
1

Some slides from BarbCutler &
Jaakko Lehtinen

Wojciech Matusik, MIT EECS

1

6.837 Computer Graphics
Hierarchical Modeling

Image courtesy of BrokenSphere on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://commons.wikimedia.org/wiki/File:Floral_matryoshka_set_2.JPG
http://ocw.mit.edu/help/faq-fair-use/

Recap

• Vectors can be expressed in a basis
• Keep track of basis with left notation
• Change basis

• Points can be expressed in a frame
(origin+basis)
• Keep track of frame with left notation
• adds a dummy 4th coordinate always 1

2

Frames & transformations

• Transformation S wrt car frame f

• how is the world frame a affected by this?

• we have

• which gives

• i.e. the transformation in a is A-1SA

• i.e., from right to left, A takes us from a to f, then

we apply S, then we go back to a with A-1
3

Homogeneous Visualization

• Divide by w to normalize (project)

• w = 0?

w = 1

w = 2

(0, 0, 1) = (0, 0, 2) = …
(7, 1, 1) = (14, 2, 2) = …
(4, 5, 1) = (8, 10, 2) = …

(0,0,0)

4

Different objects

• Points

• represent locations

• Vectors

• represent movement, force, displacement from A to B

• Normals

• represent orientation, unit length

• Coordinates

• numerical representation of the above objects
in a given coordinate system

5

Normal

• Surface Normal: unit vector that is locally
perpendicular to the surface

6

Why is the Normal important?

• It's used for shading — makes things look 3D!

object color only Diffuse Shading

7

Visualization of Surface Normal

 ± x = Red
± y = Green
± z = Blue

8

How do we transform normals?

Object Space World Space

nOS

nWS

9

Transform Normal like Object?

• translation?

• rotation?

• isotropic scale?

• scale?

• reflection?

• shear?

• perspective?

10

Transform Normal like Object?

• translation?

• rotation?

• isotropic scale?

• scale?

• reflection?

• shear?

• perspective?

11

Transformation for shear and scale

Incorrect
Normal
Transformation

Correct
Normal
Transformation

12

More Normal Visualizations

Incorrect Normal Transformation Correct Normal Transformation
13

• Think about transforming the tangent plane
to the normal, not the normal vector

So how do we do it right?

Original Incorrect Correct

nOS

Pick any vector vOS in the tangent plane,
how is it transformed by matrix M?

vOS
vWS

nWS

vWS = M vOS

14

Transform tangent vector v

v is perpendicular to normal n:
nOSʿᵀ vOS = 0

 nOSᵀ (M ̄ ¹ M) vOS = 0

 nWSᵀ = nOSᵀ (M ̄ ¹)

 (nOSᵀ M ̄ ¹) (M vOS) = 0
 (nOSᵀ M ̄ ¹) vWS = 0

 nWSᵀ vWS = 0

vWS is perpendicular to normal nWS:

 nWS = (M ̄ ¹)ᵀ nOS

nOS

vWS

nWS

vOS

Dot product

15

Digression

• The previous proof is not quite rigorous; first
you’d need to prove that tangents indeed
transform with M.
- Turns out they do, but we’ll take it on faith here.

- If you believe that, then the above formula follows.

 nWS = (M¯¹)ᵀ nOS

16

Comment

• So the correct way to transform normals is:

• But why did nWS = M nOS work for similitudes?

• Because for similitude / similarity transforms,

(M¯¹)ᵀ =λ M

• e.g. for orthonormal basis:

 M¯¹ = M ᵀ i.e. (M¯¹)ᵀ = M

 nWS = (M¯¹)ᵀ nOS Sometimes denoted M¯ᵀ

17

Connections

• Not part of class, but cool
• “Covariant”: transformed by the matrix

• e.g., tangent

• “Contravariant”: transformed by the inverse transpose
• e.g., the normal

• a normal is a “co-vector”

• Google “differential geometry” to find out more

18

• Further Reading
–Buss, Chapter 2

• Other Cool Stuff
–Algebraic Groups
–http://phototour.cs.washington.edu/
–http://phototour.cs.washington.edu/findingpaths/
–Free-form deformation of solid objects
–Harmonic coordinates for character articulation

19

http://en.wikipedia.org/wiki/Group_%28mathematics%29
http://phototour.cs.washington.edu/
http://phototour.cs.washington.edu/findingpaths/
http://dl.acm.org/citation.cfm?doid=15886.15903
http://dl.acm.org/citation.cfm?doid=1276377.1276466

Question?

20

Hierarchical Modeling
• Triangles, parametric curves and surfaces

are the building blocks from which more
complex real-world objects are modeled.

• Hierarchical modeling creates complex real-
world objects by combining simple primitive
shapes into more complex aggregate
objects.

21
Image courtesy of Nostalgic dave on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://commons.wikimedia.org/wiki/File:-1959_wip_-_deepRasberryWithScalsRT.jpg
http://ocw.mit.edu/help/faq-fair-use/

Hierarchical models

22
Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

23 Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

24

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

25

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

26

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical models

27

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons. License: CC-BY-SA. This

content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Hierarchical Grouping of Objects
• The “scene graph” represents

the logical organization of scene

6.837 - Durand

chair table

table fruits

ground

scene

28

Scene Graph

• Convenient Data structure
for scene representation

• Geometry (meshes, etc.)

• Transformations

• Materials, color

• Multiple instances

• Basic idea: Hierarchical Tree

• Useful for manipulation/animation

• Also for articulated figures

• Useful for rendering, too

• Ray tracing acceleration,
occlusion culling

• But note that two things that are close to
each other in the tree are NOT necessarily
spatially near each other 29

This image is in the public domain.

Source: Wikimedia Commons.

Image courtesy of David Bařina, Kamil Dudka, Jakub Filák, Lukáš Hefka on Wikimedia Commons.

License: CC-BY-SA. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/faq-fair-use/.

http://ocw.mit.edu/help/faq-fair-use/
http://commons.wikimedia.org/wiki/File:Human_skeleton_diagram_trace.svg
http://commons.wikimedia.org/wiki/File:Radiosity_-_RRV,_step_79.png

Scene Graph Representation

30

• Basic idea: Tree

• Comprised of several node types

• Shape: 3D geometric objects

• Transform: Affect current transformation

• Property: Color, texture

• Group: Collection of subgraphs

• C++ implementation

• base class Object

• children, parent

• derived classes for each
node type (group, transform)

Scene Graph Representation

Group

Trsfrm Trsfrm Trsfrm Trsfrm

Group

31

• In fact, generalization of a tree: Directed Acyclic Graph (DAG)

• Means a node can have multiple parents, but cycles are not allowed

• Why? Allows multiple instantiations

• Reuse complex hierarchies many times in the scene using different
transformations (example: a tree)

• Of course, if you only want to reuse meshes, just load the mesh once and make
several geometry nodes point to the same data

6.837 - Durand

Simple Example with Groups

Text format is fictitious, better to use XML in real applications
32

Group {

 numObjects 3

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Box { <BOX PARAMS> }

 Sphere { <SPHERE PARAMS> }

 Sphere { <SPHERE PARAMS> } } }

 Plane { <PLANE PARAMS> } }

6.837 - Durand

Simple Example with Groups

Text format is fictitious, better to use XML in real applications
33

Group {

 numObjects 3

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Box { <BOX PARAMS> }

 Sphere { <SPHERE PARAMS> }

 Sphere { <SPHERE PARAMS> } } }

 Plane { <PLANE PARAMS> } }

6.837 - Durand

Simple Example with Groups

Group {

 numObjects 3

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Box { <BOX PARAMS> }

 Sphere { <SPHERE PARAMS> }

 Sphere { <SPHERE PARAMS> } } }

 Plane { <PLANE PARAMS> } }

Here we have only simple shapes, but easy to add a “Mesh”
node whose parameters specify an .OBJ to load (say)

34

Adding Attributes (Material, etc.)
Group {

 numObjects 3

 Material { <BLUE> }

 Group {

 numObjects 3

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 numObjects 2

 Material { <BROWN> }

 Group {

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> }

 Box { <BOX PARAMS> } }

 Group {

 Material { <GREEN> }

 Box { <BOX PARAMS> }

 Material { <RED> }

 Sphere { <SPHERE PARAMS> }

 Material { <ORANGE> }

 Sphere { <SPHERE PARAMS> } } }

 Material { <BLACK> }

 Plane { <PLANE PARAMS> } }

35

Adding Transformations

36

Questions?

37

Scene Graph Traversal

• Depth first recursion

• Visit node, then visit subtrees (top to bottom, left to right)

• When visiting a geometry node: Draw it!

• How to handle transformations?

• Remember, transformations are always specified
in coordinate system of the parent

38

Scene Graph Traversal

• How to handle transformations?

• Traversal algorithm keeps a transformation state S (a 4x4 matrix)

• from world coordinates

• Initialized to identity in the beginning

• Geometry nodes always drawn using current S

• When visiting a transformation node T:
multiply current state S with T,
then visit child nodes

• Has the effect that nodes below
will have new transformation

• When all children have been
visited, undo the effect of T!

39

Recall frames

• An object frame has coordinates O in the world
(of course O is also our 4x4 matrix)

• Then we are given coordinates c in the object frame

• Indeed we need to apply matrix O to all objects

40

Frames and hierarchy

• Matrix M1 to go from world to torso

• Matrix M2 to go from torso to arm

• How do you go from arm coordinates to world?

• We can concatenate the matrices

• Matrices for the lower hierarchy nodes go to the right

41

Recap: Scene Graph Traversal

• How to handle transformations?

• Traversal algorithm keeps a transformation state S (a 4x4 matrix)

• from world coordinates

• Initialized to identity in the beginning

• Geometry nodes always drawn using current S

• When visiting a transformation node T:
multiply current state S with T,
then visit child nodes

• Has the effect that nodes below
will have new transformation

• When all children have been
visited, undo the effect of T!

42

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

43

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = I

44

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

45

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

46

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 T2

47

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 T2

48

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 T2

49

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

50

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 R1

51

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 R1

52

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1 R1

53

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

54

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = T1

55

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = I

56

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = R2

57

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = R2

58

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

S = R2

59

.....

Traversal Example

Group
(table, fruits)

Translate T2

Group
(tabletop, legs)

Group
(basket, fruit)

Group
(chair, legs)

Root

Translate T1

Rotate R1

Rotate R2

60

At each node, the current object-to-world transformation is the

matrix product of all transformations found on the way from the

node to the root.

S = T1R1

Traversal State

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix (Why?)

61

Traversal State

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix

• Why I? T*T-1 = I does not necessarily hold in floating point even
when T is an invertible matrix – you accumulate error

• Why II? T might be singular, e.g., could flatten a 3D object onto a
plane – no way to undo, inverse doesn’t exist!

62

Traversal State

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix

• Why I? T*T-1 = I does not necessarily hold in floating point even
when T is an invertible matrix – you accumulate error

• Why II? T might be singular, e.g., could flatten a 3D object onto a
plane – no way to undo, inverse doesn’t exist!

Can you think of a data structure suited for this?

63

Traversal State – Stack

• The state is updated during traversal

• Transformations

• But also other properties (color, etc.)

• Apply when entering node, “undo” when leaving

• How to implement?

• Bad idea to undo transformation by inverse matrix

• Why I? T*T-1 = I does not necessarily hold in floating point even
when T is an invertible matrix – you accumulate error

• Why II? T might be singular, e.g., could flatten a 3D object onto a
plane – no way to undo, inverse doesn’t exist!

• Solution: Keep state variables in a stack

• Push current state when entering node, update current state

• Pop stack when leaving state-changing node

• See what the stack looks like in the previous example!
64

Questions?

65

Plan

• Hierarchical Modeling, Scene Graph

• OpenGL matrix stack

• Hierarchical modeling and animation of characters

• Forward and inverse kinematics

66

Hierarchical Modeling in OpenGL

• The OpenGL Matrix Stack implements what we just did!

• Commands to change current transformation

• glTranslate, glScale, etc.

• Current transformation is part of the OpenGL state, i.e., all
following draw calls will undergo the new transformation

• Remember, a transform affects the whole subtree

• Functions to maintain a matrix stack

• glPushMatrix, glPopMatrix

• Separate stacks for modelview (object-to-view)
and projection matrices

67

When You Encounter a Transform Node

• Push the current transform using glPushMatrix()

• Multiply current transform by node’s transformation

• Use glMultMatrix(), glTranslate(), glRotate(), glScale(), etc.

• Traverse the subtree

• Issue draw calls for geometry nodes

• Use glPopMatrix() when done.

• Simple as that!

68

More Specifically...

• An OpenGL transformation call corresponds to a matrix T

• The call multiplies current modelview matrix C by T from the
right, i.e. C’ = C * T.

• This also works for projection, but you often set it up only once.

• This means that the transformation for the subsequent
vertices will be p’ = C * T * p

• Vertices are column vectors on the right in OpenGL

• This implements hierarchical transformation directly!

69

More Specifically...

• An OpenGL transformation call corresponds to a matrix T

• The call multiplies current modelview matrix C by T from the
right, i.e. C’ = C * T.

• This also works for projection, but you often set it up only once.

• This means that the transformation for the subsequent
vertices will be p’ = C * T * p

• Vertices are column vectors on the right in OpenGL

• This implements hierarchical transformation directly!

• At the beginning of the frame, initialize the current matrix by
the viewing transform that maps from world space to view
space.

• For instance, glLoadIdentity() followed by gluLookAt()

70

Questions?

• Further reading on OpenGL
Matrix Stack and hierarchical model/view transforms

• http://www.glprogramming.com/red/chapter03.html

• It can be a little confusing if you don’t think the previous
through, but it’s really quite simple in the end.

• I know very capable people who after 15 years of experience still
resort to brute force (trying all the combinations) for getting their
transformations right, but it’s such a waste :)

71

http://www.glprogramming.com/red/chapter03.html

Plan

• Hierarchical Modeling, Scene Graph

• OpenGL matrix stack

• Hierarchical modeling and animation of characters

• Forward and inverse kinematics

72

Animation

• Hierarchical structure is essential for
animation

• Eyes move with head

• Hands move with arms

• Feet move with legs

• …

• Without such structure the model falls apart.

73

Articulated Models

• Articulated models are rigid parts connected by joints

• each joint has some angular degrees of freedom

• Articulated models can be animated by specifying the joint
angles as functions of time.

74

Joints and bones

• Describes the positions of the
body parts as a function of joint angles.

• Body parts are usually called “bones”

• Each joint is characterized by its degrees of freedom (dof)

• Usually rotation for articulated bodies

1 DOF: knee 2 DOF: wrist 3 DOF: arm

75

Skeleton Hierarchy

• Each bone position/orientation described
relative to the parent in the hierarchy:

hips

r-thigh

r-calf

r-foot

left-leg
...

vs

y

x

z

For the root, the
parameters
include a position
as well

Joints are
specified by
angles.

76

Draw by Traversing a Tree

• Assumes drawing procedures
for thigh, calf, and foot use
joint positions as the origin for
a drawing coordinate frame

hips

r-thigh

r-calf

r-foot

left-leg
...

glLoadIdentity();

glPushMatrix();

 glTranslatef(…);

 glRotate(…);

 drawHips();

 glPushMatrix();

 glTranslate(…);

 glRotate(…);

 drawThigh();

 glTranslate(…);

 glRotate(…);

 drawCalf();

 glTranslate(…);

 glRotate(…);

 drawFoot();

 glPopMatrix();

 left-leg

77

Forward Kinematics

vs vs How to determine the world-space
position for point vs?

78

Forward Kinematics

vs vs

Transformation matrix S for a point vs is a matrix
composition of all joint transformations between
the point and the root of the hierarchy. S is a
function of all the joint angles between here and
root.

79

Forward Kinematics

vs vs

This product is S

Transformation matrix S for a point vs is a matrix
composition of all joint transformations between
the point and the root of the hierarchy. S is a
function of all the joint angles between here and
root.

Note that the angles have a non-linear effect.

80

6.837 - Durand

Forward Kinematics

vs vs

parameter vector p

This product is S

Transformation matrix S for a point vs is a matrix
composition of all joint transformations between
the point and the root of the hierarchy. S is a
function of all the joint angles between here and
root.

Note that the angles have a non-linear effect.

81

Questions?

82

Inverse Kinematics

• Context: an animator wants to “pose” a character

• Specifying every single angle is tedious and not intuitive

• Simpler interface:
directly manipulate position of e.g. hands and feet

• That is, specify vw, infer joint transformations

vs

83

Inverse Kinematics

• Forward Kinematics

• Given the skeleton parameters p (position of the root and the joint
angles) and the position of the point in local coordinates vs, what is
the position of the point in the world coordinates vw?

• Not too hard, just apply transform accumulated from the root.

vs

84

Inverse Kinematics

vs

ṽw

85

• Forward Kinematics

• Given the skeleton parameters p (position of the root and the joint
angles) and the position of the point in local coordinates vs, what is
the position of the point in the world coordinates vw?

• Not too hard, just apply transform accumulated from the root.

• Inverse Kinematics

• Given the current position of the point
and the desired new position in
world coordinates, what are the skeleton
parameters p that take the point to the
desired position?

Inverse Kinematics

skeleton parameter vector p

ṽw

86

• Given the position of the point in local coordinates vs and
the desired position in world coordinates, what are the
skeleton parameters p?

• Requires solving for p, given vs and

• Non-linear and …

It’s Underconstrained

• Count degrees of freedom:

• We specify one 3D point (3 equations)

• We usually need more than 3 angles

• p usually has tens of dimensions

• Simple geometric example (in 3D):
specify hand position, need elbow & shoulder

• The set of possible elbow location is a circle in 3D

vs vs

87

How to tackle these problems?

• Deal with non-linearity:
Iterative solution (steepest descent)

• Compute Jacobian matrix of world position w.r.t. angles

• Jacobian: “If the parameters p change by tiny amounts, what is the resulting
change in the world position vWS?”

• Then invert Jacobian.

• This says “if vWS changes by a tiny amount, what is the change in the
parameters p?”

• But wait! The Jacobian is non-invertible (3xN)

• Deal with ill-posedness: Pseudo-inverse

• Solution that displaces things the least

• See http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse

• Deal with ill-posedness: Prior on “good pose” (more advanced)

• Additional potential issues: bounds on joint angles, etc.

• Do not want elbows to bend past 90 degrees, etc.

88

http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse

Example: Style-Based IK

• Video

• Prior on “good pose”

• Link to paper: Grochow, Martin, Hertzmann, Popovic: Style-Based
Inverse Kinematics, ACM SIGGRAPH 2004

89

http://dl.acm.org/citation.cfm?doid=1015706.1015755
http://dl.acm.org/citation.cfm?doid=1015706.1015755

Mesh-Based Inverse Kinematics

• Video

• Doesn’t even need a hierarchy or skeleton: Figure proper
transformations out based on a few example deformations!

• Link to paper:
Sumner, Zwicker, Gotsman, Popovic: Mesh-Based Inverse Kinematics,
ACM SIGGRAPH 2005

90

http://dl.acm.org/citation.cfm?doid=1073204.1073218
http://dl.acm.org/citation.cfm?doid=1073204.1073218

That’s All for Today!

Further reading

 OpenGL Matrix Stack and
hierarchical model/view transforms

 http://www.glprogramming.com/red/c
hapter03.html

Image courtesy of BrokenSphere on Wikimedia Commons. License: CC-BY-SA. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 91

http://commons.wikimedia.org/wiki/File:Floral_matryoshka_set_2.JPG
http://ocw.mit.edu/help/faq-fair-use/
http://www.glprogramming.com/red/chapter03.html
http://www.glprogramming.com/red/chapter03.html

MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Lec04NEW.pdf
	coversheet

