
1

MIT EECS 6.837 Computer Graphics

Implicit Integration
Collision Detection

Philippe Halsman: Dali Atomicus MIT EECS 6.837 – Matusik

This image is in the public domain. Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/File:Salvador_Dali_A_%28Dali_Atomicus%29_09633u.jpg
http://en.wikipedia.org/wiki/Philippe_Halsman

• Tuesday, October 16th 2:30pm – 4:00pm
• In class
• Two-pages of notes (double sided) allowed

2

Midterm

• Implementing Particle Systems
• Implicit Integration
• Collision detection and response

– Point-object and object-object detection
– Only point-object response

3

Plan

• Given a function f(X,t) compute X(t)

• Typically, initial value problems:
– Given values X(t0)=X0

– Find values X(t) for t > t0

• We can use lots of standard tools

4

ODEs and Numerical Integration

5

ODE: Path Through a Vector Field

“When we are at
state X at time t,
where will X be after
an infinitely small
time interval dt ?”

• X(t): path in multidimensional phase space

• f=d/dt X is a vector that sits at each point in phase
space, pointing the direction.

Image by MIT OpenCourseWare.

• We have N point masses
– Let’s just stack all xs and vs in a big vector of length 6N
– Fi denotes the force on particle i

• When particles do not interact, Fi only depends on xi and vi.

6

Many Particles

f gives d/dt X,

remember!

• It pays off to abstract (as usual)
– It’s easy to design your “Particle System” and “Time

Stepper” to be unaware of each other

• Basic idea
– “Particle system” and “Time Stepper” communicate via

floating-point vectors X and a function that computes
f(X,t)

• “Time Stepper” does not need to know anything else!

7

Implementation Notes

• Basic idea
– “Particle System” tells “Time Stepper” how many

dimensions (N) the phase space has
– “Particle System” has a function to write its state to an N-

vector of floating point numbers (and read state from it)
– “Particle System” has a function that evaluates f(X,t),

given a state vector X and time t

– “Time Stepper” takes a “Particle System” as input and
advances its state

8

Implementation Notes

9

Particle System Class
 class ParticleSystem

 {

 virtual int getDimension()

 virtual setDimension(int n)

 virtual float* getStatePositions()

 virtual setStatePositions(float* positions)

 virtual float* getStateVelocities()

 virtual setStateVelocities(float* velocities)

 virtual float* getForces(float* positions, float* velocities)

 virtual setMasses(float* masses)

 virtual float* getMasses()

 float* m_currentState

 }

10

Time Stepper Class
 class TimeStepper

 {

 virtual takeStep(ParticleSystem* ps, float h)

 }

11

Forward Euler Implementation
 class ForwardEuler : TimeStepper

 {

 void takeStep(ParticleSystem* ps, float h)

 {

 velocities = ps->getStateVelocities()

 positions = ps->getStatePositions()

 forces = ps->getForces(positions, velocities)

 masses = ps->getMasses()

 accelerations = forces / masses

 newPositions = positions + h*velocities

 newVelocities = velocities + h*accelerations

 ps->setStatePositions(newPositions)

 ps->setStateVelocities(newVelocities)

 }

 }

12

Mid-Point Implementation
 class MidPoint : TimeStepper

 {

 void takeStep(ParticleSystem* ps, float h)

 {

 velocities = ps->getStateVelocities()

 positions = ps->getStatePositions()

 forces = ps->getForces(positions, velocities)

 masses = ps->getMasses()

 accelerations = forces / masses

 midPositions = positions + 0.5*h*velocities

 midVelocities = velocities + 0.5*h*accelerations

 midForces = ps->getForces(midPositions, midVelocities)

 midAccelerations = midForces / masses

 newPositions = positions + 0.5*h*midVelocities

 newVelocities = velocities + 0.5*h*midAccelerations

 ps->setStatePositions(newPositions)

 ps->setStateVelocities(newVelocities)

 }

 }

13

Particle System Simulation

 ps = new MassSpringSystem(particleCount, masses, springs, externalForces)

 stepper = new ForwardEuler()

 time = 0

 while time < 1000

 stepper->takeStep(ps, 0.0001)

 time = time + 0.0001

 // render

14

Particle System Simulation

 ps = new MassSpringSystem(particleCount, masses, springs, externalForces)

 stepper = new MidPoint()

 time = 0

 while time < 1000

 stepper->takeStep(ps, 0.0001)

 time = time + 0.0001

 // render

• When computing the forces, initialize the force
vector to zero, then sum over all forces for each
particle
– Gravity is a constant acceleration
– Springs connect two particles, affects both
– dvi/dt = Fi(X, t) is the vector sum of all forces on particle i
– For 2nd order Fi=miai system,

dxi/dt is just the current vi

15

Computing Forces

16

Questions?

Image removed due to copyright restrictions.

• h > 1/k: oscillate. h > 2/k: explode!

17

Euler Has a Speed Limit!

Fr
om

 th
e

S
IG

G
R

A
PH

 P
BM

 n
ot

es

’

Image removed due to copyright restrictions -- please see slide 5 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

http://www.cs.cmu.edu/~baraff/sigcourse/

• Midpoint:
– ½ Euler step
– evaluate fm

– full step using fm

• Trapezoid:
– Euler step (a)
– evaluate f1

– full step using f1 (b)
– average (a) and (b)

• Better than Euler but still a speed limit

18

Integrator Comparison

f1
a

fm

f1
a

b

Image by MIT OpenCourseWare.

• x’=-kx
• First half Euler step: xm=x-0.5 hkx = x(1-0.5 hk)
• Read derivative at xm: fm=-kxm=-k(1-0.5 hk)x
• Apply derivative at origin:

x(t+h)=x+hfm = x-hk(1-0.5hk)x =x(1-hk+0.5 h2k2)
• Looks a lot like Taylor...
• We want 0<x(t+h)/x(t)<1

-hk+0.5 h2k2 < 0
hk(-1+0.5 hk)<0
For positive values of h & k => h <2/k

• Twice the speed limit of Euler
19

Midpoint Speed Limit

• In more complex systems,
step size is limited by the largest k.
– One stiff spring can ruin things for everyone else!

• Systems that have some big k values

are called stiff systems.

• In the general case, k values are eigenvalues of the
local Jacobian!

20

Stiffness

From the siggraph PBM notes

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• In more complex systems,
step size is limited by the largest k.
– One stiff spring can ruin things for everyone else!

• Systems that have some big k values

are called stiff systems.

• In the general case, k values are eigenvalues of the
local Jacobian!

21

Stiffness

From the siggraph PBM notes

Questions?

© David Baraff and Andrew Witkin. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• So far, we have seen explicit Euler
– X(t+h) = X(t) + h X’(t)

• We also saw midpoint and trapezoid methods

– They took small Euler steps, re-evaluated X’ there, and
used some combination of these to step away from the
original X(t).

– Yields higher accuracy, but not impervious to stiffness
(twice the speed limit of Euler)

22

Explicit Integration

• So far, we have seen explicit Euler
– X(t+h) = X(t) + h X’(t)

• Implicit Euler uses the derivative at the destination!

– X(t+h) = X(t) + h X’(t+h)
– It is implicit because we do not have X’(t+h),

it depends on where we go (HUH?)

– aka backward Euler

23

Implicit Integration

• Trapezoid
– take “fake” Euler step
– read derivative at “fake” destination

• Implicit Euler
– take derivative at the real destination
– harder because the derivative depends on the destination

and the destination depends on the derivative

24

Difference with Trapezoid

• Implicit Euler uses the derivative at the destination!
– X(t+h) = X(t) + h X’(t+h)
– It is implicit because we do not have X’(t+h),

it depends on where we go (HUH?)
– Two situations

• X’ is known analytically and everything
is closed form (doesn’t happen in practice)

• We need some form of iterative non-linear solver.

25

Implicit Integration

• Remember our model problem: x’ = -kx

– Exact solution was a decaying exponential x0 e-kt

• Explicit Euler: x(t+h) = (1-hk) x(t)
– Here we got the bounds on h to avoid oscillation/explosion

26

Simple Closed Form Case

• Remember our model problem: x’ = -kx

– Exact solution was a decaying exponential x0 e-kt

• Explicit Euler: x(t+h) = (1-hk) x(t)

• Implicit Euler: x(t+h) = x(t) + h x’(t+h)

27

Simple Closed Form Case

• Remember our model problem: x’ = -kx

– Exact solution was a decaying exponential x0e
-kt

• Explicit Euler: x(t+h) = (1-hk) x(t)

• Implicit Euler: x(t+h) = x(t) + h x’(t+h)
 x(t+h) = x(t) - hk x(t+h)
 x(t+h) +hkx(t+h) = x(t)

 x(t+h) = x(t) / (1+hk)

– It is a hyperbola!

28

Simple Closed Form Case

• Remember our model problem: x’ = -kx

– Exact solution was a decaying exponential x0 e-kt

• Explicit Euler: x(t+h) = (1-hk) x(t)

• Implicit Euler: x(t+h) = x(t) + h x’(t+h)
 x(t+h) = x(t) - h k x(t+h)
 = x(t) / (1+hk)
– It is a hyperbola!

29

Implicit Euler is
unconditionally stable!

1/(1+hk) < 1,

when h,k > 0

Simple Closed Form Case

30

Implicit vs. Explicit

From the Siggraph PBM notes

Image removed due to copyright restrictions -- please see slide 12 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

http://www.cs.cmu.edu/~baraff/sigcourse/

31

Implicit vs. Explicit

From the Siggraph PBM notes

Questions?

Image removed due to copyright restrictions -- please see slide 12 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

http://www.cs.cmu.edu/~baraff/sigcourse/

32

Xi Xi+1

Implicit Euler, Visually
Xi+1 = Xi + h f(Xi+1, t+h)
Xi+1 - h f(Xi+1, t+h) = Xi

Image by MIT OpenCourseWare.

33

Implicit Euler, Visually

Xi+1 = Xi + h f(Xi+1, t+h)
Xi+1 - h f(Xi+1, t+h) = Xi

What is the location
Xi+1=X(t+h) such that the
derivative there, multiplied
by -h, points back to
Xi=X(t) where we are
starting from?

Xi+1

-hf(X,t)

i X

Image by MIT OpenCourseWare.

• To simplify, consider only 1D time-invariant systems
– This means x’ = f(x,t) = f(x) is independent of t
– Our spring equations satisfy this already

• x(t+h)=x(t)+dx = x(t)+h f(x(t+h))
• f can be approximated it by 1st order Taylor:

f(x+dx)=f(x)+dxf’(x)+O(dx2)
• x(t+h)=x(t)+h [f(x) + dx f’(x)]
• dx=h [f(x) +dx f’(x)]
• dx=hf(x)/[1-hf’(x)]
• Pretty much Newton solution 34

Implicit Euler in 1D

• Iterative method for solving non-linear equations

• Start from initial guess x0, then iterate

35

Newton’s Method (1D)

• Iterative method for solving non-linear equations

• Start from initial guess x0, then iterate

• Also called Newton-Raphson iteration

36

Newton’s Method (1D)

• Iterative method for solving non-linear equations

• Start from initial guess x0, then iterate

37

Newton’s Method (1D)

one step

38

Newton, Visually

We are here
f(x)

W
ik

ip
ed

ia
 u

se
rs

 O
le

ga
le

xa
nd

ro
v,

 P
br

ok
s1

3

This image is in the public domain. Source: Wikimedia Commons.

http://commons.wikimedia.org/wiki/File:Newton_iteration.svg

39

Newton, Visually

We are here

Let’s approximate f

by its tangent at

point (xn, f(xn))

f(x)

W
ik

ip
ed

ia
 u

se
rs

 O
le

ga
le

xa
nd

ro
v,

 P
br

ok
s1

3

This image is in the public domain. Source: Wikimedia Commons.

http://commons.wikimedia.org/wiki/File:Newton_iteration.svg

40

Newton, Visually

We are here

Let’s approximate f
by its tangent at

point (xn, f(xn))

Then we’ll see

where the tangent

line crosses zero

and take that as

next guess

f(x)

W
ik

ip
ed

ia
 u

se
rs

 O
le

ga
le

xa
nd

ro
v,

 P
br

ok
s1

3

This image is in the public domain. Source: Wikimedia Commons.

http://commons.wikimedia.org/wiki/File:Newton_iteration.svg

41

Newton, Visually

Image courtesy of Ralf Pfeifer on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.gif
http://ocw.mit.edu/help/faq-fair-use/

42

Newton, Visually Questions?

Image courtesy of Ralf Pfeifer on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.gif

• To simplify, consider only time-invariant systems
– This means X’ = f(X,t) = f(X) is independent of t
– Our spring equations satisfy this already

• Implicit Euler with N-D phase space:

Xi+1 = Xi + h f(Xi+1)

43

Implicit Euler and Large Systems

• To simplify, consider only time-invariant systems
– This means X’ = f(X,t) = f(X) is independent of t
– Our spring equations satisfy this already

• Implicit Euler with N-D phase space:

Xi+1 = Xi + h f(Xi+1)

• Non-linear equation,
unknown Xi+1 on both the LHS and the RHS

44

Implicit Euler and Large Systems

• 1D:

• Now locations Xi, Xi+1 and F are N-D
• N-D Newton step is just like 1D:

45

Newton’s Method – N Dimensions

NxN Jacobian
matrix replaces

f’

unknown N-D
step from

current to next
guess

• Now locations Xi, Xi+1 and F are N-D
• Newton solution of F(Xi+1) = 0 is just like 1D:

• Must solve a linear system at each
step of Newton iteration
– Note that also Jacobian changes for each step

46

Newton’s Method – N Dimensions

NxN Jacobian
matrix

unknown N-D
step from

current to next
guess

• Now locations Xi, Xi+1 and F are N-D
• Newton solution of F(Xi+1) = 0 is just like 1D:

• Must solve a linear system at each
step of Newton iteration
– Note that also Jacobian changes for each step

47

Newton’s Method – N Dimensions

NxN Jacobian
matrix

unknown N-D
step from

current to next
guess

Questions?

• Implicit Euler with N-D phase space:
Xi+1 = Xi + h f(Xi+1)

• Let’s rewrite this as with

48

Implicit Euler – N Dimensions

• Implicit Euler with N-D phase space:
Xi+1 = Xi + h f(Xi+1)

• Let’s rewrite this as with

• Then the Y that solves F(Y)=0 is Xi+1

49

Implicit Euler – N Dimensions

• Then iterate
– Initial guess (or result of explicit method)

– For each step, solve

– Then set

50

Y is variable Xi is fixed

Implicit Euler – N Dimensions

• Simple partial differentiation...

• Where

51

What is the Jacobian?

The Jacobian of
the Force function

f

• Iterate until convergence

– Initial guess (or result of explicit method)

– For each step, solve

– Then set

52

Putting It All Together

53

Implicit Euler with Newton, Visually

Xi=Y0

Y1
Y2

Y3
Y=Xi+1

Image by MIT OpenCourseWare.

54

Implicit Euler with Newton, Visually
What is the location
Xi+1=X(t+h) such that the
derivative there, multiplied
by -h, points back to
Xi=X(t) where we are
starting from?

Xi=Y0

-hf(X,t)

Y=Xi+1

Image by MIT OpenCourseWare.

• Often, the 1st Newton step may suffice
– People often implement Implicit Euler using only one

step.
– This amounts to solving the system

where the Jacobian and f are evaluated at Xi, and we are
using Xi as an initial guess.

55

One-Step Cheat

• Often, the 1st Newton step may suffice
– People often implement Implicit Euler using only one

step.
– This amounts to solving the system

where the Jacobian and f are evaluated at Xi, and we are
using Xi as an initial guess.

56

One-Step Cheat Questions?

• The Jacobian matrix Jf is usually sparse
– Only few non-zero entries per row
– E.g. the derivative of a spring force only depends on the

adjacent masses’ positions
• Makes the system cheaper to solve

– Don’t invert the Jacobian!
– Use iterative matrix solvers like

conjugate gradient, perhaps with
preconditioning, etc.

57

Good News

© David Baraff and Andrew Witkin. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

58

Implicit Euler Pros & Cons

• Pro: Stability!

• Cons:
– Need to solve a linear system at each step
– Stability comes at the cost of “numerical viscosity”, but

then again, you do not have to worry about explosions.
• Recall exp vs. hyperbola

• Note that accuracy is not improved
– error still O(h)
– There are lots and lots of implicit methods out there!

59

Reference

• Large steps in cloth simulation
• David Baraff Andrew Witkin
• http://portal.acm.org/citation.cfm?id=280821

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://portal.acm.org/results.cfm?query=author:P60514&querydisp=author:David Baraff&coll=GUIDE&dl=GUIDE&CFID=1991074&CFTOKEN=12116421
http://portal.acm.org/results.cfm?query=author:P18516&querydisp=author:Andrew Witkin&coll=GUIDE&dl=GUIDE&CFID=1991074&CFTOKEN=12116421
http://portal.acm.org/citation.cfm?id=280821

60

A Mass Spring Model for Hair Simulation
Selle, A., Lentine, M., G., and Fedkiw

Animation removed due to copyright restrictions.

http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf

61

Simulating Knitted Cloth at the Yarn Level
Jonathan Kaldor, Doug L. James, and Steve Marschner

Animation removed due to copyright restrictions.

http://www.cs.cornell.edu/~srm/publications/SG08-knit.html

62

Efficient Simulation of Inextensible Cloth
Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, Eitan Grinspun

Animation removed due to copyright restrictions.

http://doi.acm.org/10.1145/1275808.1276438

63

Questions?

• Detection
• Response
• Overshooting problem

(when we enter the solid)

64

Collisions

• Easy with implicit equations of surfaces:

H(x,y,z) = 0 on the surface
H(x,y,z) < 0 inside surface

• So just compute H and you know that
you are inside if it is negative

• More complex with other surface
definitions like meshes
– A mesh is not necessarily even closed, what is inside?

65

Detecting Collisions

66

Collision Response for Particles
N v

67

Collision Response for Particles
N v

vn

vt

v=vn+vt

normal component
tangential component

• Tangential velocity vt
often unchanged

• Normal velocity vn reflects:

• Coefficient of restitution ε

• When ε = 1, mirror reflection

68

Collision Response for Particles
N v

vn

vt

N v vnew

N v vnew

ε=1

ε<1

• Usually, we detect collision when it is too late:
we are already inside

69

Collisions – Overshooting

xi

xi+1

• Usually, we detect collision when it is too late:
we are already inside

• Solution: Back up
• Compute intersection point
• Ray-object intersection!
• Compute response there
• Advance for remaining

fractional time step

70

Collisions – Overshooting

backtracking
xi

xi+1

• Usually, we detect collision when it is too late:
we are already inside

• Solution: Back up
• Compute intersection point
• Ray-object intersection!
• Compute response there
• Advance for remaining

fractional time step

• Other solution:
Quick and dirty hack

• Just project back to object closest point

71

Collisions – Overshooting

fixing

backtracking
xi

xi+1

• Pong: ε =?
• http://www.youtube.com/watch?v=sWY0Q_lMFfw
• http://www.xnet.se/javaTest/jPong/jPong.html

72

Questions?

http://en.wikipedia.org/wiki/Pong

Animation removed due to
copyright restrictions.

This image is in the public domain.
Source: Wikimedia Commons.

Image courtesy of Chris Rand on Wikimedia Commons.
License: CC-BY-SA. This content is excluded from our
Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://www.youtube.com/watch?v=sWY0Q_lMFfw
http://www.xnet.se/javaTest/jPong/jPong.html
http://en.wikipedia.org/wiki/Pong
http://en.wikipedia.org/wiki/File:Pong.png
http://en.wikipedia.org/wiki/File:Signed_Pong_Cabinet.jpg

• Imagine we have n objects. Can we test all pairwise
intersections?
– Quadratic cost O(n2)!

• Simple optimization: separate static objects

– But still O(static × dynamic+ dynamic2)

73

Collision Detection in Big Scenes

• Use simpler conservative proxies
(e.g. bounding spheres)

• Recursive (hierarchical) test
– Spend time only for parts of the scene that are close

• Many different versions, we will cover only one

74

Hierarchical Collision Detection

• Place spheres around objects
• If spheres do not intersect, neither do the objects!
• Sphere-sphere collision test is easy.

75

Bounding Spheres

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

http://ocw.mit.edu/help/faq-fair-use/

76

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

http://ocw.mit.edu/help/faq-fair-use/

• Two spheres, centers C1 and C2, radii r1 and r2
• Intersect only if ||C1C2||<r1+r2

77

Sphere-Sphere Collision Test

C1 C2 r1 r2

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

http://ocw.mit.edu/help/faq-fair-use/

• Hierarchy of bounding spheres
– Organized in a tree

• Recursive test with early pruning

Hierarchical Collision Test

Root encloses

whole object

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

78

http://ocw.mit.edu/help/faq-fair-use/

• http://isg.cs.tcd.ie/spheretree/

79

Examples of Hierarchy

© Gareth Bradshaw. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://isg.cs.tcd.ie/spheretree/

boolean intersect(node1, node2)
 // no overlap? ==> no intersection!
 if (!overlap(node1->sphere, node2->sphere)
 return false

 // recurse down the larger of the two nodes
 if (node1->radius()>node2->radius())
 for each child c of node1
 if intersect(c, node2) return true
 else
 for each child c f node2
 if intersect(c, node1) return true

 // no intersection in the subtrees? ==> no intersection!
 return false

80

Pseudocode (simplistic version)

81

boolean intersect(node1, node2)
 if (!overlap(node1->sphere, node2->sphere)
 return false
 if (node1->radius()>node2->radius())
 for each child c of node1
 if intersect(c, node2) return true
 else
 for each child c f node2
 if intersect(c, node1) return true
 return false

node 1

node 2

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

http://isg.cs.tcd.ie/spheretree/

82

boolean intersect(node1, node2)
 if (!overlap(node1->sphere, node2->sphere)
 return false
 if (node1->radius()>node2->radius())
 for each child c of node1
 if intersect(c, node2) return true
 else
 for each child c f node2
 if intersect(c, node1) return true
 return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

http://isg.cs.tcd.ie/spheretree/

83

boolean intersect(node1, node2)
 if (!overlap(node1->sphere, node2->sphere)
 return false
 if (node1->radius()>node2->radius())
 for each child c of node1
 if intersect(c, node2) return true
 else
 for each child c f node2
 if intersect(c, node1) return true
 return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/. Courtesy of Patrick Laug. Used with permission.

http://isg.cs.tcd.ie/spheretree/

84

boolean intersect(node1, node2)
 if (!overlap(node1->sphere, node2->sphere)
 return false
 if (node1->radius()>node2->radius())
 for each child c of node1
 if intersect(c, node2) return true
 else
 for each child c f node2
 if intersect(c, node1) return true
 return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/. Courtesy of Patrick Laug. Used with permission.

http://isg.cs.tcd.ie/spheretree/

boolean intersect(node1, node2)
 if (!overlap(node1->sphere, node2->sphere)
 return false
 if (node1->radius()>node2->radius())
 for each child c of node1
 if intersect(c, node2) return true
 else
 for each child c f node2
 if intersect(c, node1) return true
 return false

85

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

http://isg.cs.tcd.ie/spheretree/

86

boolean intersect(node1, node2)
 if (!overlap(node1->sphere, node2->sphere)
 return false
 if (node1->radius()>node2->radius())
 for each child c of node1
 if intersect(c, node2) return true
 else
 for each child c f node2
 if intersect(c, node1) return true
 return false

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This
content is excluded from our Creative Commons license. For
more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

http://isg.cs.tcd.ie/spheretree/

boolean intersect(node1, node2)
 if (!overlap(node1->sphere, node2->sphere)
 return false

 // if there is nowhere to go, test everything
 if (node1->isLeaf() && node2->isLeaf())
 perform full test between all primitives within nodes

 // otherwise go down the tree in the non-leaf path
 if (!node2->isLeaf() && !node1->isLeaf())
 // pick the larger node to subdivide, then recurse
 else
 // recurse down the node that is not a leaf

 return false

87

Pseudocode (with leaf case)

• Axis Aligned Bounding Boxes
– “R-Trees”

• Oriented bounding boxes

– S. Gottschalk, M. Lin, and D. Manocha. “OBBTree: A hierarchical Structure
for rapid interference detection,” Proc. Siggraph 96. ACM Press, 1996

• Binary space partitioning trees; kd-trees

88

Other Options

• http://www.youtube.com/watch?v=b_cGXtc-nMg
• http://www.youtube.com/watch?v=nFd9BIcpHX4&f

eature=related
• http://www.youtube.com/watch?v=2SXixK7yCGU

89

Questions?

http://www.youtube.com/watch?v=b_cGXtc-nMg

http://www.youtube.com/watch?v=b_cGXtc-nMg
http://www.youtube.com/watch?v=b_cGXtc-nMg
http://www.youtube.com/watch?v=b_cGXtc-nMg
http://www.youtube.com/watch?v=2SXixK7yCGU

• Top down
– Divide and conquer

• Bottom up

– Cluster nearby objects

• Incremental
– Add objects one by one, binary-tree style.

90

Hierarchy Construction

• Trivial given center C
– radius = maxi ||C-Pi||

91

Bounding Sphere of a Set of Points

C

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Using axis-aligned bounding box
– center=

((xmin+xmax)/2, (ymin+ymax)/2, (zmin, zmax)/2)
– Better than the average of the vertices because does not

suffer from non-uniform tessellation

92

Bounding Sphere of a Set of Points

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Using axis-aligned bounding box
– center=

((xmin+xmax)/2, (ymin+ymax)/2, (zmin, zmax)/2)
– Better than the average of the vertices because does not

suffer from non-uniform tessellation

93

Bounding Sphere of a Set of Points

Questions?

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Take longest scene dimension
• Cut in two in the middle

– assign each object or triangle to one side
– build sphere around it

94

Top-Down Construction

© Oscar Meruvia-Pastor, Daniel Rypl. All rights reserved. This content is
excluded from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Patrick Laug. Used with permission.

This image is in the public domain.
Source: Wikimedia Commons.

© Sara McMains. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

© Gareth Bradshaw. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png

� ��3�����"�����
�����%����%���
�)���%��� ��%�������%�����
� ���%"����
����*�
�������%��"�����������%���
� ��%���������/��<��������%��

95

Top-Down Construction - Recurse

© Sara McMains. All rights reserved. This content
is excluded from our Creative Commons license.
For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© Gareth Bradshaw. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

This image is in the public domain.
Source: Wikimedia Commons.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights�reserved. This content is
excluded from our�Creative Commons license. For more information, Courtesy of Patrick Laug. Used with permission.
see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png

� ��3�����"�����
�����%����%���
�)���%��� ��%�������%�����
� ���%"����
����*�
�������%��"�����������%���
� ��%���������/��<��������%��

96

Top-Down Construction - Recurse

Questions?

© Sara McMains. All rights reserved. This content
is excluded from our Creative Commons license.
For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© Gareth Bradshaw. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

This image is in the public domain.
Source: Wikimedia Commons.

© Oscar Meruvia-Pastor, Daniel Rypl. All rights�reserved. This content is
excluded from our�Creative Commons license. For more information, Courtesy of Patrick Laug. Used with permission.
see http://ocw.mit.edu/help/faq-fair-use/.

http://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.png
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/

97

Reference

An image of the book, “Real Time Collision Detection” by Christer Ericson,
has been removed due to copyright restrictions.

• A cloth has many points of contact
• Stays in contact
• Requires

– Efficient collision detection
– Efficient numerical treatment (stability)

98

The Cloth Collision Problem

Image from Bridson et al.

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

99

Robust Treatment of Simultaneous Collisions
David Harmon, Etienne Vouga, Rasmus Tamstorf, Eitan Grinspun

Animation removed due to copyright restrictions.

http://www.cs.columbia.edu/cg/RTSC/

• Keyframing mostly
• Articulated figures, inverse kinematics
• Skinning

– Complex deformable skin, muscle, skin motion

• Hierarchical controls
– Smile control, eye blinking, etc.
– Keyframes for these higher-level controls

• A huge time is spent building the 3D models,
its skeleton and its controls (rigging)

• Physical simulation for secondary motion
– Hair, cloths, water
– Particle systems for “fuzzy” objects

How Do They Animate Movies?

Images from the Maya tutorial
100

© Maya tutorial. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

101

That’s All for Today!

B
un

gi
e

/ i
gn

.c
om

Image removed due to copyright restrictions.

MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Lec9123.pdf
	Lec09.pdf

	Pages from CoordinationGamesp

