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• Tuesday, October 16th  2:30pm – 4:00pm 
• In class 
• Two-pages of notes (double sided) allowed 
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Midterm 



• Implementing Particle Systems 
• Implicit Integration 
• Collision detection and response 

– Point-object and object-object detection 
– Only point-object response 
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Plan 



 
 

• Given a function f(X,t) compute X(t) 

• Typically, initial value problems: 
– Given values X(t0)=X0 

– Find values X(t) for t > t0 

 
• We can use lots of standard tools 
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ODEs and Numerical Integration 
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ODE: Path Through a Vector Field 

“When we are at 
state X at time t, 
where will X be after 
an infinitely small 
time interval dt ?” 

• X(t): path in multidimensional phase space 
 
 
 
 
 
 
 

• f=d/dt X is a vector that sits at each point in phase 
space, pointing the direction.  

Image by MIT OpenCourseWare.



• We have N point masses 
– Let’s just stack all xs and vs in a big vector of length 6N 
– Fi denotes the force on particle i 

• When particles do not interact, Fi only depends on xi and vi. 
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Many Particles 

f gives d/dt X, 

remember! 



• It pays off to abstract (as usual) 
– It’s easy to design your “Particle System” and “Time 

Stepper” to be unaware of each other 
 

• Basic idea 
– “Particle system” and “Time Stepper” communicate via 

floating-point vectors X and a function that computes 
f(X,t) 

• “Time Stepper” does not need to know anything else! 
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Implementation Notes 



• Basic idea 
– “Particle System” tells “Time Stepper” how many 

dimensions (N) the phase space has 
– “Particle System” has a function to write its state to an N-

vector of floating point numbers (and read state from it) 
– “Particle System” has a function that evaluates f(X,t), 

given a state vector X and time t 
 

– “Time Stepper” takes a “Particle System” as input and 
advances its state 
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Implementation Notes 
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Particle System Class 
  class ParticleSystem 

  { 

        virtual int getDimension() 

        virtual setDimension(int n) 

        virtual float* getStatePositions() 

        virtual setStatePositions(float* positions) 

        virtual float* getStateVelocities() 

        virtual setStateVelocities(float* velocities) 

        virtual float* getForces(float* positions, float* velocities) 

                        virtual setMasses(float* masses) 

                        virtual float* getMasses() 

 

        float* m_currentState  

  } 
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Time Stepper Class 
  class TimeStepper 

  { 

        virtual takeStep(ParticleSystem* ps, float h) 

  } 
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Forward Euler Implementation 
  class ForwardEuler : TimeStepper 

  { 

          void takeStep(ParticleSystem* ps, float h) 

           { 

   velocities = ps->getStateVelocities() 

   positions = ps->getStatePositions() 

   forces = ps->getForces(positions, velocities) 

   masses = ps->getMasses() 

   accelerations = forces / masses 

   newPositions = positions + h*velocities 

   newVelocities = velocities  + h*accelerations 

   ps->setStatePositions(newPositions) 

   ps->setStateVelocities(newVelocities) 

           }  

  } 
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Mid-Point Implementation 
  class MidPoint : TimeStepper 

  { 

          void takeStep(ParticleSystem* ps, float h) 

           { 

   velocities = ps->getStateVelocities() 

   positions = ps->getStatePositions() 

   forces = ps->getForces(positions, velocities) 

   masses = ps->getMasses() 

   accelerations = forces / masses 

   midPositions = positions + 0.5*h*velocities 

   midVelocities = velocities  + 0.5*h*accelerations 

   midForces = ps->getForces(midPositions, midVelocities) 

   midAccelerations = midForces / masses 

   newPositions = positions + 0.5*h*midVelocities 

   newVelocities = velocities  + 0.5*h*midAccelerations     

   ps->setStatePositions(newPositions) 

   ps->setStateVelocities(newVelocities) 

           }  

  } 
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Particle System Simulation 
   

  ps = new MassSpringSystem(particleCount, masses, springs, externalForces) 

  stepper = new ForwardEuler() 

  time = 0 

  while time < 1000 

        stepper->takeStep(ps, 0.0001) 

        time = time + 0.0001 

        // render  
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Particle System Simulation 
   

  ps = new MassSpringSystem(particleCount, masses, springs, externalForces) 

  stepper = new MidPoint() 

  time = 0 

  while time < 1000 

        stepper->takeStep(ps, 0.0001) 

        time = time + 0.0001 

        // render  

 



• When computing the forces, initialize the force 
vector to zero, then sum over all forces for each 
particle 
– Gravity is a constant acceleration 
– Springs connect two particles, affects both 
– dvi/dt = Fi(X, t) is the vector sum of all forces on particle i 
– For 2nd order Fi=miai system, 

dxi/dt is just the current vi 
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Computing Forces 
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Questions? 
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• h > 1/k: oscillate. h > 2/k: explode! 
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Euler Has a Speed Limit! 
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• Midpoint: 
– ½ Euler step 
– evaluate fm 

– full step using fm 

• Trapezoid: 
– Euler step (a) 
– evaluate f1 

– full step using f1 (b)  
– average (a) and (b) 

• Better than Euler but still a speed limit 
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Integrator Comparison 

f1 
a 

 

fm 

f1 
a 

b 

Image by MIT OpenCourseWare.



• x’=-kx 
• First half Euler step: xm=x-0.5 hkx = x(1-0.5 hk) 
• Read derivative at xm: fm=-kxm=-k(1-0.5 hk)x 
• Apply derivative at origin:  

x(t+h)=x+hfm = x-hk(1-0.5hk)x =x(1-hk+0.5 h2k2) 
• Looks a lot like Taylor... 
• We want 0<x(t+h)/x(t)<1 

-hk+0.5 h2k2 < 0 
hk(-1+0.5 hk)<0 
For positive values of h & k =>  h <2/k 

• Twice the speed limit of Euler 
19 

Midpoint Speed Limit 



• In more complex systems, 
step size is limited by the largest k. 
– One stiff spring can ruin things for everyone else! 

 
• Systems that have some big k values 

are called stiff systems. 
 

• In the general case, k values are eigenvalues of the 
local Jacobian! 
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Stiffness 

From the siggraph PBM notes 
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• In more complex systems, 
step size is limited by the largest k. 
– One stiff spring can ruin things for everyone else! 

 
• Systems that have some big k values 

are called stiff systems. 
 

• In the general case, k values are eigenvalues of the 
local Jacobian! 
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Stiffness 

From the siggraph PBM notes 

Questions? 
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• So far, we have seen explicit Euler 
– X(t+h) = X(t) + h X’(t) 

 
• We also saw midpoint and trapezoid methods 

– They took small Euler steps, re-evaluated X’ there, and 
used some combination of these to step away from the 
original X(t). 

– Yields higher accuracy, but not impervious to stiffness 
(twice the speed limit of Euler) 
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Explicit Integration 



• So far, we have seen explicit Euler 
– X(t+h) = X(t) + h X’(t) 

 
• Implicit Euler uses the derivative at the destination! 

– X(t+h) = X(t) + h X’(t+h) 
– It is implicit because we do not have X’(t+h), 

it depends on where we go (HUH?) 
 

– aka backward Euler 
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Implicit Integration 



• Trapezoid 
– take “fake” Euler step 
– read derivative at “fake” destination 

• Implicit Euler 
– take derivative at the real destination 
– harder because the derivative depends on the destination 

and the destination depends on the derivative 
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Difference with Trapezoid 



• Implicit Euler uses the derivative at the destination! 
– X(t+h) = X(t) + h X’(t+h) 
– It is implicit because we do not have X’(t+h), 

it depends on where we go (HUH?) 
– Two situations 

• X’ is known analytically and everything 
is closed form (doesn’t happen in practice) 

• We need some form of iterative non-linear solver. 
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Implicit Integration 



• Remember our model problem:  x’ = -kx 

– Exact solution was a decaying exponential x0 e-kt 

 

• Explicit Euler: x(t+h) = (1-hk) x(t) 
– Here we got the bounds on h to avoid oscillation/explosion 
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Simple Closed Form Case 



• Remember our model problem:  x’ = -kx 

– Exact solution was a decaying exponential x0 e-kt 

 

• Explicit Euler: x(t+h) = (1-hk) x(t) 
 

• Implicit Euler: x(t+h) = x(t) + h x’(t+h) 
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Simple Closed Form Case 



• Remember our model problem:  x’ = -kx 

– Exact solution was a decaying exponential x0e
-kt 

 

• Explicit Euler: x(t+h) = (1-hk) x(t) 
 

• Implicit Euler: x(t+h) = x(t) + h x’(t+h)  
                        x(t+h) = x(t) - hk x(t+h) 
       x(t+h) +hkx(t+h) = x(t) 

                   x(t+h)  = x(t) / (1+hk) 

– It is a hyperbola! 
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Simple Closed Form Case 



• Remember our model problem:  x’ = -kx 

– Exact solution was a decaying exponential x0 e-kt 

 

• Explicit Euler: x(t+h) = (1-hk) x(t) 
 

• Implicit Euler: x(t+h) = x(t) + h x’(t+h)  
                        x(t+h) = x(t) - h k x(t+h) 
                               = x(t) / (1+hk) 
– It is a hyperbola! 

29 

Implicit Euler is 
unconditionally stable! 

1/(1+hk) < 1, 

when h,k > 0 

Simple Closed Form Case 
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Implicit vs. Explicit 

From the Siggraph PBM notes 
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Implicit vs. Explicit 

From the Siggraph PBM notes 

Questions? 

Image removed due to copyright restrictions -- please see slide 12 on "Implicit Methods" from
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Xi Xi+1 

 

Implicit Euler, Visually 
Xi+1 = Xi + h f( Xi+1, t+h ) 
Xi+1 - h f( Xi+1, t+h ) = Xi 

 

Image by MIT OpenCourseWare.



33 

Implicit Euler, Visually 

Xi+1 = Xi + h f( Xi+1, t+h ) 
Xi+1 - h f( Xi+1, t+h ) = Xi 

 
 

What is the location 
Xi+1=X(t+h) such that the 
derivative there, multiplied 
by -h, points back to 
Xi=X(t) where we are 
starting from? 

Xi+1 

-hf(X,t) 

i X

Image by MIT OpenCourseWare.



• To simplify, consider only 1D time-invariant systems 
– This means x’ = f(x,t) = f(x) is independent of t 
– Our spring equations satisfy this already 

 
• x(t+h)=x(t)+dx = x(t)+h f(x(t+h)) 
• f can be approximated it by 1st order Taylor: 

f(x+dx)=f(x)+dxf’(x)+O(dx2) 
• x(t+h)=x(t)+h [f(x) + dx f’(x)] 
• dx=h [f(x) +dx f’(x)] 
• dx=hf(x)/[1-hf’(x)] 
• Pretty much Newton solution 34 

Implicit Euler in 1D 



• Iterative method for solving non-linear equations 
 
 

• Start from initial guess x0, then iterate 
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Newton’s Method (1D) 



• Iterative method for solving non-linear equations 
 
 

• Start from initial guess x0, then iterate 
 
 
 
 

• Also called Newton-Raphson iteration 
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Newton’s Method (1D) 



• Iterative method for solving non-linear equations 
 
 

• Start from initial guess x0, then iterate 
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Newton’s Method (1D) 

one step  
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Newton, Visually 

We are here 
f(x) 
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Newton, Visually 

We are here 

Let’s approximate f 

by its tangent at 

point (xn, f(xn)) 
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Newton, Visually 

We are here 

Let’s approximate f 
by its tangent at 

point (xn, f(xn)) 

Then we’ll see 

where the tangent 

line crosses zero 

and take that as 

next guess 
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Newton, Visually 

Image courtesy of Ralf Pfeifer on Wikimedia Commons. License: CC-BY-SA. This content is excluded
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Newton, Visually Questions? 
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• To simplify, consider only time-invariant systems 
– This means X’ = f(X,t) = f(X) is independent of t 
– Our spring equations satisfy this already 

 
• Implicit Euler with N-D phase space: 

Xi+1 = Xi + h f( Xi+1) 
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Implicit Euler and Large Systems 



• To simplify, consider only time-invariant systems 
– This means X’ = f(X,t) = f(X) is independent of t 
– Our spring equations satisfy this already 

 
• Implicit Euler with N-D phase space: 

Xi+1 = Xi + h f( Xi+1) 
 

• Non-linear equation, 
unknown Xi+1 on both the LHS and the RHS 
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Implicit Euler and Large Systems 



• 1D: 
 

• Now locations Xi, Xi+1 and F are N-D 
• N-D Newton step is just like 1D: 

45 

Newton’s Method – N Dimensions 

NxN Jacobian 
matrix replaces 

f’ 

unknown N-D 
step from 

current to next 
guess 



• Now locations Xi, Xi+1 and F are N-D 
• Newton solution of F(Xi+1) = 0 is just like 1D: 

 
 
 
 
 

• Must solve a linear system at each 
step of Newton iteration 
– Note that also Jacobian changes for each step 
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Newton’s Method – N Dimensions 

NxN Jacobian 
matrix 

unknown N-D 
step from 

current to next 
guess 



• Now locations Xi, Xi+1 and F are N-D 
• Newton solution of F(Xi+1) = 0 is just like 1D: 

 
 
 
 
 

• Must solve a linear system at each 
step of Newton iteration 
– Note that also Jacobian changes for each step 
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Newton’s Method – N Dimensions 

NxN Jacobian 
matrix 

unknown N-D 
step from 

current to next 
guess 

Questions? 



• Implicit Euler with N-D phase space: 
Xi+1 = Xi + h f( Xi+1 ) 
 

• Let’s rewrite this as                          with 
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Implicit Euler – N Dimensions 



• Implicit Euler with N-D phase space: 
Xi+1 = Xi + h f( Xi+1 ) 
 

• Let’s rewrite this as                          with 
 
 
 

• Then the Y that solves F(Y)=0 is Xi+1 
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Implicit Euler – N Dimensions 



 
 
 

• Then iterate 
– Initial guess                            (or result of explicit method) 

 
– For each step, solve 

 
– Then set 
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Y is variable Xi is fixed 

Implicit Euler – N Dimensions 



 
 

• Simple partial differentiation... 
 
 
 
 

• Where 

51 

What is the Jacobian? 

The Jacobian of 
the Force function 

f 



• Iterate until convergence 
 
– Initial guess                            (or result of explicit method) 

 
– For each step, solve 

 
 
 

– Then set 
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Putting It All Together 
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Implicit Euler with Newton, Visually 

Xi=Y0 

Y1 
Y2 

Y3 
Y=Xi+1 

Image by MIT OpenCourseWare.



54 

Implicit Euler with Newton, Visually 
What is the location 
Xi+1=X(t+h) such that the 
derivative there, multiplied 
by -h, points back to 
Xi=X(t) where we are 
starting from? 

Xi=Y0 

-hf(X,t) 

Y=Xi+1 

Image by MIT OpenCourseWare.



• Often, the 1st Newton step may suffice 
– People often implement Implicit Euler using only one 

step. 
– This amounts to solving the system 

 
 
 
 
where the Jacobian and f are evaluated at Xi, and we are 
using Xi as an initial guess. 
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One-Step Cheat 



• Often, the 1st Newton step may suffice 
– People often implement Implicit Euler using only one 

step. 
– This amounts to solving the system 

 
 
 
 
where the Jacobian and f are evaluated at Xi, and we are 
using Xi as an initial guess. 
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One-Step Cheat Questions? 



• The Jacobian matrix Jf  is usually sparse 
– Only few non-zero entries per row 
– E.g. the derivative of a spring force only depends on the 

adjacent masses’ positions 
• Makes the system cheaper to solve 

– Don’t invert the Jacobian! 
– Use iterative matrix solvers like 

conjugate gradient, perhaps with 
preconditioning, etc.  

57 

Good News 

© David Baraff and Andrew Witkin. All rights reserved. This
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Implicit Euler Pros & Cons 

• Pro: Stability! 
 

• Cons:  
– Need to solve a linear system at each step  
– Stability comes at the cost of “numerical viscosity”, but 

then again, you do not have to worry about explosions. 
• Recall exp vs. hyperbola 

 

• Note that accuracy is not improved 
– error still O(h) 
– There are lots and lots of implicit methods out there! 
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Reference 

• Large steps in cloth simulation  
• David Baraff   Andrew Witkin   
• http://portal.acm.org/citation.cfm?id=280821 

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://portal.acm.org/results.cfm?query=author:P60514&querydisp=author:David Baraff&coll=GUIDE&dl=GUIDE&CFID=1991074&CFTOKEN=12116421
http://portal.acm.org/results.cfm?query=author:P18516&querydisp=author:Andrew Witkin&coll=GUIDE&dl=GUIDE&CFID=1991074&CFTOKEN=12116421
http://portal.acm.org/citation.cfm?id=280821


60 

A Mass Spring Model for Hair Simulation 
Selle, A., Lentine, M., G., and Fedkiw 

Animation removed due to copyright restrictions. 

http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf
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Simulating Knitted Cloth at the Yarn Level 
Jonathan Kaldor, Doug L. James, and Steve Marschner 

Animation removed due to copyright restrictions. 

http://www.cs.cornell.edu/~srm/publications/SG08-knit.html
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Efficient Simulation of Inextensible Cloth  
Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, Eitan Grinspun 

Animation removed due to copyright restrictions. 

http://doi.acm.org/10.1145/1275808.1276438
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Questions? 



• Detection 
• Response 
• Overshooting problem  

(when we enter the solid) 
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Collisions 



• Easy with implicit equations of surfaces: 
 
H(x,y,z) = 0     on the surface 
H(x,y,z) < 0     inside surface 
 

• So just compute H and you know that 
you are inside if it is negative 
 

• More complex with other surface 
definitions like meshes 
– A mesh is not necessarily even closed, what is inside? 
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Detecting Collisions 
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Collision Response for Particles 
N v 
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Collision Response for Particles 
N v 

vn 

vt 

v=vn+vt 

normal component 
tangential component 



• Tangential velocity vt  
often unchanged 

• Normal velocity vn reflects: 
 
 
 

• Coefficient of restitution ε 
 

• When ε = 1, mirror reflection 
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Collision Response for Particles 
N v 

vn 

vt 

N v vnew 

N v vnew 

ε=1 

ε<1 



• Usually, we detect collision when it is too late: 
we are already inside 
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Collisions – Overshooting 

xi 

xi+1 



• Usually, we detect collision when it is too late: 
we are already inside 

• Solution: Back up 
• Compute intersection point 
• Ray-object intersection! 
• Compute response there 
• Advance for remaining  

fractional time step 
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Collisions – Overshooting 

backtracking 
xi 

xi+1 



• Usually, we detect collision when it is too late: 
we are already inside 

• Solution: Back up 
• Compute intersection point 
• Ray-object intersection! 
• Compute response there 
• Advance for remaining  

fractional time step 

• Other solution: 
Quick and dirty hack 

• Just project back to object closest point 

71 

Collisions – Overshooting 

fixing 

backtracking 
xi 

xi+1 



• Pong: ε =? 
• http://www.youtube.com/watch?v=sWY0Q_lMFfw 
• http://www.xnet.se/javaTest/jPong/jPong.html 
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Questions? 

http://en.wikipedia.org/wiki/Pong 

Animation removed due to 
copyright restrictions. 

This image is in the public domain.
Source: Wikimedia Commons.
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• Imagine we have n objects. Can we test all pairwise 
intersections? 
– Quadratic cost O(n2)! 

 
• Simple optimization: separate static objects 

– But still O(static × dynamic+ dynamic2) 
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Collision Detection in Big Scenes 



• Use simpler conservative proxies  
(e.g. bounding spheres) 
 

• Recursive (hierarchical) test 
– Spend time only for parts of the scene that are close 

 
• Many different versions, we will cover only one 
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Hierarchical Collision Detection 



• Place spheres around objects  
• If spheres do not intersect, neither do the objects! 
• Sphere-sphere collision test is easy. 

75 

Bounding Spheres 

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• Two spheres, centers C1 and C2, radii r1 and r2 
• Intersect only if ||C1C2||<r1+r2 
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Sphere-Sphere Collision Test 

C1 C2 r1 r2 

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.
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• Hierarchy of bounding spheres 
– Organized in a tree 

• Recursive test with early pruning 

Hierarchical Collision Test 

Root encloses 

whole object 

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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• http://isg.cs.tcd.ie/spheretree/ 
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Examples of Hierarchy 

© Gareth Bradshaw. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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boolean intersect(node1, node2) 
   // no overlap? ==> no intersection! 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
 
   // recurse down the larger of the two nodes 
   if (node1->radius()>node2->radius()) 
      for each child c of node1 
         if intersect(c, node2) return true 
   else 
      for each child c f node2 
        if intersect(c, node1) return true 
 
   // no intersection in the subtrees? ==> no intersection! 
   return false 
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Pseudocode (simplistic version) 
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boolean intersect(node1, node2) 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
   if (node1->radius()>node2->radius()) 
      for each child c of node1 
         if intersect(c, node2) return true 
   else 
      for each child c f node2 
        if intersect(c, node1) return true 
   return false 

node 1 

node 2 
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boolean intersect(node1, node2) 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
   if (node1->radius()>node2->radius()) 
      for each child c of node1 
         if intersect(c, node2) return true 
   else 
      for each child c f node2 
        if intersect(c, node1) return true 
   return false 
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boolean intersect(node1, node2) 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
   if (node1->radius()>node2->radius()) 
      for each child c of node1 
         if intersect(c, node2) return true 
   else 
      for each child c f node2 
        if intersect(c, node1) return true 
   return false 
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boolean intersect(node1, node2) 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
   if (node1->radius()>node2->radius()) 
      for each child c of node1 
         if intersect(c, node2) return true 
   else 
      for each child c f node2 
        if intersect(c, node1) return true 
   return false 
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boolean intersect(node1, node2) 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
   if (node1->radius()>node2->radius()) 
      for each child c of node1 
         if intersect(c, node2) return true 
   else 
      for each child c f node2 
        if intersect(c, node1) return true 
   return false 
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boolean intersect(node1, node2) 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
   if (node1->radius()>node2->radius()) 
      for each child c of node1 
         if intersect(c, node2) return true 
   else 
      for each child c f node2 
        if intersect(c, node1) return true 
   return false 
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boolean intersect(node1, node2) 
   if (!overlap(node1->sphere, node2->sphere)  
      return false 
 
   // if there is nowhere to go, test everything 
   if (node1->isLeaf() && node2->isLeaf()) 
      perform full test between all primitives within nodes 
 
   // otherwise go down the tree in the non-leaf path 
   if ( !node2->isLeaf() && !node1->isLeaf() ) 
      // pick the larger node to subdivide, then recurse 
   else 
      // recurse down the node that is not a leaf 
 
   return false 
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Pseudocode (with leaf case) 



• Axis Aligned Bounding Boxes 
– “R-Trees” 

 
• Oriented bounding boxes 

–  S. Gottschalk, M. Lin, and D. Manocha. “OBBTree: A hierarchical Structure 
for rapid interference detection,” Proc. Siggraph 96. ACM Press, 1996 

 
• Binary space partitioning trees; kd-trees  
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Other Options 



• http://www.youtube.com/watch?v=b_cGXtc-nMg 
• http://www.youtube.com/watch?v=nFd9BIcpHX4&f

eature=related 
• http://www.youtube.com/watch?v=2SXixK7yCGU 
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Questions? 

http://www.youtube.com/watch?v=b_cGXtc-nMg

http://www.youtube.com/watch?v=b_cGXtc-nMg
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• Top down 
– Divide and conquer  

 
• Bottom up 

– Cluster nearby objects 
 

• Incremental 
– Add objects one by one, binary-tree style.  
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Hierarchy Construction 



• Trivial given center C 
– radius = maxi ||C-Pi|| 
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Bounding Sphere of a Set of Points 

C 
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• Using axis-aligned bounding box 
– center=  

((xmin+xmax)/2, (ymin+ymax)/2, (zmin, zmax)/2) 
– Better than the average of the vertices because does not 

suffer from non-uniform tessellation  
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Bounding Sphere of a Set of Points 

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


• Using axis-aligned bounding box 
– center=  

((xmin+xmax)/2, (ymin+ymax)/2, (zmin, zmax)/2) 
– Better than the average of the vertices because does not 

suffer from non-uniform tessellation  
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Bounding Sphere of a Set of Points 

Questions? 
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• Take longest scene dimension 
• Cut in two in the middle 

– assign each object or triangle to one side 
– build sphere around it 
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Top-Down Construction 
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Top-Down Construction - Recurse 
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Top-Down Construction - Recurse 

Questions? 
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Reference 

An image of the book, “Real Time Collision Detection” by Christer Ericson, 
has been removed due to copyright restrictions. 



• A cloth has many points of contact 
• Stays in contact 
• Requires 

– Efficient collision detection 
– Efficient numerical treatment (stability) 
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The Cloth Collision Problem 

Image from Bridson et al.   
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Robust Treatment of Simultaneous Collisions 
David Harmon, Etienne Vouga, Rasmus Tamstorf, Eitan Grinspun 

Animation removed due to copyright restrictions. 

http://www.cs.columbia.edu/cg/RTSC/


• Keyframing mostly 
• Articulated figures, inverse kinematics 
• Skinning  

– Complex deformable skin, muscle, skin motion 

• Hierarchical controls 
– Smile control, eye blinking, etc.  
– Keyframes for these higher-level controls 

• A huge time is spent building the 3D models,  
its skeleton and its controls (rigging) 

• Physical simulation for secondary motion 
– Hair, cloths, water 
– Particle systems for “fuzzy” objects 

How Do They Animate Movies? 

Images from the Maya tutorial 
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That’s All for Today! 
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