
1

MIT EECS 6.837 Computer Graphics

Particle Systems
and ODE Solvers II,
Mass-Spring Modeling
With slides from Jaakko Lehtinen
and others

P
ic

tu
re

: A
. S

el
le

 e
t a

l.

MIT EECS 6.837 – Matusik

Image removed due to copyright restrictions.

• Given a function f(X,t) compute X(t)

• Typically, initial value problems:
– Given values X(t0)=X0

– Find values X(t) for t > t0

• We can use lots of standard tools

2

ODEs and Numerical Integration

3

Reduction to 1st Order

2 unknowns (x, v)
instead of just x

or

• Point mass: 2nd order ODE

• Corresponds to system of first
order ODEs

This image is in the public domain.
Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/File:GodfreyKneller-IsaacNewton-1689.jpg

4

ODE: Path Through a Vector Field

“When we are at
state X at time t,
where will X be after
an infinitely small
time interval dt ?”

• X(t): path in multidimensional phase space

• f=d/dt X is a vector that sits at each point in phase
space, pointing the direction.

Image by MIT OpenCourseWare.

5

Euler, Visually

X(t)
f(X,t)

h f(X,t)
X(t+h)

Image by MIT OpenCourseWare.

• Moves along tangent; can leave solution curve, e.g.:

• Exact solution is circle:

• Euler spirals outward
no matter how small h is
– will just diverge more slowly

6

Euler’s Method: Inaccurate

Image by MIT OpenCourseWare.

• Moves along tangent; can leave solution curve, e.g.:

• Exact solution is circle:

• Euler spirals outward
no matter how small h is
– will just diverge more slowly

7

Euler’s Method: Inaccurate

Questions?
Image by MIT OpenCourseWare.

8

Euler’s Method: Not Always Stable

• “Test equation”

9

Euler’s Method: Not Always Stable

• “Test equation”

• Exact solution is a decaying exponential:

10

Euler’s Method: Not Always Stable

• “Test equation”

• Exact solution is a decaying exponential:

• Let’s apply Euler’s method:

• Limited step size!
– When
 things are fine, the solution decays
– When
 we get oscillation
– When things explode

11

Euler’s Method: Not Always Stable
W

ik
ip

ed
ia

 u
se

r B
er

la
nd

This image is in the public domain. Source: Wikimedia

http://en.wikipedia.org/wiki/File:StiffEquationNumericalSolvers.svg

12

Euler’s Method: Not Always Stable
W

ik
ip

ed
ia

 u
se

r B
er

la
nd

• Limited step size!
– When
 things are fine, the solution decays
– When
 we get oscillation
– When things explode

This image is in the public domain. Source: Wikimedia

If k is big,
h must be small!

http://en.wikipedia.org/wiki/File:StiffEquationNumericalSolvers.svg

• Expand exact solution X(t)

• Euler’s method approximates:

• First-order method: Accuracy varies with h

• To get 100x better accuracy need 100x more steps
13

Analysis: Taylor Series

• Expand exact solution X(t)

• Euler’s method approximates:

• First-order method: Accuracy varies with h

• To get 100x better accuracy need 100x more steps
14

Analysis: Taylor Series Questions?

• Problem: f varies along our Euler step
• Idea 1: look at f at the arrival of the step and

compensate for variation

15

Can We Do Better?

Image by MIT OpenCourseWare.

• This translates to...

• and we get

• This is the trapezoid method

– Analysis omitted (see 6.839)
• Note: What we mean by “2nd order” is that the error

goes down with h2 , not h – the equation is still 1st
order! 16

2nd Order Methods

• Problem: f has varied along our Euler step
• Idea 2: look at f after a smaller step, use that value

for a full step from initial position

17

Can We Do Better?

Image by MIT OpenCourseWare.

• This translates to...

• and we get

• This is the midpoint method

– Analysis omitted again,
but it’s not very complicated, see here.

18

2nd Order Methods Cont’d

http://en.wikipedia.org/wiki/Midpoint_method

• Midpoint:
– ½ Euler step
– evaluate fm

– full step using fm

• Trapezoid:
– Euler step (a)
– evaluate f1

– full step using f1 (b)
– average (a) and (b)

• Not exactly same result,
but same order of accuracy

19

Comparison

fm

f1
a

b

Image by MIT OpenCourseWare.

• You bet!
• You will implement Runge-Kutta for assignment 3

• Again, see Witkin, Baraff, Kass: Physically-based

Modeling Course Notes, SIGGRAPH 2001

• See eg
http://www.youtube.com/watch?v=HbE3L5CIdQg

20

Can We Do Even Better?

http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.youtube.com/watch?v=HbE3L5CIdQg

• You bet!
• You will implement Runge-Kutta for assignment 3

• Again, see Witkin, Baraff, Kass: Physically-based

Modeling Course Notes, SIGGRAPH 2001

• See eg
http://www.youtube.com/watch?v=HbE3L5CIdQg

21

Can We Do Even Better? Questions?

http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.pixar.com/companyinfo/research/pbm2001/
http://www.youtube.com/watch?v=HbE3L5CIdQg

• Beyond pointlike objects:
strings, cloth, hair, etc.

• Interaction between particles
– Create a network of spring

forces that link pairs of particles

• First, slightly hacky version of cloth simulation
• Then, some motivation/intuition for implicit

integration (NEXT LECTURE)

22

Mass-Spring Modeling
Michael Kass

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Each particle is linked to two particles (except ends)
• Come up with forces that try to keep the distance

between particles constant

23

How Would You Simulate a String?

24

Springs

Image courtesy of Jean-Jacques MILAN on Wikimedia Commons. License: CC-BY-SA. This content is excluded

from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Ressort_de_compression.jpg

25

Pi
Pj

 Rest length L0

F

L0 - ||Pj-Pi||

Spring Force – Hooke’s Law

http://en.wikipedia.org/wiki/Hooke's_law

• Force in the direction of the spring and proportional
to difference with rest length L0.

• K is the stiffness of the spring
– When K gets bigger, the spring really

wants to keep its rest length

26
Pi

Pj

L0
F

Spring Force – Hooke’s Law

http://en.wikipedia.org/wiki/Hooke's_law

• Force in the direction of the spring and proportional
to difference with rest length L0.

• K is the stiffness of the spring
– When K gets bigger, the spring really

wants to keep its rest length

27

Spring Force – Hooke’s Law

Pi
Pj

L0
F

This is the force on Pj.
Remember Newton:

Pi experiences force of
equal magnitude but
opposite direction.

http://en.wikipedia.org/wiki/Hooke's_law

• Springs link the particles
• Springs try to keep their rest lengths

and preserve the length of the string
• Not exactly preserved though, and we get oscillation

– Rubber band approximation

28

How Would You Simulate a String?

• Springs link the particles
• Springs try to keep their rest lengths

and preserve the length of the string
• Not exactly preserved though, and we get oscillation

– Rubber band approximation

29

How Would You Simulate a String?

Questions?

• Linear set of particles
• Length-preserving structural springs like before
• Deformation forces proportional to the angle

between segments
• External forces

30

Hair



• Springs between mass n & n+2 with rest length 2L0

– Wants to keep particles aligned

31

Hair - Alternative Structural Forces

• Springs between mass n & n+2 with rest length 2L0

– Wants to keep particles aligned

32

Hair - Alternative Structural Forces

Questions?

33

Mass-Spring Cloth

Michael Kass
© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Structural forces
– Try to enforce invariant

properties of the system
• E.g. force the distance

between two particles
to be constant

– Ideally, these should be constraints, not forces
• Internal deformation forces

– E.g. a string deforms, a spring board tries to remain flat
• External forces

– Gravity, etc.

34

Cloth – Three Types of Forces

© ACM. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

35

Springs for Cloth
• Network of masses and

springs
• Structural springs:

– link (i j) and (i+1, j);
and (i, j) and (i, j +1)

• Deformation:

– Shear springs
• (i j) and (i+1, j+1)

– Flexion springs
• (i,j) and (i+2,j);

(i,j) and (i,j+2)
• See Provot’s Graphics

Interface ’95 paper for
details

Provot 95

Image by MIT OpenCourseWare.

http://graphics.stanford.edu/courses/cs468-02-winter/Papers/Rigidcloth.pdf
http://graphics.stanford.edu/courses/cs468-02-winter/Papers/Rigidcloth.pdf

• Gravity G
• Friction
• Wind, etc.

36

External Forces

Provot 95

Image by MIT OpenCourseWare.

37

Cloth Simulation
• Then, the all trick is to set

the stiffness of all springs
to get realistic motion!

• Remember that forces
depend on other particles
(coupled system)

• But it is sparse
(only near neighbors)
– This is in contrast to e.g.

the N-body problem.

Provot 95

Image by MIT OpenCourseWare.

38

Forces: Structural vs. Deformation
• Structural forces are here

just to enforce a constraint
• Ideally, the constraint

would be enforced strictly
– at least a lot more than we

can afford
• We’ll see that this is the

root of a lot of problems
• In contrast, deformation

forces actually correspond
to physical forces

Provot 95

Image by MIT OpenCourseWare.

• Hanging curtain:
– 2 contact points stay fixed

• What does it mean?
– Sum of the forces is zero

• How so?
– Because those point undergo an

external force that balances the system
• What is the force at the contact?

– Depends on all other forces in the system
– Gravity, wind, etc.

39

Contact Forces
Reaction force

Forces from
other particles,

gravity

• How can we compute the external
contact force?
– Inverse dynamics!
– Sum all other forces applied to point
– Take negative

• Do we really need to
compute this force?
– Not really, just ignore the other forces

applied to this point!

40

Contact Forces

• How can we compute the external
contact force?
– Inverse dynamics!
– Sum all other forces applied to point
– Take negative

• Do we really need to
compute this force?
– Not really, just ignore the other forces

applied to this point!

41

Contact Forces

Questions?

• Excessive rubbery deformation:
the strings are not stiff enough

42

Example

Initial position After 200 iterations
© Xavier Provot. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Constrain length to increase by less than 10%
– A little hacky

43

One Solution

Simple mass-spring system Improved solution
(see Provot Graphics Interface 1995)

http://citeseer.ist.psu.edu/provot96deformation.html

© Xavier Provot. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://citeseer.ist.psu.edu/provot96deformation.html

• What happens if we discretize our cloth more finely?
• Do we get the same behavior?
• Usually not! It takes a lot of effort to design a

scheme that is mostly oblivious to the discretization.

44

The Discretization Problem

• What happens if we discretize our cloth more finely?
• Do we get the same behavior?
• Usually not! It takes a lot of effort to design a

scheme that is mostly oblivious to the discretization.

45

The Discretization Problem

Questions?

• We use springs while we really mean constraint
– Spring should be super stiff, which requires tiny t
– Remember x’=-kx system and Euler speed limit!

• The story extends to N particles and springs (unfortunately)

• Many numerical solutions

– Reduce t (well, not a great solution)
– Actually use constraints (see 6.839)
– Implicit integration scheme (more next Thursday)

46

The Stiffness Issue

• h > 1/k: oscillate. h > 2/k: explode!

47

Euler Has a Speed Limit!

Fr
om

 th
e

S
IG

G
R

A
PH

 P
BM

 n
ot

es
 ’

Image removed due to copyright restrictions -- please see slide 5 on "Implicit Methods" from
Online Siggraph '97 Course notes, available at http://www.cs.cmu.edu/~baraff/sigcourse/.

http://www.cs.cmu.edu/~baraff/sigcourse/

• 1D example, with two particles constrained to move
along the x axis only, rest length L0 = 1

• Phase space is 4D: (x1, v1, x2, v2)

– But spring force only depends on x1, x2 and L0.

48

Why Stiff Springs Are Difficult

x1 x2

v1 v2

L0 = 1

49

Why Stiff Springs Are Difficult

x1 x2

height=magnitude
of spring force

K=1

x2

x1

50

Why Stiff Springs Are Difficult

x1

x2

K=6

x2

x1

height=magnitude
of spring force

Forces grow

really big!

51

Why Stiff Springs Are Difficult

x1

x2

K=11

x2

x1

x2

x1

Forces grow

really big!

The “admissible region”
shrinks towards the line

x1-x2=1 as K grows

52

Why Stiff Springs Are Difficult

x1

x2

K=11

x2

x1

x2

x1

Forces grow

really big!

The “admissible region”
shrinks towards the line

x1-x2=1 as K grows

• In our mass-spring cloth, we have “encouraged”
length preservation using springs that want to have a
given length (unfortunately, they can refuse offer ;-))

• Constrained dynamic simulation:
force it to be constant!

• How it works – more in 6.839
– Start with constraint equation

• E.g., (x2-x1)-1 = 0 in the previous 1D example
– Derive extra forces that will exactly enforce constraint

• This means projecting the external forces (like gravity) onto
the “subspace” of phase space where constraints are satisfied

• Fancy name for this: “Lagrange multipliers”
– Again, see the SIGGRAPH 2001 Course Notes

53

Constrained Dynamics

© David Baraff and Andrew Witkin. All
rights reserved. This content is excluded
from our Creative Commons license. For
more information, see
http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

• Further reading
– Stiff systems
– Explicit vs. implicit solvers
– Again, consult the 2001 course notes!

54

Questions?

http://en.wikipedia.org/wiki/Stiff_equation
http://en.wikipedia.org/wiki/Explicit_and_implicit_methods
http://www.pixar.com/companyinfo/research/pbm2001/

• State of system (phase) : velocity & position
– similar to our X=(x v) to get 1st order

55

Mass on a Spring, Phase Space
W

ik
ip

ed
ia

 u
se

r M
az

em
as

te
r

This image is in the public domain. Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/File:Simple_Harmonic_Motion_Orbit.gif

• Guess how well Euler will do...
always diverge

56

Mass on a Spring, Phase Space
W

ik
ip

ed
ia

 u
se

r M
az

em
as

te
r

This image is in the public domain. Source: Wikimedia Commons.

http://en.wikipedia.org/wiki/File:Simple_Harmonic_Motion_Orbit.gif

• x’=-kx is a true 1st order ODE
• Energy gets dissipated

• In contrast, a spring is a second order system
• Energy does not get dissipated

– It is just transferred between potential and kinetic energy
– Unless you add damping

• This is why people always add damping forces and
results look too viscous

57

Difference with x’=-kx

• x’=-kx is a true 1st order ODE
• Energy gets dissipated

• In contrast, a spring is a second order system
• Energy does not get dissipated

– It is just transferred between potential and kinetic energy
– Unless you add damping

• This is why people always add damping forces and
results look too viscous

58

Difference with x’=-kx Questions?

• A cloth has many points of contact
• Requires

– Efficient collision detection
– Efficient numerical

treatment (stability)

59

The Collision Problem

Image from Bridson et al.

© ACM. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/

60

Collisions Robert Bridson, Ronald Fedkiw & John Anderson
Robust Treatment of Collisions, Contact

and Friction for Cloth Animation
SIGGRAPH 2002 • Cloth has many points

of contact
• Need efficient collision

detection and
stable treatment

© ACM. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/help/faq-fair-use/.

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://ocw.mit.edu/help/faq-fair-use/
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572

• Robert Bridson, Ronald Fedkiw & John Anderson:
Robust Treatment of Collisions, Contact
and Friction for Cloth Animation
SIGGRAPH 2002

• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust
High-Resolution Cloth Using Parallelism, History-
Based Collisions, and Accurate Friction," IEEE
TVCG 15, 339-350 (2009).

• Selle, A., Lentine, M. and Fedkiw, R., "A Mass
Spring Model for Hair Simulation", SIGGRAPH
2008, ACM TOG 27, 64.1-64.11 (2008).

61

Cool Cloth/Hair Demos

http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://doi.acm.org/10.1145/1198555.1198572
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2008-02.pdf

• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust High-Resolution Cloth Using Parallelism,
History-Based Collisions, and Accurate Friction," IEEE TVCG 15, 339-350 (2009).

62

Cool Cloth/Hair Demos

Image removed due to copyright restrictions.

http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf

• Selle. A, Su, J., Irving, G. and Fedkiw, R., "Robust High-Resolution Cloth Using Parallelism,
History-Based Collisions, and Accurate Friction," IEEE TVCG 15, 339-350 (2009).

63

Cool Cloth/Hair Demos Questions?

Image removed due to copyright restrictions.

http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf
http://physbam.stanford.edu/~fedkiw/papers/stanford2007-06.pdf

• It pays off to abstract (as usual)
– It’s easy to design your “Particle System” and “Time

Stepper” to be unaware of each other

• Basic idea
– “Particle system” and “Time Stepper” communicate via

floating-point vectors X and a function that computes
f(X,t)

• “Time Stepper” does not need to know anything else!

64

Implementation Notes

• Basic idea
– “Particle System” tells “Time Stepper” how many

dimensions (N) the phase space has
– “Particle System” has a function to write its state to an N-

vector of floating point numbers (and read state from it)
– “Particle System” has a function that evaluates f(X,t),

given a state vector X and time t

– “Time Stepper” takes a “Particle System” as input and
advances its state

65

Implementation Notes

66

Particle System Class
 class ParticleSystem

 {

 virtual int getDimension()

 virtual setDimension(int n)

 virtual float* getStatePositions()

 virtual setStatePositions(float* positions)

 virtual float* getStateVelocities()

 virtual setStateVelocities(float* velocities)

 virtual float* getForces(float* positions, float* velocities)

 virtual setMasses(float* masses)

 virtual float* getMasses()

 float* m_currentState

 }

67

Time Stepper Class
 class TimeStepper

 {

 virtual takeStep(ParticleSystem* ps, float h)

 }

68

Forward Euler Implementation
 class ForwardEuler : TimeStepper

 {

 void takeStep(ParticleSystem* ps, float h)

 {

 velocities = ps->getStateVelocities()

 positions = ps->getStatePositions()

 forces = ps->getForces(positions, velocities)

 masses = ps->getMasses()

 accelerations = forces / masses

 newPositions = positions + h*velocities

 newVelocities = velocities + h*accelerations

 ps->setStatePositions(newPositions)

 ps->setStateVelocities(newVelocities)

 }

 }

69

Mid-Point Implementation
 class MidPoint : TimeStepper

 {

 void takeStep(ParticleSystem* ps, float h)

 {

 velocities = ps->getStateVelocities()

 positions = ps->getStatePositions()

 forces = ps->getForces(positions, velocities)

 masses = ps->getMasses()

 accelerations = forces / masses

 midPositions = positions + 0.5*h*velocities

 midVelocities = velocities + 0.5*h*accelerations

 midForces = ps->getForces(midPositions, midVelocities)

 midAccelerations = midForces / masses

 newPositions = positions + 0.5*h*midVelocities

 newVelocities = velocities + 0.5*h*midAccelerations

 ps->setStatePositions(newPositions)

 ps->setStateVelocities(newVelocities)

 }

 }

70

Particle System Simulation

 ps = new MassSpringSystem(particleCount, masses, springs, externalForces)

 stepper = new ForwardEuler()

 time = 0

 while time < 1000

 stepper->takeStep(ps, 0.0001)

 time = time + 0.0001

 // render

71

Particle System Simulation

 ps = new MassSpringSystem(particleCount, masses, springs, externalForces)

 stepper = new MidPoint()

 time = 0

 while time < 1000

 stepper->takeStep(ps, 0.0001)

 time = time + 0.0001

 // render

72

Questions?

Image removed due to copyright restrictions.

73

That’s All for Today!

B
un

gi
e

/ i
gn

.c
om

Image removed due to copyright restrictions.

MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Lec08.pdf
	Pages from CoordinationGamesp

