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MIT EECS 6.837 Computer Graphics 

Particle Systems 
and ODE Solvers II, 
Mass-Spring Modeling 
With slides from Jaakko Lehtinen 
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• Given a function f(X,t) compute X(t) 

• Typically, initial value problems: 
– Given values X(t0)=X0 

– Find values X(t) for t > t0 

 
• We can use lots of standard tools 
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ODEs and Numerical Integration 
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Reduction to 1st Order 

2 unknowns (x, v) 
instead of just x 

or 

• Point mass: 2nd order ODE 
 
 
 
 

• Corresponds to system of first 
order ODEs 

This image is in the public domain.
Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/File:GodfreyKneller-IsaacNewton-1689.jpg
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ODE: Path Through a Vector Field 

“When we are at 
state X at time t, 
where will X be after 
an infinitely small 
time interval dt ?” 

• X(t): path in multidimensional phase space 
 
 
 
 
 
 
 

• f=d/dt X is a vector that sits at each point in phase 
space, pointing the direction.  

Image by MIT OpenCourseWare.
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Euler, Visually 

X(t) 
f(X,t) 

h f(X,t) 
X(t+h) 

Image by MIT OpenCourseWare.



• Moves along tangent; can leave solution curve, e.g.: 
 
 

• Exact solution is circle: 
 
 

• Euler spirals outward 
no matter how small h is 
– will just diverge more slowly 
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Euler’s Method: Inaccurate 

Image by MIT OpenCourseWare.



• Moves along tangent; can leave solution curve, e.g.: 
 
 

• Exact solution is circle: 
 
 

• Euler spirals outward 
no matter how small h is 
– will just diverge more slowly 
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Euler’s Method: Inaccurate 

Questions? 
Image by MIT OpenCourseWare.
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Euler’s Method: Not Always Stable 

• “Test equation” 
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Euler’s Method: Not Always Stable 

• “Test equation” 
 

• Exact solution is a decaying exponential: 
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Euler’s Method: Not Always Stable 

• “Test equation” 
 

• Exact solution is a decaying exponential: 
 
 

• Let’s apply Euler’s method: 



• Limited step size! 
– When 
     things are fine, the solution decays 
– When  
 we get oscillation 
– When                                                         things explode 
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Euler’s Method: Not Always Stable 
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This image is in the public domain. Source: Wikimedia

http://en.wikipedia.org/wiki/File:StiffEquationNumericalSolvers.svg
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• Limited step size! 
– When 
     things are fine, the solution decays 
– When  
 we get oscillation 
– When                                                         things explode 
 

This image is in the public domain. Source: Wikimedia

If k is big, 
h must be small! 

http://en.wikipedia.org/wiki/File:StiffEquationNumericalSolvers.svg


• Expand exact solution X(t) 

 
 

• Euler’s method approximates: 
 
 
 
 

• First-order method: Accuracy varies with h 

• To get 100x better accuracy need 100x more steps 
13 

Analysis: Taylor Series 



• Expand exact solution X(t) 

 
 

• Euler’s method approximates: 
 
 
 
 

• First-order method: Accuracy varies with h 

• To get 100x better accuracy need 100x more steps 
14 

Analysis: Taylor Series Questions? 



• Problem: f varies along our Euler step 
• Idea 1: look at f at the arrival of the step and 

compensate for variation 

15 

Can We Do Better? 

Image by MIT OpenCourseWare.



• This translates to... 
 
 
 

• and we get 
 
• This is the trapezoid method 

– Analysis omitted (see 6.839) 
• Note: What we mean by “2nd order” is that the error 

goes down with h2 , not h – the equation is still 1st 
order! 16 

2nd Order Methods 



• Problem: f has varied along our Euler step 
• Idea 2: look at f after a smaller step, use that value 

for a full step from initial position 
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Can We Do Better? 

Image by MIT OpenCourseWare.



• This translates to... 
 
 
 

• and we get 
 

• This is the midpoint method 

– Analysis omitted again, 
but it’s not very complicated, see here. 
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2nd Order Methods Cont’d 

http://en.wikipedia.org/wiki/Midpoint_method


• Midpoint: 
– ½ Euler step 
– evaluate fm 

– full step using fm 

• Trapezoid: 
– Euler step (a) 
– evaluate f1 

– full step using f1 (b)  
– average (a) and (b) 

• Not exactly same result, 
but same order of accuracy 
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Comparison 

fm 

f1 
a 

b 

Image by MIT OpenCourseWare.



• You bet! 
• You will implement Runge-Kutta for assignment 3 

 
• Again, see Witkin, Baraff, Kass: Physically-based 

Modeling Course Notes, SIGGRAPH 2001 
 
 
 

• See eg 
http://www.youtube.com/watch?v=HbE3L5CIdQg  
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Can We Do Even Better? 

http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.youtube.com/watch?v=HbE3L5CIdQg


• You bet! 
• You will implement Runge-Kutta for assignment 3 

 
• Again, see Witkin, Baraff, Kass: Physically-based 

Modeling Course Notes, SIGGRAPH 2001 
 
 
 

• See eg 
http://www.youtube.com/watch?v=HbE3L5CIdQg  
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Can We Do Even Better? Questions? 

http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.youtube.com/watch?v=HbE3L5CIdQg


• Beyond pointlike objects: 
strings, cloth, hair, etc. 

• Interaction between particles 
– Create a network of spring 

forces that link pairs of particles 
 

• First, slightly hacky version of cloth simulation 
• Then, some motivation/intuition for implicit 

integration (NEXT LECTURE) 
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Mass-Spring Modeling 
Michael Kass 

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


• Each particle is linked to two particles (except ends) 
• Come up with forces that try to keep the distance 

between particles constant 
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How Would You Simulate a String? 
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Springs 

Image courtesy of Jean-Jacques MILAN on Wikimedia Commons. License: CC-BY-SA. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Ressort_de_compression.jpg
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Pi 
Pj 

 Rest length L0 

F 

L0 - ||Pj-Pi|| 

Spring Force – Hooke’s Law 

http://en.wikipedia.org/wiki/Hooke's_law


• Force in the direction of the spring and proportional 
to difference with rest length L0. 
 
 

• K is the stiffness of the spring 
– When K gets bigger, the spring really 

wants to keep its rest length 
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Pi 

Pj 

L0 
F 

Spring Force – Hooke’s Law 

http://en.wikipedia.org/wiki/Hooke's_law


• Force in the direction of the spring and proportional 
to difference with rest length L0. 
 
 

• K is the stiffness of the spring 
– When K gets bigger, the spring really 

wants to keep its rest length 
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Spring Force – Hooke’s Law 

Pi 
Pj 

L0 
F 

This is the force on Pj. 
Remember Newton:  

Pi experiences force of 
equal magnitude but 
opposite direction. 

http://en.wikipedia.org/wiki/Hooke's_law


• Springs link the particles 
• Springs try to keep their rest lengths 

and preserve the length of the string 
• Not exactly preserved though, and we get oscillation 

– Rubber band approximation 
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How Would You Simulate a String? 



• Springs link the particles 
• Springs try to keep their rest lengths 

and preserve the length of the string 
• Not exactly preserved though, and we get oscillation 

– Rubber band approximation 
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How Would You Simulate a String? 

Questions? 



• Linear set of particles 
• Length-preserving structural springs like before 
• Deformation forces proportional to the angle 

between segments 
• External forces 
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Hair 

  



• Springs between mass n & n+2 with rest length 2L0 

– Wants to keep particles aligned 

31 

Hair - Alternative Structural Forces 



• Springs between mass n & n+2 with rest length 2L0 

– Wants to keep particles aligned 
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Hair - Alternative Structural Forces 

Questions? 
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Mass-Spring Cloth 

Michael Kass 
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


• Structural forces 
– Try to enforce invariant 

properties of the system 
• E.g. force the distance 

between two particles 
to be constant 

– Ideally, these should be constraints, not forces 
• Internal deformation forces 

– E.g. a string deforms, a spring board tries to remain flat 
• External forces 

– Gravity, etc.  

34 

Cloth – Three Types of Forces 

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Springs for Cloth 
• Network of masses and 

springs 
• Structural springs:  

– link (i j) and (i+1, j);  
and (i, j) and (i, j +1) 

• Deformation:  

– Shear springs 
• (i j) and (i+1, j+1)  

– Flexion springs 
•  (i,j) and (i+2,j); 

(i,j) and (i,j+2) 
• See Provot’s Graphics 

Interface ’95 paper for 
details 

Provot 95 

Image by MIT OpenCourseWare.

http://graphics.stanford.edu/courses/cs468-02-winter/Papers/Rigidcloth.pdf
http://graphics.stanford.edu/courses/cs468-02-winter/Papers/Rigidcloth.pdf


• Gravity G 
• Friction 
• Wind, etc. 
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External Forces 

Provot 95 

Image by MIT OpenCourseWare.
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Cloth Simulation 
• Then, the all trick is to set 

the stiffness of all springs 
to get realistic motion! 
 

• Remember that forces 
depend on other particles 
(coupled system) 

• But it is sparse  
(only near neighbors) 
– This is in contrast to e.g. 

the N-body problem. 

Provot 95 

Image by MIT OpenCourseWare.
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Forces: Structural vs. Deformation 
• Structural forces are here 

just to enforce a constraint 
• Ideally, the constraint 

would be enforced strictly 
– at least a lot more than we 

can afford 
• We’ll see that this is the 

root of a lot of problems 
• In contrast, deformation 

forces actually correspond 
to physical forces 

Provot 95 

Image by MIT OpenCourseWare.



• Hanging curtain: 
– 2 contact points stay fixed 

• What does it mean? 
– Sum of the forces is zero 

• How so? 
– Because those point undergo an  

external force that balances the system 
• What is the force at the contact? 

– Depends on all other forces in the system 
– Gravity, wind, etc.  
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Contact Forces 
Reaction force 

Forces from  
other particles,  

gravity 



• How can we compute the external 
contact force? 
– Inverse dynamics! 
– Sum all other forces applied to point 
– Take negative 

• Do we really need to 
compute this force? 
– Not really, just ignore the other forces 

applied to this point! 

40 

Contact Forces 



• How can we compute the external 
contact force? 
– Inverse dynamics! 
– Sum all other forces applied to point 
– Take negative 

• Do we really need to 
compute this force? 
– Not really, just ignore the other forces 

applied to this point! 
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Contact Forces 

Questions? 



• Excessive rubbery deformation:  
the strings are not stiff enough 
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Example 

Initial position After 200 iterations 
© Xavier Provot. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


• Constrain length to increase by less than 10% 
– A little hacky 
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One Solution  

Simple mass-spring system Improved solution  
(see Provot Graphics Interface 1995) 

http://citeseer.ist.psu.edu/provot96deformation.html 

© Xavier Provot. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://citeseer.ist.psu.edu/provot96deformation.html


• What happens if we discretize our cloth more finely?  
• Do we get the same behavior?  
• Usually not! It takes a lot of effort to design a 

scheme that is mostly oblivious to the discretization. 

44 

The Discretization Problem 



• What happens if we discretize our cloth more finely?  
• Do we get the same behavior?  
• Usually not! It takes a lot of effort to design a 

scheme that is mostly oblivious to the discretization. 
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The Discretization Problem 

Questions? 



• We use springs while we really mean constraint 
– Spring should be super stiff, which requires tiny t 
– Remember x’=-kx system and Euler speed limit! 

• The story extends to N particles and springs (unfortunately) 

 
• Many numerical solutions 

– Reduce t (well, not a great solution) 
– Actually use constraints (see 6.839) 
– Implicit integration scheme (more next Thursday) 
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The Stiffness Issue 



• h > 1/k: oscillate. h > 2/k: explode! 

47 

Euler Has a Speed Limit! 
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Image removed due to copyright restrictions -- please see slide 5 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

http://www.cs.cmu.edu/~baraff/sigcourse/


• 1D example, with two particles constrained to move 
along the x axis only, rest length L0 = 1 

• Phase space is 4D: (x1, v1, x2, v2) 

– But spring force only depends on x1, x2 and L0. 
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Why Stiff Springs Are Difficult 

x1 x2 

v1 v2 

L0 = 1 
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Why Stiff Springs Are Difficult 

x1 x2 

height=magnitude 
of spring force 

K=1 

x2 

x1 
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Why Stiff Springs Are Difficult 

x1 

x2 

K=6 

x2 

x1 

height=magnitude 
of spring force 

Forces grow 

really big! 
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Why Stiff Springs Are Difficult 

x1 

x2 

K=11 

x2 

x1 

x2 

x1 

Forces grow 

really big! 

The “admissible region” 
shrinks towards the line 

x1-x2=1 as K grows 
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Why Stiff Springs Are Difficult 

x1 

x2 

K=11 

x2 

x1 

x2 

x1 

Forces grow 

really big! 

The “admissible region” 
shrinks towards the line 

x1-x2=1 as K grows 



• In our mass-spring cloth, we have “encouraged” 
length preservation using springs that want to have a 
given length (unfortunately, they can refuse offer ;-) ) 

• Constrained dynamic simulation: 
force it to be constant! 

• How it works – more in 6.839 
– Start with constraint equation 

• E.g., (x2-x1)-1 = 0 in the previous 1D example 
– Derive extra forces that will exactly enforce constraint 

• This means projecting the external forces (like gravity) onto 
the “subspace” of phase space where constraints are satisfied 

• Fancy name for this: “Lagrange multipliers” 
– Again, see the SIGGRAPH 2001 Course Notes 
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Constrained Dynamics 

© David Baraff and Andrew Witkin. All
rights reserved. This content is excluded
from our Creative Commons license. For
more information, see
http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/


• Further reading 
– Stiff systems 
– Explicit vs. implicit solvers 
– Again, consult the 2001 course notes! 

54 

Questions? 

http://en.wikipedia.org/wiki/Stiff_equation
http://en.wikipedia.org/wiki/Explicit_and_implicit_methods
http://www.pixar.com/companyinfo/research/pbm2001/


• State of system (phase) : velocity & position 
– similar to our X=(x v) to get 1st order 
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Mass on a Spring, Phase Space 
W

ik
ip

ed
ia

 u
se

r M
az

em
as

te
r 

This image is in the public domain. Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/File:Simple_Harmonic_Motion_Orbit.gif


• Guess how well Euler will do... 
always diverge 
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Mass on a Spring, Phase Space 
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This image is in the public domain. Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/File:Simple_Harmonic_Motion_Orbit.gif


• x’=-kx is a true 1st order ODE 
• Energy gets dissipated 

 
• In contrast, a spring is a second order system 
• Energy does not get dissipated 

– It is just transferred between potential and kinetic energy 
– Unless you add damping 

• This is why people always add damping forces and 
results look too viscous 
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Difference with x’=-kx 



• x’=-kx is a true 1st order ODE 
• Energy gets dissipated 

 
• In contrast, a spring is a second order system 
• Energy does not get dissipated 

– It is just transferred between potential and kinetic energy 
– Unless you add damping 

• This is why people always add damping forces and 
results look too viscous 
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Difference with x’=-kx Questions? 



• A cloth has many points of contact 
• Requires 

– Efficient collision detection 
– Efficient numerical 

treatment (stability) 
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The Collision Problem 

Image from Bridson et al.   

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
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Collisions Robert Bridson, Ronald Fedkiw & John Anderson 
Robust Treatment of Collisions, Contact  

and Friction for Cloth Animation 
SIGGRAPH 2002 • Cloth has many points  

of contact 
• Need efficient collision 

detection and 
stable treatment 

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572


• Robert Bridson, Ronald Fedkiw & John Anderson: 
Robust Treatment of Collisions, Contact  
and Friction for Cloth Animation 
SIGGRAPH 2002 

• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust 
High-Resolution Cloth Using Parallelism, History-
Based Collisions, and Accurate Friction," IEEE 
TVCG 15, 339-350 (2009). 

• Selle, A., Lentine, M. and Fedkiw, R., "A Mass 
Spring Model for Hair Simulation", SIGGRAPH 
2008, ACM TOG 27, 64.1-64.11 (2008). 
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Cool Cloth/Hair Demos 

http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf


• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust High-Resolution Cloth Using Parallelism, 
History-Based Collisions, and Accurate Friction," IEEE TVCG 15, 339-350 (2009). 
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Cool Cloth/Hair Demos 

Image removed due to copyright restrictions.

http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf


• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust High-Resolution Cloth Using Parallelism, 
History-Based Collisions, and Accurate Friction," IEEE TVCG 15, 339-350 (2009).
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Cool Cloth/Hair Demos Questions? 

Image removed due to copyright restrictions.

http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf


• It pays off to abstract (as usual) 
– It’s easy to design your “Particle System” and “Time 

Stepper” to be unaware of each other 
 

• Basic idea 
– “Particle system” and “Time Stepper” communicate via 

floating-point vectors X and a function that computes 
f(X,t) 

• “Time Stepper” does not need to know anything else! 
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Implementation Notes 



• Basic idea 
– “Particle System” tells “Time Stepper” how many 

dimensions (N) the phase space has 
– “Particle System” has a function to write its state to an N-

vector of floating point numbers (and read state from it) 
– “Particle System” has a function that evaluates f(X,t), 

given a state vector X and time t 
 

– “Time Stepper” takes a “Particle System” as input and 
advances its state 

65 

Implementation Notes 
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Particle System Class 
  class ParticleSystem 

  { 

        virtual int getDimension() 

        virtual setDimension(int n) 

        virtual float* getStatePositions() 

        virtual setStatePositions(float* positions) 

        virtual float* getStateVelocities() 

        virtual setStateVelocities(float* velocities) 

        virtual float* getForces(float* positions, float* velocities) 

                        virtual setMasses(float* masses) 

                        virtual float* getMasses() 

 

        float* m_currentState  

  } 
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Time Stepper Class 
  class TimeStepper 

  { 

        virtual takeStep(ParticleSystem* ps, float h) 

  } 
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Forward Euler Implementation 
  class ForwardEuler : TimeStepper 

  { 

          void takeStep(ParticleSystem* ps, float h) 

           { 

   velocities = ps->getStateVelocities() 

   positions = ps->getStatePositions() 

   forces = ps->getForces(positions, velocities) 

   masses = ps->getMasses() 

   accelerations = forces / masses 

   newPositions = positions + h*velocities 

   newVelocities = velocities  + h*accelerations 

   ps->setStatePositions(newPositions) 

   ps->setStateVelocities(newVelocities) 

           }  

  } 
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Mid-Point Implementation 
  class MidPoint : TimeStepper 

  { 

          void takeStep(ParticleSystem* ps, float h) 

           { 

   velocities = ps->getStateVelocities() 

   positions = ps->getStatePositions() 

   forces = ps->getForces(positions, velocities) 

   masses = ps->getMasses() 

   accelerations = forces / masses 

   midPositions = positions + 0.5*h*velocities 

   midVelocities = velocities  + 0.5*h*accelerations 

   midForces = ps->getForces(midPositions, midVelocities) 

   midAccelerations = midForces / masses 

   newPositions = positions + 0.5*h*midVelocities 

   newVelocities = velocities  + 0.5*h*midAccelerations     

   ps->setStatePositions(newPositions) 

   ps->setStateVelocities(newVelocities) 

           }  

  } 
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Particle System Simulation 
   

  ps = new MassSpringSystem(particleCount, masses, springs, externalForces) 

  stepper = new ForwardEuler() 

  time = 0 

  while time < 1000 

        stepper->takeStep(ps, 0.0001) 

        time = time + 0.0001 

        // render  
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Particle System Simulation 
   

  ps = new MassSpringSystem(particleCount, masses, springs, externalForces) 

  stepper = new MidPoint() 

  time = 0 

  while time < 1000 

        stepper->takeStep(ps, 0.0001) 

        time = time + 0.0001 

        // render  
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Questions? 

Image removed due to copyright restrictions.
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That’s All for Today! 
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