address that is inappropriate 
but that exists 

• You corrupt data or code at that location 
• Next time you get there, crash 

 
• When a segmentation fault occurs, always look for 

pointer or array operations before the crash, but not 
necessarily at the crash 
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Segmentation Fault 



• Display as much information as you can 
– image maps (e.g. per-pixel depth, normal) 
– OpenGL 3D display (e.g. vectors, etc.) 
– cerr<< or cout<< (with intermediate values, a message 

when you hit a given if statement, etc.) 
• Doubt everything 

– Yes, you are sure this part of the code works, but test it 
nonetheless 

• Use simple cases 
– e.g. plane z=0, ray with direction (1, 0, 0) 
– and display all intermediate computation 
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Debugging 
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Questions? 



• Intro to rendering 
– Producing a picture based on scene description 
– Main variants: Ray casting/tracing vs. rasterization 
– Ray casting vs. ray tracing (secondary rays) 

• Ray Casting basics 
– Camera definitions 

• Orthographic, perspective 

– Ray representation 
• P(t) = origin + t * direction 

– Ray generation 
– Ray/plane intersection 
– Ray-sphere intersection 9 

Thursday Recap 

This image is in the
public domain. Source:
openclipart

http://openclipart.org/detail/6682/dslr-camera-by-flomar
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Questions? 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


• Use ray-plane intersection followed by in-triangle test 
• Or try to be smarter 

– Use barycentric coordinates 
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Ray-Triangle Intersection 

Ro Rd 

c 

a b 

P 
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Barycentric Definition of a Plane 

[Möbius, 1827] 

c 

a b 

P 

Why? How? 

Ro Rd 

• A (non-degenerate) triangle (a,b,c) defines a plane 
• Any point P on this plane can be written as 
    P(,,) = a + b + c, 
    with ++ = 1 



• Since ++ =1, we can write  = 1––  
 P(,,) = a + b + c 

  P(,)      = (1––)a + b + c 
                   = a + (b-a) + (c-a) 
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Barycentric Coordinates 

c 

a b 

P 
Non-orthogonal  

coordinate 

system 

on the plane! 

rewrite 

Vectors that lie on 

the triangle plane 

{ { 



• P(,,) = a + b + c 
with ++ =1 

• Is it explicit or implicit? 
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Barycentric Definition of a Plane 
[Möbius, 1827] 

c 

a b 

P 

Fun to know: 

P is the barycenter, 
the single point upon which  
the triangle would balance if  
weights of size , , &  are  
placed on points a, b & c. 



• P(,,) = a + b + c 
with ++ =1 parameterizes the entire plane 
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Barycentric Definition of a Triangle 

c 

a b 

P 



• P(,,) = a + b + c 
with ++ =1 parameterizes the entire plane 

• If we require in addition that 
, ,  >= 0, we get just the triangle! 
– Note that with ++ =1 this implies 

0    1   &   0    1   &   0    1  
– Verify: 

•  =0  =>  P lies on line b-c 
• ,  =0  =>  P = c 
• etc. 
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Barycentric Definition of a Triangle 

c 

a b 

P 



• P(,,) = a + b + c 
• Condition to be barycentric coordinates: 

++ =1 
• Condition to be inside the triangle: 

, ,   0 
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Barycentric Definition of a Triangle 

c 

a b 

P 



• Ratio of opposite sub-triangle area to total area 
–   = Aa/A       = Ab/A       = Ac/A 

• Use signed areas for points outside the triangle 
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How Do We Compute , ,  ? 

c 

a b 

P 

Aa 
A 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 

This should be zero 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 

20 

How Do We Compute , ,  ? 

c 

a b 

P 

This should be zero 

Something’s wrong... This 
is a linear system of 3 
equations and 2 
unknowns! 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 

These should be zero 

Ha! We’ll take inner products of 
this equation with e1 & e2 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 
where 

and <a,b> is the dot product. 



• Or write it as a 22 linear system 
• P(,  ) = a + e1 + e2 

e1 = (b-a), e2 = (c-a) 
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How Do We Compute , ,  ? 

c 

a b 

P 
where 

and <a,b> is the dot product. 

Questions? 



• Again, set ray equation equal to barycentric equation 
                            P(t) = P(, )  
                Ro + t * Rd = a + (b-a) + (c-a)  
• Intersection if  +   1   &   0   &   0 

     (and t > tmin … ) 
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Intersection with Barycentric Triangle 

Ro Rd 

c 

a b 

P 



• Ro + t * Rd = a + (b-a) + (c-a) 
    

 Rox + tRdx = ax + (bx-ax) + (cx-ax) 
 Roy + tRdy = ay + (by-ay) + (cy-ay) 
 Roz + tRdz = az + (bz-az)  + (cz-az) 

 
• Regroup & write in matrix form Ax=b 
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Intersection with Barycentric Triangle 

3 equations,  
3 unknowns 



• Used to solve for one variable at a time in system of equations 
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Cramer’s Rule 

A 

R R a b a 

R R a b a 

R R a b a 

dz oz z z z 

dy oy y y y 

dx ox x x x 

- - 
- - 

- 

=  

A 

R a c a b a 

R a c a b a 

R a c a b a 

t 
oz z z z z z 

oy y y y y y 

ox x x x x x 

- - - 
- - - 
- - - 

= 

A 

R c a R a 

R c a R a 

R c a R a 

dz z z oz z 

dy y y oy y 

dx x x ox x - 

=  

|   | denotes the 
determinant 

 
Can be copied 
mechanically  

into code 

- 
- 
- 

- 

- 

- 
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Barycentric Intersection Pros 

Ro Rd 

c 

a b 

P 

• Efficient 
• Stores no plane equation 
• Get the barycentric coordinates for free 

– Useful for interpolation, texture mapping 



• Values v1, v2, v3 defined at a, b, c 

– Colors, normal, texture coordinates, etc. 
• P(,,) = a + b + c is the point... 
• v(,,) = v1 + v2 + v3 is the 

barycentric interpolation of 
v1,v2,v3 at point P 

– Sanity check: v(1,0,0) = v1, etc. 
• I.e, once you know ,, 

you can interpolate values 
using the same weights. 
– Convenient! 
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Barycentric Interpolation 

v1 

v2 

v3 

P 
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Questions? 
• Image computed using 

the RADIANCE 
system by Greg Ward 

© Martin Moeck. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 

http://ocw.mit.edu/help/faq-fair-use/


For every pixel 

 Construct a ray from the eye 

 For every object in the scene 

  Find intersection with the ray  

  Keep if closest 
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Ray Casting: Object Oriented Design 



• We want to be able to add primitives easily 
– Inheritance and virtual methods 

• Even the scene is derived from Object3D! 
 
 
 
 
 

• Also cameras are abstracted (perspective/ortho) 
– Methods for generating rays for given image coordinates 
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Object-Oriented Design 

Object3D 
bool intersect(Ray, Hit, tmin) 

Plane 
bool intersect(Ray, Hit, 

tmin) 

Sphere 
bool intersect(Ray, Hit,  

tmin) 

Triangle Mesh 
bool intersect(Ray, Hit, 

 tmin) 

Group 
bool intersect(Ray, Hit,  

tmin) 



• Write a basic ray caster 
– Orthographic and 

perspective cameras 
– Spheres and triangles 
– 2 Display modes: color and distance 

• We provide classes for 
– Ray: origin, direction  
– Hit: t, Material, (normal) 
– Scene Parsing 

• You write ray generation, 
hit testing, simple shading 
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Assignment 4 & 5: Ray Casting/Tracing 



• Peter Shirley et al.: 
Fundamentals of  

Computer Graphics 
AK Peters 
 

• Ray Tracing 
– Jensen 
– Shirley 
– Glassner 
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Books 

Remember the ones at 

books24x7 mentioned 

in the beginning! 

Images of three book covers have been removed due to copyright restrictions.  Please see the 
following books for more details: 
-Shirley P., M. Ashikhmin and S. Marschner, Fundamentals of Computer Graphics 

-Shirley P. and R.K. Morley, Realistic Ray Tracing 

-Jensen H.W., Realistic Image Synthesis Using Photon Mapping 

http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690/ref=sr_1_1?ie=UTF8&s=books&qid=1256772799&sr=1-1
http://www.amazon.com/Fundamentals-Computer-Graphics-Peter-Shirley/dp/1568814690/ref=sr_1_1?ie=UTF8&s=books&qid=1256772799&sr=1-1
http://www.amazon.com/Realistic-Image-Synthesis-Photon-Mapping/dp/1568811470
http://www.amazon.com/Realistic-Ray-Tracing-Peter-Shirley/dp/1568814615/ref=sr_1_1?ie=UTF8&s=books&qid=1256775343&sr=1-1
http://www.amazon.com/Principles-Synthesis-Kaufmann-Computer-Graphics/dp/1558602763/ref=sr_1_1?ie=UTF8&s=books&qid=1256775366&sr=1-1


 
 
 
 
 

• A neat way to build complex objects from simple 
parts using Boolean operations 
– Very easy when ray tracing 

• Remedy used this in the Max Payne games for 
modeling the environments 
– Not so easy when not ray tracing :) 
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Constructive Solid Geometry (CSG) 

© Rockstar Games. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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CSG Examples 

© David Kurlander. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Constructive Solid Geometry (CSG) 

Should only 

“count” overlap 

region once! 

Given overlapping shapes A and B: 
 
 
 

     
  Union                   Intersection            Subtraction 



How Can We Implement CSG? 
 

 
 

 
 
 
      Union               Intersection            Subtraction 

Points on A, 

Outside of B 

Points on B, 

Outside of A 

Points on B, 

Inside of A 

Points on A, 

Inside of B 

4 cases 
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Collect Intersections 
 

 
 

 
 
 
      Union               Intersection            Subtraction 

Each ray 

processed 

separately! 
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Implementing CSG 
1. Test "inside" intersections: 

• Find intersections with A,  
test if they are inside/outside B 

• Find intersections with B, 
test if they are inside/outside A 

This would 

certainly work, but 

would need to 

determine if points 

are inside solids... 

:-( 

39 
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Implementing CSG 
1. Test "inside" intersections: 

• Find intersections with A,  
test if they are inside/outside B 

• Find intersections with B, 
test if they are inside/outside A 

 
2. Overlapping intervals: 

• Find the intervals of "inside" 
along the ray for A and B 

• How? Just keep an “entry” / “exit” bit 
for each intersection 

• Easy to determine from intersection 
normal and ray direction 

• Compute 
union/intersection/subtraction of the 
intervals 
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Implementing CSG 
1. Test "inside" intersections: 

• Find intersections with A,  
test if they are inside/outside B 

• Find intersections with B, 
test if they are inside/outside A 

 
2. Overlapping intervals: 

• Find the intervals of "inside" 
along the ray for A and B 

• How? Just keep an “entry” / “exit” bit 
for each intersection 

• Easy to determine from intersection 
normal and ray direction 

• Compute 
union/intersection/subtraction of the 
intervals 

Problem reduces to 1D for each ray 



• ...but very hard if you actually try to compute an 
explicit representation of the resulting surface as a 
triangle mesh 

• In principle very simple, 
but floating point numbers are not exact 
– E.g., points do not lie exactly on planes... 
– Computing the intersection A vs B is not necessarily the 

same as B vs A... 
– The line that results from intersecting two planes does not 

necessarily lie on either plane... 
– etc., etc. 
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CSG is Easy with Ray Casting... 



 
 

What is a Visual Hull? 

43 



Why Use a Visual Hull? 

• Can be computed robustly 
• Can be computed efficiently 
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- = 

background  

+  

foreground 

background  foreground  



Rendering Visual Hulls 
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Reference 1 Reference 2 
Desired 



CSG then Ray Casting 
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Reference 1 Reference 2 
Desired 



CSG then Ray Casting 
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Reference 1 Reference 2 
Desired 



CSG then Ray Casting 
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Reference 1 Reference 2 
Desired 



CSG then Ray Casting 
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Reference 1 Reference 2 
Desired 



CSG then Ray Casting 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Ray Casting then Intersection 
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Reference 1 Reference 2 
Desired 



Reference 1 

Reference 2 
Desired 

Image Based (2D) Intersection 
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Image Based Visual Hulls 
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Questions? 



• What happens when  
– Ray Origin lies on an object? 
– Grazing rays? 

• Problem with floating-point approximation 
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Precision 
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The Evil  

reflection 

refraction 

shadow 

• In ray tracing, do NOT report intersection for rays 
starting on surfaces 
– Secondary rays start on surfaces 
– Requires epsilons 
– Best to nudge the starting 

point off the surface 
e.g., along normal 



• Edges in triangle meshes 
– Must report intersection (otherwise not watertight) 
– Hard to get right 
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The Evil  



65 

Questions? 

Image by Henrik Wann Jensen 

Courtesy of Henrik Wann Jensen. Used with permission.



• We have seen that transformations such as affine 
transforms are useful for modeling & animation 

• How do we incorporate them into ray casting? 
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Transformations and Ray Casting 



1. Make each primitive handle any applied 
transformations and produce a camera space 
description of its geometry 
 
 
 
 
 
 

2. ...Or Transform the Rays 
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Incorporating Transforms 

Transform { 

    Translate { 1 0.5 0 } 

    Scale { 2 2 2 } 

    Sphere {  

        center 0 0 0  

        radius 1  

    }  

}  



• Complicated for many primitives 
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Primitives Handle Transforms 

r 
major 

r 
minor 

(x,y) 

Sphere {  

    center 3 2 0   

    z_rotation 30 

    r_major 2 

    r_minor 1  

}   
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(0,0) 

Transform Ray 
• Move the ray from World Space to Object Space 

Object Space World Space 

r = 1 

r 
major 

r 
minor 

(x,y) 

pWS  =  M    pOS 

pOS  =  M-1  pWS 



• New origin: 
 

• New direction: 
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originOS  = M-1 originWS 

directionOS  = M-1 (originWS + 1 * directionWS)   -   M-1 originWS 

originOS 

originWS 

directionOS 

directionWS 

Object Space World Space 

 qWS = originWS + tWS * directionWS 

 qOS  = originOS + tOS * directionOS 

directionOS  = M-1  directionWS 

Transform Ray 
Note that the w 

component of 

direction is 0 



• If M includes scaling, directionOS ends up  
NOT be normalized after transformation  
 

• Two solutions 
– Normalize the direction  
– Do not normalize the direction 
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What About t ? 



• tOS ≠  tWS    

and must be rescaled after intersection 
==> One more possible failure case... 
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1. Normalize Direction 

Object Space World Space 

tWS tOS 



• tOS =  tWS     convenient! 
• But you should not rely on tOS being true distance in 

intersection routines (e.g. a≠1 in ray-sphere test) 
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2. Do Not Normalize Direction 

Object Space World Space 

tWS tOS 



• Transform point 
 
 

 
• Transform direction 
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Transforming Points & Directions 

Homogeneous Coordinates:  
(x,y,z,w) 

w = 0 is a point at infinity (direction) 

• If you do not store w you need different routines to apply M to a 
point and to a direction ==> Store everything in 4D! 
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Recap: How to Transform Normals? 

Object Space World Space 

n
OS 

n
WS 
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Transformation for Shear and Scale 

Incorrect 
Normal 

Transformation 

Correct 
Normal 

Transformation 



• Think about transforming the tangent plane   
to the normal, not the normal vector 
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So How Do We Do It Right? 

Original Incorrect Correct 

n
OS 

Pick any vector vOS in the tangent plane, 
how is it transformed by matrix M? 

v
OS 

v
WS 

n
WS 

vWS   =   M  vOS 



78 

Transform Tangent Vector v 

v is perpendicular to normal n: 
nOS

T vOS  =  0 
 nOS

T  (M-1  M)  vOS  =  0 

 nWS
T =  nOS

T (M-1) 

 (nOS
T  M-1)  (M   vOS)  =  0 
 (nOS

T  M-1)  vWS  =  0 

 nWS
T vWS  =  0 

vWS is perpendicular to normal nWS: 

 nWS = (M-1)T nOS 

n
OS 

v
WS 

n
WS 

v
OS 

Dot product 



• Position  
– transformed by the full homogeneous matrix M 

• Direction 
– transformed by M except the translation component 

• Normal  
– transformed by M-T, no translation component 
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Position, Direction, Normal 
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That’s All for Today! 

Yu et al. 2009 

• Further reading 
– Realistic Ray Tracing, 2nd ed. 

(Shirley, Morley) 
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