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6.837 Computer Graphics 
Hierarchical Modeling 
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Recap 

• Vectors can be expressed in a basis 
• Keep track of basis with left notation 
• Change basis 

• Points can be expressed in a frame  
(origin+basis) 
• Keep track of frame with left notation 
• adds a dummy 4th coordinate always 1 
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Frames & transformations 

• Transformation S wrt car frame f 

 

• how is the world frame a affected by this?  

• we have 

• which gives 

 

• i.e. the transformation in a is A-1SA 

• i.e., from right to left, A takes us from a to f, then 

we apply S, then we go back to a with A-1 
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Homogeneous Visualization 

• Divide by w to normalize (project) 

• w = 0?   

w = 1 

w = 2 

(0, 0, 1) = (0, 0, 2) = … 
(7, 1, 1) = (14, 2, 2) = … 
(4, 5, 1) = (8, 10, 2) = … 

(0,0,0) 
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Different objects 

• Points 

• represent locations 

• Vectors 

• represent movement, force, displacement from A to B 

• Normals  

• represent orientation, unit length 

• Coordinates 

• numerical representation of the above objects  
in a given coordinate system 
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Normal 

• Surface Normal:  unit vector that is locally 
perpendicular to the surface 
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Why is the Normal important? 

• It's used for shading — makes things look 3D! 

object color only  Diffuse Shading  
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Visualization of Surface Normal 

   ± x = Red 
± y = Green 
± z = Blue  
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How do we transform normals? 

Object Space World Space 

nOS 

nWS 
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Transform Normal like Object? 

• translation? 

• rotation? 

• isotropic scale? 

• scale? 

• reflection? 

• shear? 

• perspective?  
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Transform Normal like Object? 

• translation? 

• rotation? 

• isotropic scale? 

• scale? 

• reflection? 

• shear? 

• perspective? 

11 



Transformation for shear and scale 

Incorrect 
Normal 
Transformation 

Correct 
Normal 
Transformation 
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More Normal Visualizations 

Incorrect Normal Transformation Correct Normal Transformation 
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• Think about transforming the tangent plane   
to the normal, not the normal vector 

So how do we do it right? 

Original Incorrect Correct 

nOS 

Pick any vector vOS in the tangent plane, 
how is it transformed by matrix M? 

vOS 
vWS 

nWS 

vWS   =   M  vOS 
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Transform tangent vector v 

v is perpendicular to normal n: 
nOSʿᵀ vOS  =  0 

 nOSᵀ  (M ̄ ¹  M)  vOS  =  0 

 nWSᵀ =  nOSᵀ (M ̄ ¹) 

 (nOSᵀ  M ̄ ¹)  (M   vOS)  =  0 
 (nOSᵀ  M ̄ ¹)  vWS  =  0 

 nWSᵀ vWS  =  0 

vWS is perpendicular to normal nWS: 

 nWS = (M ̄ ¹)ᵀ nOS 

nOS 

vWS 

nWS 

vOS 

Dot product 
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Digression 

 

 

• The previous proof is not quite rigorous; first 
you’d need to prove that tangents indeed 
transform with M. 
- Turns out they do, but we’ll take it on faith here. 

- If you believe that, then the above formula follows. 

 nWS = (M¯¹)ᵀ nOS 
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Comment 

• So the correct way to transform normals is: 

 

• But why did  nWS = M nOS work for similitudes? 

• Because for similitude / similarity transforms, 

(M¯¹)ᵀ =λ M 

• e.g. for orthonormal basis: 
 
                   M¯¹ = M ᵀ     i.e.  (M¯¹)ᵀ = M 
 

 nWS = (M¯¹)ᵀ nOS Sometimes denoted M¯ᵀ 
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Connections 

• Not part of class, but cool 
• “Covariant”: transformed by the matrix 

• e.g., tangent 

• “Contravariant”: transformed by the inverse transpose 
• e.g., the normal 

• a normal is a “co-vector” 

 

• Google “differential geometry” to find out more 

18 



• Further Reading 
–Buss, Chapter 2 

 

• Other Cool Stuff 
–Algebraic Groups 
–http://phototour.cs.washington.edu/ 
–http://phototour.cs.washington.edu/findingpaths/ 
–Free-form deformation of solid objects 
–Harmonic coordinates for character articulation 
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http://en.wikipedia.org/wiki/Group_%28mathematics%29
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Question? 
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Hierarchical Modeling 
• Triangles, parametric curves and surfaces 

are the building blocks from which more 
complex real-world objects are modeled. 

 

• Hierarchical modeling creates complex real-
world objects by combining simple primitive 
shapes into more complex aggregate 
objects.  
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical models 
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Hierarchical Grouping of Objects 
• The “scene graph” represents 

the logical organization of scene 

6.837 -  Durand 

chair table 

table fruits 

ground 

scene 
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Scene Graph 

• Convenient Data structure  
for scene representation 

• Geometry (meshes, etc.) 

• Transformations 

• Materials, color 

• Multiple instances 

• Basic idea: Hierarchical Tree 

• Useful for manipulation/animation 

• Also for articulated figures 

• Useful for rendering, too 

• Ray tracing acceleration,  
occlusion culling 

• But note that two things that are close to 
each other in the tree are NOT necessarily 
spatially near each other 29 

This image is in the public domain.

Source: Wikimedia Commons.

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons.

License: CC-BY-SA. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Human_skeleton_diagram_trace.svg
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Scene Graph Representation 

30 

• Basic idea: Tree 

• Comprised of several node types 

• Shape: 3D geometric objects 

• Transform: Affect current transformation 

• Property: Color, texture 

• Group: Collection of subgraphs 
 

 

• C++ implementation 

• base class Object 

• children, parent 

• derived classes for each                                
node type (group, transform) 



Scene Graph Representation 

Group 

Trsfrm Trsfrm Trsfrm Trsfrm 

Group 
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• In fact, generalization of a tree: Directed Acyclic Graph (DAG) 

• Means a node can have multiple parents, but cycles are not allowed 

• Why? Allows multiple instantiations 

• Reuse complex hierarchies many times in the scene using different 
transformations (example: a tree) 

• Of course, if you only want to reuse meshes, just load the mesh once and make 
several geometry nodes point to the same data 



6.837 -  Durand 

Simple Example with Groups 

Text format is fictitious, better to use XML in real applications 
32 

Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 



6.837 -  Durand 

Simple Example with Groups 

Text format is fictitious, better to use XML in real applications 
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Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 



6.837 -  Durand 

Simple Example with Groups 

Group {   

    numObjects 3 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Box { <BOX PARAMS> } 

            Sphere { <SPHERE PARAMS> } 

            Sphere { <SPHERE PARAMS> } } } 

    Plane { <PLANE PARAMS> } } 

Here we have only simple shapes, but easy to add a “Mesh” 
node whose parameters specify an .OBJ to load (say) 
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Adding Attributes (Material, etc.) 
Group {   

    numObjects 3 

    Material { <BLUE> } 

    Group { 

        numObjects 3 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } 

        Box { <BOX PARAMS> } } 

    Group { 

        numObjects 2 

        Material { <BROWN> } 

        Group { 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } 

            Box { <BOX PARAMS> } } 

        Group { 

            Material { <GREEN> } 

            Box { <BOX PARAMS> } 

            Material { <RED> } 

            Sphere { <SPHERE PARAMS> } 

            Material { <ORANGE> } 

            Sphere { <SPHERE PARAMS> } } } 

            Material { <BLACK> } 

    Plane { <PLANE PARAMS> } } 
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Adding Transformations 

36 



Questions? 
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Scene Graph Traversal 

• Depth first recursion 

• Visit node, then visit subtrees (top to bottom, left to right) 

• When visiting a geometry node: Draw it! 
 

• How to handle transformations? 

• Remember, transformations are always specified 
in coordinate system of the parent 
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Scene Graph Traversal 

• How to handle transformations? 

• Traversal algorithm keeps a transformation state S (a 4x4 matrix) 

• from world coordinates 

• Initialized to identity in the beginning 

• Geometry nodes always drawn using current S  

• When visiting a transformation node T: 
multiply current state S with T, 
then visit child nodes 

• Has the effect that nodes below 
will have new transformation 

• When all children have been 
visited, undo the effect of T! 
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Recall frames 

• An object frame has coordinates O in the world 
(of course O is also our 4x4 matrix) 

 

 

• Then we are given coordinates c in the object frame 

 

 

 

• Indeed we need to apply matrix O to all objects 
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Frames and hierarchy 

• Matrix M1 to go from world to torso 

• Matrix M2 to go from torso to arm  

 

• How do you go from arm coordinates to world? 

 

 

 

 

• We can concatenate the matrices 

• Matrices for the lower hierarchy nodes go to the right 
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Recap: Scene Graph Traversal 

• How to handle transformations? 

• Traversal algorithm keeps a transformation state S (a 4x4 matrix) 

• from world coordinates 

• Initialized to identity in the beginning 

• Geometry nodes always drawn using current S  

• When visiting a transformation node T: 
multiply current state S with T, 
then visit child nodes 

• Has the effect that nodes below 
will have new transformation 

• When all children have been 
visited, undo the effect of T! 

42 



Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = I 

44 



Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 T2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 R1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = T1 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = I 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

S = R2 
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Traversal Example 

Group 
(table, fruits) 

Translate T2 

Group 
(tabletop, legs) 

Group 
(basket, fruit) 

Group 
(chair, legs) 

Root 

Translate T1 

Rotate R1 

Rotate R2 

60 

At each node, the current object-to-world transformation is the 

matrix product of all transformations found on the way from the 

node to the root. 

S = T1R1 



Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix (Why?) 
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Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 
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Traversal State 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 

Can you think of a data structure suited for this? 
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Traversal State – Stack 

• The state is updated during traversal 

• Transformations 

• But also other properties (color, etc.) 

• Apply when entering node, “undo” when leaving 
 

• How to implement? 

• Bad idea to undo transformation by inverse matrix 

• Why I? T*T-1 = I does not necessarily hold in floating point even 
when T is an invertible matrix – you accumulate error 

• Why II? T might be singular, e.g., could flatten a 3D object onto a 
plane – no way to undo, inverse doesn’t exist! 

 

• Solution: Keep state variables in a stack 

• Push current state when entering node, update current state
 

• Pop stack when leaving state-changing node 

• See what the stack looks like in the previous example! 
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Questions? 
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Plan 

• Hierarchical Modeling, Scene Graph 

• OpenGL matrix stack 

• Hierarchical modeling and animation of characters 

• Forward and inverse kinematics 
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Hierarchical Modeling in OpenGL 

• The OpenGL Matrix Stack implements what we just did! 

 

• Commands to change current transformation 

• glTranslate, glScale, etc.  

• Current transformation is part of the OpenGL state, i.e., all 
following draw calls will undergo the new transformation 

• Remember, a transform affects the whole subtree 

• Functions to maintain a matrix stack 

• glPushMatrix, glPopMatrix 

• Separate stacks for modelview (object-to-view) 
and projection matrices 
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When You Encounter a Transform Node 

• Push the current transform using glPushMatrix() 

• Multiply current transform by node’s transformation 

• Use glMultMatrix(), glTranslate(), glRotate(), glScale(), etc. 

• Traverse the subtree 

• Issue draw calls for geometry nodes 

• Use glPopMatrix() when done. 
 
 

• Simple as that! 
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More Specifically... 

• An OpenGL transformation call corresponds to a matrix T 

• The call multiplies current modelview matrix C by T from the 
right, i.e. C’ = C * T. 

• This also works for projection, but you often set it up only once. 

 

• This means that the transformation for the subsequent 
vertices will be p’ = C * T * p 

• Vertices are column vectors on the right in OpenGL 

• This implements hierarchical transformation directly! 
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More Specifically... 

• An OpenGL transformation call corresponds to a matrix T 

• The call multiplies current modelview matrix C by T from the 
right, i.e. C’ = C * T. 

• This also works for projection, but you often set it up only once. 

 

• This means that the transformation for the subsequent 
vertices will be p’ = C * T * p 

• Vertices are column vectors on the right in OpenGL 

• This implements hierarchical transformation directly! 
 

• At the beginning of the frame, initialize the current matrix by 
the viewing transform that maps from world space to view 
space. 

• For instance, glLoadIdentity() followed by gluLookAt() 
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Questions? 

• Further reading on OpenGL 
Matrix Stack and hierarchical model/view transforms 

• http://www.glprogramming.com/red/chapter03.html 

 

• It can be a little confusing if you don’t think the previous 
through, but it’s really quite simple in the end. 

• I know very capable people who after 15 years of experience still 
resort to brute force (trying all the combinations) for getting their 
transformations right, but it’s such a waste :) 
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Plan 

• Hierarchical Modeling, Scene Graph 

• OpenGL matrix stack 

• Hierarchical modeling and animation of characters 

• Forward and inverse kinematics 
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Animation 

• Hierarchical structure is essential for 
animation 

• Eyes move with head 

• Hands move with arms 

• Feet move with legs 

• … 

 

• Without such structure the model falls apart. 
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Articulated Models 

• Articulated models are rigid parts connected by joints 

• each joint has some angular degrees of freedom 
 

• Articulated models can be animated by specifying the joint 
angles as functions of time. 
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Joints and bones 

• Describes the positions of the 
body parts as a function of joint angles. 

• Body parts are usually called “bones” 
 

• Each joint is characterized by its degrees of freedom (dof) 

• Usually rotation for articulated bodies 

1 DOF: knee 2 DOF: wrist 3 DOF: arm 
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Skeleton Hierarchy 

• Each bone position/orientation described 
relative to the parent in the hierarchy: 

hips 

r-thigh 

r-calf 

r-foot 

left-leg 
... 

vs 

y 

x 

z 

For the root, the 
parameters 
include a position 
as well 

Joints are 
specified by 
angles. 
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Draw by Traversing a Tree 

 

 

 

 

 

 

 

 

• Assumes drawing procedures 
for thigh, calf, and foot use 
joint positions as the origin for 
a drawing coordinate frame 

hips 

r-thigh 

r-calf 

r-foot 

left-leg 
... 

glLoadIdentity(); 

glPushMatrix(); 

  glTranslatef(…); 

  glRotate(…); 

  drawHips(); 

  glPushMatrix(); 

    glTranslate(…); 

 glRotate(…); 

 drawThigh(); 

 glTranslate(…); 

 glRotate(…); 

 drawCalf(); 

 glTranslate(…); 

 glRotate(…); 

 drawFoot(); 

  glPopMatrix(); 

      left-leg 
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Forward Kinematics 

vs vs How to determine the world-space 
position for point vs? 
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Forward Kinematics 

vs vs 

Transformation matrix S for a point vs is a matrix 
composition of all joint transformations between 
the point and the root of the hierarchy. S is a 
function of all the joint angles between here and 
root. 
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Forward Kinematics 

vs vs 

This product is S 

Transformation matrix S for a point vs is a matrix 
composition of all joint transformations between 
the point and the root of the hierarchy. S is a 
function of all the joint angles between here and 
root. 

Note that the angles have a non-linear effect. 
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6.837 -  Durand 

Forward Kinematics 

vs vs 

parameter vector p 

This product is S 

Transformation matrix S for a point vs is a matrix 
composition of all joint transformations between 
the point and the root of the hierarchy. S is a 
function of all the joint angles between here and 
root. 

Note that the angles have a non-linear effect. 
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Questions? 
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Inverse Kinematics 

• Context: an animator wants to “pose” a character 

• Specifying every single angle is tedious and not intuitive 

• Simpler interface:  
directly manipulate position of e.g. hands and feet 

• That is, specify vw, infer joint transformations 

vs 
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Inverse Kinematics 

• Forward Kinematics 

• Given the skeleton parameters p (position of the root and the joint 
angles) and the position of the point in local coordinates vs, what is 
the position of the point in the world coordinates vw? 

• Not too hard, just apply transform accumulated from the root. 

vs 
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Inverse Kinematics 

vs 

ṽw 
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• Forward Kinematics 

• Given the skeleton parameters p (position of the root and the joint 
angles) and the position of the point in local coordinates vs, what is 
the position of the point in the world coordinates vw? 

• Not too hard, just apply transform accumulated from the root. 
 

 

• Inverse Kinematics 

• Given the current position of the point                                             
and the desired new position      in                                                     
world coordinates, what are the skeleton                                          
parameters p that take the point to the                                        
desired position? 



Inverse Kinematics 

skeleton parameter vector p 

ṽw 
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• Given the position of the point in local coordinates vs and 
the desired position      in world coordinates, what are the 
skeleton parameters p? 

 

 

 

 

 

• Requires solving for p, given vs and  

• Non-linear and … 



It’s Underconstrained 

• Count degrees of freedom:  

• We specify one 3D point (3 equations) 

• We usually need more than 3 angles 

• p usually has tens of dimensions 
 

• Simple geometric example (in 3D): 
specify hand position, need elbow & shoulder 

• The set of possible elbow location is a circle in 3D  

vs vs 
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How to tackle these problems? 

• Deal with non-linearity: 
Iterative solution (steepest descent) 

• Compute Jacobian matrix of world position w.r.t. angles 

• Jacobian: “If the parameters p change by tiny amounts, what is the resulting 
change in the world position vWS?” 

• Then invert Jacobian. 

• This says “if vWS changes by a tiny amount, what is the change in the 
parameters p?” 

• But wait! The Jacobian is non-invertible (3xN) 

• Deal with ill-posedness: Pseudo-inverse 

• Solution that displaces things the least 

• See http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse 

• Deal with ill-posedness: Prior on “good pose” (more advanced) 

• Additional potential issues: bounds on joint angles, etc. 

• Do not want elbows to bend past 90 degrees, etc. 
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Example: Style-Based IK 

• Video 

 

• Prior on “good pose” 

 

• Link to paper: Grochow, Martin, Hertzmann, Popovic: Style-Based 
Inverse Kinematics, ACM SIGGRAPH 2004 
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http://dl.acm.org/citation.cfm?doid=1015706.1015755
http://dl.acm.org/citation.cfm?doid=1015706.1015755


Mesh-Based Inverse Kinematics 

• Video 

 

• Doesn’t even need a hierarchy or skeleton: Figure proper 
transformations out based on a few example deformations! 

 

• Link to paper: 
Sumner, Zwicker, Gotsman, Popovic: Mesh-Based Inverse Kinematics, 
ACM SIGGRAPH 2005 
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http://dl.acm.org/citation.cfm?doid=1073204.1073218
http://dl.acm.org/citation.cfm?doid=1073204.1073218


That’s All for Today! 

Further reading 

 OpenGL Matrix Stack and 
hierarchical model/view transforms 

 http://www.glprogramming.com/red/c
hapter03.html 

Image courtesy of BrokenSphere on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 91 
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