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Midterm

e Tuesday, October 161 2:30pm — 4:00pm
* In class
* Two-pages of notes (double sided) allowed



Plan

* Implementing Particle Systems
* Implicit Integration
* Collision detection and response

— Point-object and object-object detection

— Only point-object response



ODEs and Numerical Integration

dX(t)
dt
* (G1ven a function f(X,#) compute X(?)

» Typically, initial value problems:
— Given values X(7))=X,
— Find values X(?) for t > ¢,

J(X(1),1)

* We can use lots of standard tools



ODE: Path Through a Vector Field

e X(t): path in multidimensional phase space
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Image by MIT OpenCourseWare. tlme Interval dt ?”

» f=d/dt X 1s a vector that sits at each point in phase
space, pointing the direction.



Many Particles

* We have N point masses
— Let’s just stack all xs and ws 1n a big vector of length 6 N
— F denotes the force on particle i

« When particles do not interact, # only depends on x; and .

I V1

(o8] Fl (X, t)
X =1 - f(X,t) =

LN | UN

vn/ e\ (X,1)



Implementation Notes

* It pays off to abstract (as usual)

— It’s easy to design your “Particle System” and “Time
Stepper” to be unaware of each other

 Basic idea

— “Particle system™ and “Time Stepper” communicate via
floating-point vectors X and a function that computes
f(X,t)

« “Time Stepper” does not need to know anything else!



Implementation Notes

 Basic idea

— “Particle System” tells “Time Stepper” how many
dimensions (N) the phase space has

— “Particle System” has a function to write its state to an N-
vector of floating point numbers (and read state from it)

— “Particle System” has a function that evaluates f(X,t),
given a state vector X and time t

— “Time Stepper” takes a “Particle System” as input and
advances 1ts state



Particle System Class

class ParticleSystem
{
virtual int getDimension()
virtual setDimension(int n)
virtual float* getStatePositions()
virtual setStatePositions(float* positions)
virtual float* getStateVelocities()
virtual setStateVelocities(float* velocities)
virtual float* getForces(float* positions, float* velocities)
virtual setMasses(float* masses)

virtual float* getMasses()

float* m_currentState



Time Stepper Class

class TimeStepper

{
virtual takeStep(ParticleSystem* ps, float h)

}
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Forward Euler Implementation

class ForwardEuler : TimeStepper

{

void takeStep(ParticleSystem* ps, float h)

{

velocities = ps->getStateVelocities()
positions = ps->getStatePositions()

forces = ps->getForces(positions, velocities)
masses = ps->getMasses()

accelerations = forces / masses
newPositions = positions + h*velocities
newVelocities = velocities + h*accelerations
ps->setStatePositions(newPositions)

ps->setStateVelocities(newVelocities)
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Mid-Point Implementation

class MidPoint : TimeStepper

{

void takeStep(ParticleSystem* ps, float h)

{

velocities = ps->getStateVelocities()

positions = ps->getStatePositions()

forces = ps->getForces(positions, velocities)
masses = ps->getMasses()

accelerations = forces / masses

midPositions = positions + 0.5*h*velocities
midVelocities = velocities + 0.5*h*accelerations
midForces = ps->getForces(midPositions, midVelocities)
midAccelerations = midForces / masses
newPositions = positions + 0.5*h*midVelocities
newVelocities = velocities + 0.5*h*midAccelerations
ps->setStatePositions(newPositions)

ps->setStateVelocities(newVelocities)
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Particle System Simulation

ps = new MassSpringSystem(particleCount, masses, springs, externalForces)
stepper = new ForwardEuler()
time =0
while time < 1000
stepper->takeStep(ps, 0.0001)
time = time + 0.0001

/I render
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Particle System Simulation

ps = new MassSpringSystem(particleCount, masses, springs, externalForces)
stepper = new MidPoint()
time =0
while time < 1000
stepper->takeStep(ps, 0.0001)
time = time + 0.0001

/I render

14



Computing Forces

 When computing the forces, initialize the force
vector to zero, then sum over all forces for each
particle
— Gravity 1s a constant acceleration
— Springs connect two particles, affects both
— dv/dt = F(X t) is the vector sum of all forces on particle

— For 2™ order F'=m,a, system, V] \
dx;/dt is just the current ; F'(X,t)
f(X,t) =
UN

FN(X,t)/
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Questions?

Image removed due to copyright restrictions.
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Euler Has a Speed Limit!

* h > 1/k: oscillate. h > 2/k: explode!

Image removed due to copyright restrictions -- please see slide 5 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

From the SIGGRAPH PBM notes
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Integrator Comparison

* Midpoint:
— 2 Euler step
— evaluate f,,
— full step using f,,

e Trapezoid: ikt ady - JiEuba sl sl sl sk il al

T ot Gt 5 B R g gt A G ot g A

— Euler step (a) /////////////
— evaluate f, TS oo oSS ST
— full stepusing f; (b)  imageby miT opencousemare
— average (a) and (b)

« Better than Euler but still a speed limit
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Midpoint Speed Limit

x’=-kx
First half Euler step: x,,=x-0.5 hkx = x(1-0.5 hk)
Read derivative at x,,- f, =-kx, =-k(1-0.5 hk)x
Apply derivative at origin:
x(tth)=x+hf, = x-hk(1-0.5hk)x =x(1-hk+0.5 h’k?)
Looks a lot like Taylor...
We want 0<x(t+h)/x(t)<1

-hk+0.5 bk’ < 0

hk(-1+0.5 hk)<0

For positive values of 7 & k => h <2/k
Twice the speed limit of Euler
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Stiffness

* In more complex systems,
step size 1s limited by the largest k.

— One stiff spring can ruin things for everyone else!

» Systems that have some big k values
are called stiff systems.

 In the general case, k values are eigenvalues of the
local Jacobian!

From the siggraph PBM notes

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Stiffness Questions?

* In more complex systems,
step size 1s limited by the largest k.

— One stiff spring can ruin things for everyone else!

» Systems that have some big k values
are called stiff systems.

 In the general case, k values are eigenvalues of the
local Jacobian!

From the siggraph PBM notes

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Explicit Integration

* So far, we have seen explicit Euler
— X(t+th) = X@t) + h X'(1)

* We also saw midpoint and trapezoid methods

— They took small Euler steps, re-evaluated X there, and
used some combination of these to step away from the
original X{%).

— Yields higher accuracy, but not impervious to stiffness
(twice the speed limit of Euler)
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Implicit Integration

* So far, we have seen explicit Euler
— X(t+th) = X@t) + h X'(1)

* Implicit Euler uses the derivative at the destination!
— X(t+h) = X(t) + h X'(t+h)
— It 1s implicit because we do not have X’(t+h),
it depends on where we go (HUH?)

— aka backward Euler
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Difference with Trapezoid

* Trapezoid
— take “fake” Euler step

— read derivative at “fake” destination
* Implicit Euler

— take derivative at the real destination

— harder because the derivative depends on the destination
and the destination depends on the derivative

24



Implicit Integration

* Implicit Euler uses the derivative at the destination!
— X(t+th) = X(t) + h X'(t+h)
— It 1s implicit because we do not have X'(1+h),
it depends on where we go (HUH?)

— Two situations

« X is known analytically and everything
is closed form (doesn 't happen in practice)

* We need some form of iterative non-linear solver.
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Simple Closed Form Case

 Remember our model problem: x’ = -kx

— Exact solution was a decaying exponential xo e

» Explicit Euler: x(¢+h) = (1-hk) x(¢)

— Here we got the bounds on / to avoid oscillation/explosion

26



Simple Closed Form Case

 Remember our model problem: x’ = -kx

— Exact solution was a decaying exponential X0 €’
» Explicit Euler: x(¢+h) = (1-hk) x(¢)

* Implicit Euler: x(¢+h) = x(t) + A x’(t+h)

kt
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Simple Closed Form Case

 Remember our model problem: x’ = -kx

— Exact solution was a decaying exponential xoe'kt

» Explicit Euler: x(¢+h) = (1-hk) x(¢)

* Implicit Euler: x(¢+h) = x(t) + A x’(t+h)
x(t+h) = x(t) - hk x(t+h)
x(t+h) +hkx(t+h) = x(t)
x(t+h) =x(t) / (1+hk)
— It 1s a hyperbola!

28



Simple Closed Form Case

Implicit Euler is

unconditionally stable!
o Explicit Euler: x(¢+h) = (1-hk) x(?)

o Implicit Euler: x(¢+h) = x(t) + h x’(t+h)
x(t+h) = x(t) - L x(t+h)

-0
— It 1s a hyperbola! 1/(1+hk) < 1,
when h,k >0

29



Implicit vs. Explicit

Image removed due to copyright restrictions -- please see slide 12 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

From the Siggraph PBM notes
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Implicit vs. Explicit Questions?

Image removed due to copyright restrictions -- please see slide 12 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

From the Siggraph PBM notes 5,


http://www.cs.cmu.edu/~baraff/sigcourse/

Implicit Euler, Visually

X =X thf( X, t+11)
+1'hf( i+1 t+]1)
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Implicit Euler, Visually

X+1:X hi( X, t+11)

l

+1 - hf( i+ t+11)

What is the location

X,.=X(t+h) such that the \\\\\\\\\\\\\\\\\
Serivative_ there, multiplied §§§\\ \\ \ \ \ \ § § § § § \ §§
y -h, points back to \\\‘-hf(,\’,t)\\\\\\\\
X=X(t) where we are 3\;;;;;;::223\?’\
starting from? o 2 o i ol g o b b

X/v/// A 000 0 0 0 4
oA //X AAAAAIXH TR
////-//l/’/’/?/’/’/’/?/’/’

— o — — —
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Implicit Euler in 1D

* To simplify, consider only 1D time-invariant systems
— This means x’ = f(x,¢) = f(x) 1s independent of ¢
— QOur spring equations satisfy this already

* X(t+h)=x()+dx = x(t)+h f(x(t+h))

* fcan be approximated it by 15" order Taylor:
Jtxtdx)=f(x)+dxf"(x)+O(dx’)

* X(tHh)=x()*h [f(x) + dx [ (x)]

* dx=h [{(x) +de (x)/

. Pretty much Newton solution
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Newton’'s Method (1D)

o Iterative method for solving non-linear equations

f(z)=0

 Start from 1nitial guess x,,, then iterate

35



Newton’'s Method (1D)

o Iterative method for solving non-linear equations

f(z)=0

 Start from 1nitial guess x,,, then iterate

f(x;)
f'(xi)

Li41 = Ly

» Also called Newton-Raphson iteration

36



Newton’'s Method (1D)

o Iterative method for solving non-linear equations

f(x) =0

 Start from initial guess x,, then 1iterate

f(z;)

Lit1 = Ly f"(r*)
w1

—f(x;)

< flx)(Tig1 — i)

one step
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Newton, Visually

A

X
-

|
) _—— %/
We are here

This image is in the public domain. Source: Wikimedia Commons.

Wikipedia users Olegalexandrov, Pbroks13
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Newton, Visually

Let’s approximate f
by its tangent at
point (xn, f(Xn))

\

A

|

o) _— X /%
We are here

This image is in the public domain. Source: Wikimedia Commons.

X
-

Wikipedia users Olegalexandrov, Pbroks13
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Newton, Visually

Let’s approximate f
by its tangent at
point (Xn, f(Xxn))

A

Then we’ll see \
where the tangent
line crosses zero
and take that as

next guess

>

F(X)

X /Xn+l
We are here

This image is in the public domain. Source: Wikimedia Commons.

Wikipedia users Olegalexandrov, Pbroks13
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Newton, Visually

¥
t Newton-Iteration

» X

Funktion
Tangente

Image courtesy of Ralf Pfeifer on Wikimedia Commons. License: CC-BY-SA. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Newton, Visually

Questions?

¥
t Newton-Iteration

» X

Funktion
Tangente

Image courtesy of Ralf Pfeifer on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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Implicit Euler and Large Systems

* To simplify, consider only time-invariant systems
— This means X" = f(Xt) = /(X) 1s independent of ¢
— QOur spring equations satisfy this already

* Implicit Euler with N-D phase space:
X1 = Xt hjf( Xy

43



Implicit Euler and Large Systems

* To simplify, consider only time-invariant systems
— This means X" = f(Xt) = /(X) 1s independent of ¢
— QOur spring equations satisfy this already

* Implicit Euler with N-D phase space:
X1 = Xt hjf( Xy

* Non-linear equation,
unknown X, ; on both the LHS and the RHS

44



Newton’s Method — N Dimensions

e 1D f(x) (i1 — i) = —f ()

* Now locations X, X ,;and F are N-D
* N-D Newton step 1s just like 1D:

Jr(X:)(Xiy1 — X)) = —F(X})

NxN Jacobian unknown N-D
matrix replaces  step from
f current to next
guess

45



Newton’s Method — N Dimensions

* Now locations X, X, and F are N-D
* Newton solution of F(X;,,) = 0 1s just like 1D:

Jr(X:)(Xiy1 — X)) = —F(X})

NxN Jacobian unknown N-D
matrix step from

current to next 8F

guess JF(Xa) — 8_X
i 1 Xx;

* Must solve a linear system at each
step of Newton iteration

— Note that also Jacobian changes for each step

46



Newton’s Method — N Dimensions

* Now locations X, X, and F are N-D
* Newton solution of (X, ;) = 0 1s just like 1D:

Jr(X:)(Xiy1 — X)) = —F(X})

NxN Jacobian unknown N-D
matrix step from ) -
current to next 8F

guess JF(Xa) — 8_X
i 11X,

* Must solve a linear system at each

step of Newton iteration Questions?

— Note that also Jacobian changes for each step
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Implicit Euler — N Dimensions

* Implicit Euler with N-D phase space:
X, =X +hf(X,)

+ Let’s rewrite thisas F'(Y ) = 0, with

FIY)=Y — X, — hf(Y)

48



Implicit Euler — N Dimensions

* Implicit Euler with N-D phase space:
Xy =X+t hf( Xy)

+ Let’s rewrite thisas F'(Y ) = 0, with

FIY)=Y — X, — hf(Y)

* Then the ¥that solves F(Y)=0is X,

49



Implicit Euler — N Dimensions

FIY)=Y — X, — hf(Y)

Y is variable Xi is fixed

* Then iterate
— Initial guess Y{] — X ;  (or result of explicit method)

— For each step, solve JF(Y?,)AY — —F(Yz)

— Then set Y*i—l—l — Yz — AY

50



What is the Jacobian?

FY)=Y - X, — hf(Y)

* Simple partial differentiation...

O
To(Y) = | 5| =T = hJp(Y)

| af | The Jacobian of

e Where Jf (Y) — 6_Y the For(:e]c function
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Putting It All Together

* Iterate until convergence

— Initial guess Y{; = X i (or result of explicit method)

— For each step, solve

(1 _ hjf(Yi))AY — _F(Y))

— Then set Yi+l = Yz + AY

52



Implicit Euler with Newton, Visually

—
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Implicit Euler with Newton, Visually

What is the location
X..1=X(t+h) such that the
derivative there, multiplied
by -h, points back to
X=X(t) where we are \ \ \

starting from? \ \ \ \ \
AU SANY

‘‘‘‘‘‘

Sy Ny e Y R TNYE O

—

— o D
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One-Step Cheat

» Often, the 15 Newton step may suffice

— People often implement Implicit Euler using only one
step.

— This amounts to solving the system

(I - h%) AX = hf(X)

where the Jacobian and f are evaluated at X, and we are
using X, as an 1nitial guess.

55



One-Step Cheat Questions?

» Often, the 15 Newton step may suffice

— People often implement Implicit Euler using only one
step.

— This amounts to solving the system

(I - h%) AX = hf(X)

where the Jacobian and f are evaluated at X, and we are
using X, as an 1nitial guess.
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Good News

* The Jacobian matrix J; 1s usually sparse
— Only few non-zero entries per row

— E.g. the derivative of a spring force only depends on the
adjacent masses’ positions

« Makes the system cheaper to solve

:Solving Large Systems

— Don’t invert the Jacobian!

— Use iterative matrix solvers like B e v
. . . = Conjugate gradient a good first choice
conjugate gradient, perhaps with & 4 . ool

preconditioning, etc.

(I _ Jf(Yi))AY — _F(Y,)

Secorarn 2001 Cotnse Notrs D Prevacarty Baseo Monetise

© David Baraff and Andrew Witkin. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Implicit Euler Pros & Cons

* Pro: Stability!

* Cons:
— Need to solve a linear system at each step

— Stability comes at the cost of “numerical viscosity™, but
then again, you do not have to worry about explosions.
« Recall exp vs. hyperbola

* Note that accuracy 1s not improved
— error still O(h)
— There are lots and lots of implicit methods out there!
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Reference

« Large steps in cloth simulation
 David Baraff Andrew Witkin
* http://portal.acm.org/citation.cfm?1d=280821

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faqg-fair-use/.
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A Mass Spring Model for Hair Simulation

Selle, A., Lentine, M., G., and Fedkiw

Animation removed due to copyright restrictions.
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Simulating Knitted Cloth at the Yarn Level

Jonathan Kaldor, Doug L. James, and Steve Marschner

Animation removed due to copyright restrictions.
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Efficient Simulation of Inextensible Cloth

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, Eitan Grinspun

Animation removed due to copyright restrictions.
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Questions?
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Collisions

* Detection
* Response

* Overshooting problem
(when we enter the solid)

64



Detecting Collisions

« Easy with implicit equations of surfaces:

H(x,y,z) = 0 on the surface
H(x,y,z) <0 1nside surface

* So just compute H and you know that
you are inside 1if 1t 1s negative

* More complex with other surface
definitions like meshes

— A mesh is not necessarily even closed, what 1s inside?
65



Collision Response for Particles

o

66



Collision Response for Particles

N

V=V, +V,

tangential component
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Collision Response for Particles

» Tangential velocity v, v N
often unchanged V
* Normal velocity v, reflects: —
vV=v +v Vr
V<V, =&y, v N View
e (Coetficient of restitution ¢ =1
- A
* When ¢ = [, mirror reflection V IN Vnew

68



Collisions — Overshooting

« Usually, we detect collision when 1t 1s too late:
we are already 1nside

\) Xi+1
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Collisions — Overshooting

» Usually, we detect collision when it 1s too late:
we are already 1nside

 Solution: Back up X
» Compute intersection point | bathraCking

« Ray-object intersection!
« Compute response there

* Advance for remaining
fractional time step

70



Collisions — Overshooting

» Usually, we detect collision when it 1s too late:
we are already 1nside

* Solution: Back up

» Compute intersection point

X. :
' backtracking
» Ray-object intersection!

* Advance for remaining
fractional time step

« Compute response there C>\(//>A(XI ng

 Other solution:
Quick and dirty hack

« Just project back to object closest point
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Questions?

* Pong: ¢ =7
 http://www.youtube.com/watch?v=sWY0Q IMFfw
* http:// www.xnet.se/javaTest/JPong/jPong.html

Animation removed due to
copyright restrictions.

Image courtesy of Chris Rand on Wikimedia Commons.
License: CC-BY-SA. This content is excluded from our

This image is in the public domain.
Source: Wikimedia Commons.

Creative Commons license. For more information, see

http://en.wikipedia.org/wiki/Pong  tte://ocw.mit.edu/help/faq-fair-use/.
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Collision Detection in Big Scenes

* Imagine we have n objects. Can we test all pairwise
intersections?

— Quadratic cost O(n?)!

* Simple optimization: separate static objects
— But still O(static *x dynamic+ dynamic?)
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Hierarchical Collision Detection

» Use simpler conservative proxies
(e.g. bounding spheres)

* Recursive (hierarchical) test

— Spend time only for parts of the scene that are close

» Many different versions, we will cover only one
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Bounding Spheres

* Place spheres around objects
 If spheres do not intersect, neither do the objects!

* Sphere-sphere collision test is easy.
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Sphere-Sphere Collision Test

» Two spheres, centers C, and C,, radi1 r; an
Intersect only if ||C:Co||<ri+r:
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Hierarchical Collision Test

* Hierarchy of bounding spheres

— Organized 1n a tree

 Recursive test with early pruning o
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Examples of Hierarchy

* http://1sg.cs.tcd.1e/spheretree/

© Gareth Bradshaw. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.
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Pseudocode (simplistic version)

boolean intersect(node1, node2)
// no overlap? ==> no intersection!

if (loverlap(node1->sphere, node2->sphere)
return false

// recurse down the larger of the two nodes
if (node1->radius()>node2->radius())
for each child c of node1
if intersect(c, node2) return true
else
for each child ¢ f node2
if intersect(c, node1) return true

/Il no intersection in the subtrees? ==> no intersection!
return false

80



boolean intersect(node1, node2)
if (loverlap(node1->sphere, node2->sphere)
return false
if (node1->radius()>node2->radius())
for each child c of node1
if intersect(c, node2) return true
else
for each child c f node2
if intersect(c, node1) return true
return false
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boolean intersect(node1, node2)

if (loverlap(node1->sphere, node2->sphere)
return false

if (node1->radius()>node2->radius())
for each child c of node1

if intersect(c, node2) return true
else

for each child ¢ f node2

if intersect(c, node1) return true
return false
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boolean intersect(node1, node2)
if (loverlap(node1->sphere, node2->sphere)

return false
if (node1->radius()>node2->radius())

for each child c of node1
if intersect(c, node2) return true

else
for each child ¢ f node2

if intersect(c, node1) return true

return false
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boolean intersect(node1, node2)
if (loverlap(node1->sphere, node2->sphere)
return false
if (node1->radius()>node2->radius())
for each child c of node1
if intersect(c, node2) return true
else
for each child ¢ f node2
if intersect(c, node1) return true
return false
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boolean intersect(node1, node2)
if (loverlap(node1->sphere, node2->sphere)

return false
if (node1->radius()>node2->radius())
for each child c of node1
if intersect(c, node2) return true

else
for each child ¢ f node2

if intersect(c, node1) return true

return false
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boolean intersect(node1, node2)
if (loverlap(node1->sphere, node2->sphere)
return false
if (node1->radius()>node2->radius())
for each child c of node1
if intersect(c, node2) return true
else
for each child ¢ f node2
if intersect(c, node1) return true
return false
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Pseudocode (with leaf case)

boolean intersect(node1, node2)
if (loverlap(node1->sphere, node2->sphere)
return false

/I if there is nowhere to go, test everything
if (node1->isLeaf() && node2->isLeaf())
perform full test between all primitives within nodes

// otherwise go down the tree in the non-leaf path
if ( 'Inode2->isLeaf() && 'node1->isLeaf() )

// pick the larger node to subdivide, then recurse
else

/] recurse down the node that is not a leaf

return false
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Other Options

|

* Axis Aligned Bounding Boxes

— “R-Trees”

* Oriented bounding boxes

— S. Gottschalk, M. Lin, and D. Manocha. “OBBTree: A hierarchical Structure
for rapid interference detection,” Proc. Siggraph 96. ACM Press, 1996

* Binary space partitioning trees; kd-trees
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Questions?

* http://www.youtube.com/watch?v=b cGXtc-nMg

* http:// www.youtube.com/watch?v=nFd9BIcpHX4&f
cature=related

o http://www.youtube.com/watch?v=2SXi1xK7yCGU
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Hierarchy Construction

* Top down

— Divide and conquer

* Bottom up

— Cluster nearby objects

* Incremental
— Add objects one by one, binary-tree style.
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Bounding Sphere of a Set of Points

ter C
|C-Pi|

1vial given cen
— radius = max

e Trivia

i
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Bounding Sphere of a Set of Points

» Using axis-aligned bounding box
— center=
((Xmin+Xmax)/2, ()/min+ymax)/2, (Zmin, Zmax)/z)

— Better than the average of the vertices because does not
suffer from non-uniform tessellation
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Bounding Sphere of a Set of Points

» Using axis-aligned bounding box

— center=
((Xmin+Xmax)/2, (ymin_"ymax)/2, (Zmin, Zmax)/2)

— Better than the average of the vertices because does not
suffer from non-uniform tessellation

K
b,

A

vy

NS
yTAa
vy

v

)
’,jl

<y
s
£

1@5,‘1
1>

L

L5

\ 4 \\ n
S uestions”
K SRR -

S
\\' VA

A%
S
O

SR

z
s
s

sVl

o

PV
=

25

i

' ga
Vi
b

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 93



http://ocw.mit.edu/help/faq-fair-use/

Top-Down Construction

* Take longest scene dimension

e Cutin two in the middle

— assign each object or triangle to one side

— build sphere around it

© Sara McMains. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/fag-fair-use/.

This image is in the public domain.
Source: Wikimedia Commons.
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Top-Down Construction - Recurse

* Take longest scene dimension

e Cut 1n two 1n the middle
— assign each object or triangle to one side

— build sphere/box around it

© Sara McMains. All rights reserved. This content
is excluded from our Creative Commons license.
For more information, see
http://ocw.mit.edu/help/faq-fair-use/.
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Top-Down Construction - Recurse

* Take longest scene dimension

e Cut in two 1in the middle QuestiOﬂS’P

— assign each object or triangle to one side

— build sphere/box around it

© Sara McMains. All rights reserved. This content
is excluded from our Creative Commons license.
For more information, see
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Reference

An image of the book, “Real Time Collision Detection” by Christer Ericson,
has been removed due to copyright restrictions.

97



The Cloth Collision Problem

A cloth has many points of contact
 Stays 1n contact
* Requires

— Efficient collision detection

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Robust Treatment of Simultaneous Collisions

David Harmon, Etienne Vouga, Rasmus Tamstorf, Eitan Grinspun

Animation removed due to copyright restrictions.
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How Do They Animate Movies?

» Keyframing mostly

 Articulated figures, inverse kinematics

* Skinning

— Complex deformable skin, muscle, skin motion

 Hierarchical controls

— Smile control, eye blinking, etc.

— Keyframes for these higher-level controls

* A huge time 1s spent building the 3D models,
its skeleton and its controls (rigging)

* Physical simulation for secondary motion

— Hair, cloths, water

— Particle systems for “fuzzy” objects

© Maya tutorial. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/fag-fair-use/.
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That's All for Today!

Image removed due to copyright restrictions.

101



MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

	Lec9123.pdf
	Lec09.pdf

	Pages from CoordinationGamesp



